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Abstract: Maintaining both indoor air quality (IAQ) and thermal comfort in buildings along with
optimized energy consumption is a challenging problem. This investigation presents a novel design
for hybrid ventilation system enabled by predictive control and soft-sensors to achieve both IAQ
and thermal comfort by combining predictive control with demand controlled ventilation (DCV).
First, we show that the problem of maintaining IAQ, thermal comfort and optimal energy is a
multi-objective optimization problem with competing objectives, and a predictive control approach
is required to smartly control the system. This leads to many implementation challenges which are
addressed by designing a hybrid ventilation scheme supported by predictive control and soft-sensors.
The main idea of the hybrid ventilation system is to achieve thermal comfort by varying the ON/OFF
times of the air conditioners to maintain the temperature within user-defined bands using a predictive
control and IAQ is maintained using Healthbox 3.0, a DCV device. Furthermore, this study also
designs soft-sensors by combining the Internet of Things (IoT)-based sensors with deep-learning
tools. The hardware realization of the control and IoT prototype is also discussed. The proposed
novel hybrid ventilation system and the soft-sensors are demonstrated in a real research laboratory,
i.e., Center for Research in Automatic Control Engineering (C-RACE) located at Kalasalingam
University, India. Our results show the perceived benefits of hybrid ventilation, predictive control,
and soft-sensors.

Keywords: indoor air quality (IAQ); hybrid ventilation; demand controlled ventilation (DCV);
internet of things (IoT); soft-sensor; convolution neural networks

1. Introduction

The building sector in India currently contributes to ~37% of the total energy consumption of
the nation and predicted to further increase by 8% annually due to recently proposed construction of
40 billion m? by 2050 which are driven by rapidly growing population and urbanization [1]. Statistics
suggest that space cooling alone contributes to about 40-45% of the total building energy consumption
in India. Consequently, energy optimization for space cooling maintaining thermal comfort has
attracted significant attention recently (see [2,3] and references therein). While the importance of energy
consumption is often exacerbated, the indoor air quality (IAQ) is not usually discussed [4]. However, IAQ
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is an important parameter that determines the productivity and performance of occupants in the building.
The IAQ refers to the air quality within and around buildings and structures, especially it relates to the
health and comfort of building occupants (https:/ /www.epa.gov/indoor-air-quality-iaq/introduction-
indoor-air-quality). The American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) defines IAQ as Air in which there are no known contaminants at harmful concentrations as
determined by cognizant authorities and with which a substantial majority (80% or more) of the people
exposed do not express dissatisfaction (http://cms.ashrae.biz/iaqguide/pdf/IAQGuide.pdf?besi_scan_
C17DAEAF2505A29E=0&bcsi_scan_filename=IAQGuide.pdf).

It is widely perceived that understanding the common pollutants and controlling them could
reduce health concerns, which can either be short- or long-term. Common short-term effects include
dizziness, headaches, and fatigue, whereas long-term effects could be respiratory diseases, heart
diseases, and even cancer. There are many surveys which have shown that both IAQ and thermal
comfort are not well maintained by current ventilation systems (see, for example, in [5-8]). This is
mainly because IAQ, thermal comfort, and energy consumption are competing objectives. As an
increase in IAQ means more fresh air induction which will increase the energy consumption and can
lower down thermal comfort as well. Therefore, maintaining IAQ, thermal comfort and minimizing
energy is a major challenge in buildings, but important for achieving energy goals as well as occupant
performance in buildings.

There are two procedures commonly used for maintaining IAQ: (i) Ventilation Rate Procedure and
(if) Indoor Air Quality Procedure [9]. The later aims to strike a good balance between energy savings
and IAQ. Furthermore, it provides direct reduction of indoor contaminants. Similarly, in practice, there
are three approaches to improve IAQ: (i) source control, (ii) improved ventilation, and (iii) air-cleaners.
In source control, we eliminate individual sources of pollution or reduce their emissions and is considered
an effective method for maintaining IAQ. Ventilation improvements means forcing fresh air into the
buildings by opening windows and doors when weather permits, but this may lead to energy loos.
Air cleaners aim to remove the particle from indoor air and uses filtering blocks to remove pollutants.
Among these methods, forcing fresh air is by far the cheapest method for maintaining IAQ. However,
optimal fresh air should be infused to reduce energy consumption.

Over the years, several control approaches for maintaining both IAQ and thermal comfort have
been studied but with certain limitations. Among those, few studies implemented model predictive
control (MPC) to investigate the combined (i) thermal comfort and CO, optimization by regulating
fresh air [10], (ii) IAQ (particle concentration) and energy optimization [11], (iii) multi-objective
optimization of IAQ (particulate matter) and energy consumption in subway ventilation system [12],
(iv) optimization energy and IAQ with focus on CO; [13], and (v) energy optimization and air-quality
through fresh air induction [3]. More recently, the role of demand controlled ventilation(DCV) on
IAQ and energy savings was studied [14]. Another study implemented MPC for energy optimization
and monitoring carbon dioxide in commercial HVAC systems with an Internet of Things (IoT) based
control [15]. A combined control for IAQ, energy and thermal comfort was proposed in [16] for variable
air volume (VAV) controlled systems. Similarly, thermal comfort and IAQ in chilean schools with
surveys was studied in [17]. The control of IAQ in direct expansion air-conditioning system was
studied in [18]. However, most of these investigations have concentrated only on temperature,
humidity, and carbon dioxide levels while discussing IAQ.

As for sensors, a WiFi-enabled IAQ monitoring and control system for buildings was proposed
in [19]. A soft-sensor for measuring carbon dioxide content in the building by fusing carbon dioxide
and PIR sensor was proposed in [20]. A soft-sensor for estimating cooling load using long short-term
memory (LSTM) was proposed in [21]. A review of sensors for measuring Indoor Air Quality
(IAQ) was presented in [22]. There are many studies on sensor design for IAQ or studying sensor
installation/monitoring issues reviewing which are out of the scope of the paper. More recently, the use
of soft-sensors for IAQ modeling was studied in [23] wherein sensor readings was used to train deep
subspace network to model IAQ parameters. A soft-sensor for detecting urban IAQ was proposed
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in [24] using Bayesian networks. These results illustrated that by combining compact sensors with
databased techniques capabilities of sensor could be overarched and they can be made more smarter.
Albeit, such significant advantages, the role of soft-sensor has not been studied extensively.

A review of the literature reveals three gaps in control and monitoring in buildings. First, maintaining
IAQ, thermal comfort and optimizing energy simultaneously is a challenge that has not been fully
addressed in the literature. In particular, the ones concerning IAQ parameters such as Volatile Organic
Compounds, Carbon-dioxide and others have not been combined with energy optimization based
control and thermal comfort. Second, although low-cost sensors are available their reliability and
performance is limited. To overcome this, soft-sensors which combine compact sensors with data
analytics methods are gaining popularity. The advantage of soft-sensors is that they can also predict
the variables and can also model variables which are not measured, e.g., cooling load. In addition, they
provide smartness to the control. Third, the use of soft-sensors within control has not been reported.
Our main objective is to address these research gaps in the literature by proposing a soft-sensor based
ventilation method that could optimize energy consumption while maintaining IAQ and thermal
comfort. The main contributions can be summarized as below.

1. Novel design of a hybrid ventilation system design which simultaneously optimizes energy
consumption, maintains IAQ and meets thermal comfort as well.

2. Present the Internet of Things (IoT) architecture and sensor prototype for implementing the hybrid
ventilation system.

3. Design soft-sensors for modeling and predicting IAQ parameters and cooling load.

4.  Controller design for hybrid ventilation scheme that could use the soft-sensors and the IoT devices
to implement a flexible control architecture.

The paper is organized into five sections. Section 2 presents the problem formulation and challenges.
The hybrid ventilation system, soft-sensor design, and control techniques are presented in Section 3.
Deployment results of the different components are presented in Section 4. Conclusions and future
directions of the investigation are discussed in Section 5.

2. Problem Formulation

The objective is to design a novel hybrid ventilation system to maintain IAQ, thermal comfort
in terms of set-point temperature and minimize energy consumption at the Center for Research in
Automatic Control Engineering (C-RACE) at the International Research Center (IRC), Kalasalingam
University, India. The lab houses faculty offices, startups in the building automation laboratory, research
labs, researchers and visitors as shown in Figure 1. The current system consists of fans and variable
refrigerant volume (VRV)-based air-conditioning system (package units) providing space cooling
controlled by a thermostat which turns ON or OFF depending upon the user defined temperature
limits. The lab has air quality issues due to the use of chemicals for making printed circuit boards
in the startups, presence of human beings, particulate matter suspended due to tests conducted in
electric vehicles laboratory and other contamination. Furthermore, some parts of the lab does not
have air-conditioners rather fans for circulating air. There are exhaust fans for pushing the indoor air
outside, but fresh air induction is currently only by opening doors.

The VRV systems are located in the electric vehicle lab (EV lab), building automation lab, research
center on artificial pancreas, and software development lab. There is also the IAQ lab from where
the hybrid ventilation system is to be implemented for maintaining IAQ, thermal comfort and energy
optimization. Additionally, we plan not to make modifications to existing systems for example, the VRV
system control or installing fresh air dampers in the space to avoid costly retrofits. In our analysis,
the IAQ is modeled as

Jiag = f(PM,CO,, TVOC, H, T) (1)

where PM, CO,, TVOC, H, and T denote the particulate matter, carbon dioxide(measured in ppm),
total volatile organic compounds (measured in ppb), humidity, and temperature, respectively. These
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factors are time-varying and their dynamic is complex to model. The control variable that can influence
the IAQ is the fresh air induction rate into the rooms 14, the fraction of total mass flow rate of fresh
air that can be supplied to the room mr4, and is given by

upa = (1 —d) X mpa 2)

where (1 — d)mpy denotes the fresh air fraction that is supplied to the room. Similarly, to control the
temperature and thermal comfort, we aim to change the control from being a simple thermostat to
have additional degrees of freedom. This is required as there is no coarse control on the space possible
with thermostat. To this extent, we could modify the time for which the air-conditioner is turned ON
or OFF to modulate the average cooling power being supplied and this provides finer control over
the temperature with pulse-width modulation sort of control. To this extent, we modify the control
variable from being set-temperature to ON/OFF time. Assuming that the period for which the energy
optimization is T, which depends on the time constant of the room, then the control variable u sc
models the time for which the AC is turned ON and is given by

ton
UAC = (3)
TP

where toy is the time-period for which the AC stays ON. However, a turn-off AC could cause the air
circulation to go down, thereby making occupants to feel thermal discomfort. This could be avoided by
turning ON fans during such times. This procedure of turning on AC and fans, we term it as toggling.
The energy optimization problem then could be implemented as a toggling action between the AC and
fan. The duty ratio for the fan is

Tp — ton

o @

UFan =

We used eight fans in our work. Their heat generation was not considered in our study as they were
very minimal compared to the room size and cooling load.
The energy consumption in AC and fan is given by

Jpower = ac X Pac + UFan X Pray ®)

where P4c and Py, are the power ratings of the fan and air-conditioner, respectively. The thermal
comfort of the occupant is modeled using the temperature bounds on the room which is given by

Tmin < T(k) < Tmax (6)

where T(k) is the temperature at time-instant k and T}, Timax denote, respectively, the minimum and
maximum temperature supplied by the occupant based on their thermal comfort. Determining that
the temperature is within the user defined comfort band requires model of the zone corresponding to
the ON/OFF times of the air-conditioner and fan. However, fan does not vary the room temperature,
but only the skin temperature of the occupant. Therefore, the zone temperature depends on the current
room temperature T (k), ambient temperature w(k) and stray heating due to occupancy, lighting loads
and others modeled as a disturbance term v(k). Following [2], we model the room temperature
dynamics to be

T(k+1) = aT(k) — busc(k) + cw(k) + v(k) (7)

where 4, b, ¢ denote the thermal time constant of the room, the parameter that models the influence of
air-conditioner cooling energy, and effect of weather on the room temperature, respectively. Similarly,
there exists a minimum and maximum time for which the air-conditioner can be turned ON/OFF.
This is modeled as

uACmin S uAC(k) S uACmax (8)
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where usc, . and uyc,,, denote the minimum and maximum duration for which AC can be turned
ON/OFF for the considered duration. Based on the model, we select T}, to be 15 min as a change in
control input gets reflected after 8~12 min of air-conditioner operation. The problem of maintaining
IAQ, reducing energy consumption and maintaining user thermal comfort can be modeled as a
multi-objective model predictive controller given by

k+N,

J = min Z ]IAQ(k) + Jpower (k) )

HACHEA | Spt
s.t.
Building thermal dynamics: T(k+1) = aT (k) — buyc(k) + cw(k) + v(k),
Thermal comfort constraints: Ty,;, < T(k) < Tax,
Control input limits: uac,, < tac(k) < UAC,.0r

Fresh air limits: ups, = < uac(k) < upa,,.,

min —

TVOC limits: 0 < TVOC(k) < eyoc,
CO, limits: e?g’z < COy(k) < 6218’;,

PM limits: 0 < PM(k) < epy.

where eTyoc,€co,, and epy are the bounds on the IAQ and could be computed as per the ASHRAE
standard. The problem in (9) has the following challenges.

(C1) The function J;4g and the variables (TVOC, CO,, PM) are difficult to model with dynamical
equations as they are highly time-varying with respect to the fresh air induction, temperature,
humidity, and other factors influencing the thermal dynamics and IAQ in the room.

(C2) The problem in (9) is a multi-time step, multi-objective optimization problem and solving it in
IoT devices is a challenging task.

(C3) Implementing the MPC requires both measurements on IAQ variables as well as forecasts.
Obtaining such forecasts is complex task.

(C4) The proposed controller should coordinate the action of the fresh air damper and energy
optimizer for the air-conditioner which is difficult due to absence of equations describing their
interconnections.

(C5) Sensor and the IoT architecture for implementing the controller above should be implemented.

In what follows, we address the challenges above and modify the existing VRV system into an
effective ventilation scheme.
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«Q IAQ Lab
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Faculty office 4 = artificial
A pancreas 0
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Figure 1. C-RACE laboratory layout located at Kalasalingam University, India (D-Door, DD-Double Door).
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3. Novel Hybrid Ventilation System and Soft-Sensor

To implement the MPC with multiple objectives, we first decompose the problem into two parts:
(i) Energy optimizer and (ii) IAQ optimizer. Both the optimizers are coupled through the fresh air induction,
which influences the thermal dynamics of the zone thereby the energy consumption. Our idea of energy
optimizer is to design a device that switches between air-conditioner and fan to maintain thermal
comfort but reduce energy consumption using a predictive controller. To this extent, we first require
sensor measurements on temperature, humidity and occupancy (to detect cooling loads). Then, the
next step is to design the energy optimizer based on the fresh air flow which will be discussed later.

3.1. Sensor Module: Energy Optimizer

The sensor module for the energy optimizer is shown in Figure 2. It consists of a temperature
and humidity sensor which we use a DHT11 sensor which can measure both temperature and
humidity. To measure occupancy, we use carbon dioxide sensor and passive infra-red (PIR) sensor.
The carbon dioxide sensor has delays to measure the occupancy and PIR sensor have errors in counting.
To overcome this, we build a soft-sensor on top of the sensor to validate the CO, levels (see Section 3.3).

Air-condifoner Unit

Relay-board to switch Toggling unit and the
Sensor module: PIR, between Fan and Air- sensors are interfaced
CO,, Humidity and conditioner to the Unit

Temperature (DHT11)

Figure 2. The sensor and controller units used for energy savings.

The PIR motion sensor, carbon dioxide sensor, temperature, and humidity sensor are interfaced to
RPi. The RPi is connected to the Ethernet and it acts as a gateway to transmit the sensed information
to the server. We use the Message Queuing Telemetry Transport protocol at the application layer to
transmit the sensed information. The server uses SQL routines to store the information in the database.

3.2. Energy and IAQ Optimizer

The second step is to implement the control that saves energy, maintains thermal comfort and
guarantees IAQ. However, as mentioned earlier these are competing objectives and also there are
challenges (C1)—(C5) that needs to be addressed. To address challenges (C1) and (C2), we first decouple
the problem of maintaining IAQ and energy optimization plus thermal comfort by designing a hybrid
ventilation system. Next, we solve the problems independently but exploit the power of IoT to couple
them. In what follows, we describe the different elements used in our implementation.

The hybrid ventilation system consists of two parts: energy optimizer and IAQ optimizer.
To decouple the multiple objectives but coordinate the actions, we select the fresh air infusion flow
rate as the variable coupling the energy and IAQ optimizers. One can observe that the problem
of fresh air induction is quite challenging as the function to approximate IAQ is time-varying and



Atmosphere 2020, 11, 110 7 of 17

depends on too many parameters. To overcome this, instead of designing a fresh air damper, we use a
demand controlled ventilation system for maintaining the IAQ. In this paper, we select the RENSONs’
Healthbox3.0 based on analysis performed with various scheme. The Healthbox3.0 is a DCV that
controls fresh air induction based on TVOC. (measured in ppb), CO, (measured in ppm), humidity,
and temperature. The installation of the RENSON Healthbox 3.0 in the C-RACE lab is shown in
Figure 3. Consequently, the DCV will introduce fresh air depending on the IAQ in the particular room.
Still particulate matter is not considered and we install PM2.5 sensor additionally to measure this
variable. The Healthbox 3.0 is installed in the IAQ lab of C-RACE and it samples air from the different
labs to change the fresh air induction. The system has inbuilt sensors to measure the IAQ variables
which could be transmitted to database through simple SQL scripts by writing the variables into an
excel or CSV files.

rent rooms

Research
Labs

Figure 3. RENSON Healthbox 3.0 DCV Installation.

The next step is to connect the DCV to the IoT and other interfaces. However, the sensors need
to be calibrated. To this extent, we first install the mobileApp provided by RENSON and then the
calibration is performed. The flow information about the fresh air is then passed on to the Gateway
(RPi) which uses this information to optimize the energy and also for the soft-sensor to compute carbon
dioxide. The hybrid ventilation scheme is shown in Figure 4.

As the IAQ objective is now decoupled with the DCV, the energy optimizer solves the following
optimization problem to implement the MPC.

k+N,
J=min )Y  Pacuac (10)
HAC k1

s. t.
Building thermal dynamics: T(k+ 1) = aT (k) — buac(k) + cw(k) + v(k)
Thermal comfort constraints: Ty,;;, < T(k) < Tpax

Control input limits: uac,, < tac(k) < UaC,. Vke {k+1,...,k+ Ny}

The problem in Equation (10) is a linear programming problem and we used Gnu Linear Programming Kit
(GLPK) to implement the controller in RPi. The implemented controller obtained weather forecasts using
webservices in Python, and the cooling load estimates were obtained based on the CO; predictions from
soft-sensor. To address challenge (C4), i.e., absence of coupling between energy and IAQ optimization,
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we use the flow information and this coupling is solved inherently. Moreover, the hybrid ventilation
system also implemented the IoT architecture for realizing the controller addressing the challenge (C5).
The only problem to be tackled now is the development of soft-sensor for IAQ which is presented in
the rest of the section.

IAQ Sensors
|
Air-Conditioner <Hlow Healthbox3.0 DCV

» (IAQ Optimizer)

é § 7y

3 ]

£ M3
1AQ & Energy Optimizer @)
Energ; ~—> (Toggler)
App e

N
l >
Energy Optimizer
Fan Sensor Unit
Server

& Web-App

Figure 4. Schematic of the novel hybrid ventilation system.

3.3. Soft-Sensor for IAQ and Cooling Loads

As stated earlier, IAQ and cooling load due to fresh air induction due to DCV is a challenging
problem due to complex dynamics of these variables. Finding dynamical equations for modeling it
is a challenging task. Therefore, it makes perfect sense to develop models using databased methods
to estimate the JAQ and cooling load. In this context, time-series data of IAQ variables is available
from the hybrid ventilation system designed by us. Therefore, data required for building soft-sensors
required for our application is available to us as shown in Figure 5. These are IAQ sensor readings
(temperature, RH, CO, and TVOC) collected from the Helathbox 3.0 for 10 days with a sampling
interval of 15 min. To study the dependence of the parameters, we studied the correlation among
the parameters (see, Table 1). One can see that there is no strong correlation between the parameters.
Therefore, the univariate forecasting model is used to simplify our analysis. Similarly, the cooling load
should be estimated from coupling variable fresh air flow in individual zones. However, cooling loads
are also affected by occupancy, stray heating loads such as lighting, computers etc. Therefore, building
soft-sensors for cooling loads using data-based methods requires rethinking. In this paper, we use the
zone thermal dynamics to estimate the cooling load as a function of fresh air flow and heat generated
in the zone as will be illustrated in this section.

Table 1. Correlation matrix of indoor air quality (IAQ) parameters.

TVOC RH CO, Temp

TVOC 1 —-0.07 0.03 —0.05
RH -0.07 1 —-0.45 0.05
CO, 0.03 —0.45 1 0.3

temp —0.05 0.05 0.3 1
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Figure 5. IAQ measurements for 10 days with 15 min interval.
3.3.1. Soft-Sensors for Cooling Load Measurement

The cooling load is also due to fresh air induction and the effect of cooling load is measured from
the prediction equation using the zone thermal dynamic model as

Q(k) = T(k+1) — aT(k) + buac(k) + cw(k) (11)

The above equation gives an estimate of the cooling load as well as the effect of fresh air induction.
The fresh air induction and the raise in temperature due to weather, current room temperature,
and control input, i.e., the time for which the air-conditioner is kept ON/OFF is used to train the
cooling load estimator. We use a simple radial basis function neural networks (RBFNN) to estimate the
cooling load.

3.3.2. Soft-Sensors for IAQ

As our idea is to design a soft-sensor for IAQ with univariate analysis, we consider the use of deep
neural networks as they tend to outperform other models used in computer vision. In recent years,
deep neural networks have been shown to outperform previous state-of-the-art machine learning
approaches in various application domains [25]. Convolutional Neural Networks (CNN) is a special
type of deep neural networks which is mainly used to handle 2D input data such as images. A CNN
architecture is built by stacking three main types of layers: convolutional, pooling, and fully-connected.
The convolutional layer maps the input data to a feature map by performing the convolution operation
(dot product between the input and a filter) by sliding over the input data. The output of convolution
operation is passed through an activation function that controls neuron activation. Rectified Linear
Unit (ReLU) is a commonly used activation function to introduce non-linearity into the neuron’s
output. The pooling layers are often included between the successive convolutional layers. They are
useful in reducing the dimensionality of feature maps to avoid overfitting. Max pooling is commonly
kept as it is the most dominant spatial relationship. Next, the pooling layer output is flattened and
given as input to the fully connected dense layer that computes the final model output.

Our CNN model architecture for short-term forecasting is shown in Figure 6. It takes the past
IAQ sensor readings as input and performs a one-step prediction. In our experiments, the past 24
sensor readings (6 h long) are used as input. Next, we added two 1-dimensional convolutional layers
(kernel size 2) with ReLU activation function that learns the trend and seasonality in the sensor data.
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This is followed by a 1-dimensional max pooling layer (pool size 2) that reduces the feature map
dimension into half. Consequently, the pooling layer output is fed to the fully connected layer that
yields the final prediction. We implemented our CNN architecture in Python 3 using the keras library
(https:/ /keras.io/). An early stopping method was also used to optimize the training process.

\ Dense Layer

Flatten

Output

1D Convolution
1D Convolution

)
1D Max pooling
}

N

3
. —
1AQ sensor
timeseries

Figure 6. The convolutional neural network (CNN) model architecture for forecasting IAQ sensor data.

3.4. Calibration of IAQ Sensors Using MobileApp

To calibrate the sensors, a mobileApp provided by Renson was used. It is an Android application
for Renson Healthbox 3.0 that allows the user to access and calibrate the device. Calibration is
done by establishing connection between the device and mobile. The calibration tool performs
auto-configuration and calibration is done for the actuators and sensors using the mobileApp
automatically. Once installed, the Renson Healthbox 3.0 could connect to cloud and other platforms to
port the data. There is also a portal provided by the Healthbox 3.0 for porting the data. The calibration
is for control valves that open the vanes for supplying fresh air and takes up to 3-6 min. This will adjust
the nominal air-flow rate to individual zones as well. The calibration procedure with the mobileApp is

shown in Figure 7.

[
o © reen @~ ol [P
© e
) - @ - o S
isualization of Air quality in Mobile

Figure 7. Calibration with MobileApp for Renson Healthbox 3.0.
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4. Results

4.1. Soft-Sensors for IAQ

The soft sensor effectiveness was validated using the data collected from the hybrid ventilation
system in Figure 4. We used 80% of our dataset to training our CNN models and the remaining
20% for testing. The descriptive statistics of the collected data is shown in Table 2. We summarize
the performance of our short term forecasting model for each IAQ sensor using Mean Absolute
Error (MAE) and Mean Absolute Percentage Error (MAPE) in Table 3 and visualization in Figure 8.
The forecasting error of TVOC is high compared to other sensors due to no seasonality in the raw
data. This requires further investigation, possibly extending our CNN model with Long Short-Term
Memory [26]. The forecasting error of all other sensors is less than 5%.

Table 2. Descriptive statistics of the collected IAQ sensor data.

Statistics CO, TVOC RH Temperature

Mean 492.90 656.81 50.70 30.79
Std 89.23 17237  5.62 0.68
Min 279.67 450.00 37.90 29.20
25% 433.33 567.89  45.93 30.27
50% 453.83 611.24 49.89 30.89
75% 525.92 700.16  55.76 31.28
Max 839.00 2,140.36 62.11 32.32

Table 3. Comparison of short-term forecasting results using mean absolute percentage error (MAPE)
and mean absolute error (MAE).

Error Metrics CO, TVOC RH Temperature

MAPE (%) 4.1 135 19 0.6
MAE 19.1 969 1.0 0.2

6001 —— forecast

—-== actual

CO2
7
4

4001

15004

3
S 1000

Temperature

06:00 12:00 18:00 00:00 06:00 12:00 18:00
29-Apr
2019
timestamp

Figure 8. Visualization of IAQ sensor forecasting using CNN model.

As an example, consider the scenario wherein the objective is to maintain both IAQ and minimize
power consumption. Suppose, if the IAQ is bad, then the Healthbox 3.0 which is a DCV introduces
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more fresh air which increases the cooling load. However, the DCV controls the IAQ parameters
efficiently. On the other hand, the increase in cooling load is forecasted as increase in cooling loads
and fed to the toggler which is a model based controller. It fuses this information into the model
and predicts future temperature evolution in a particular zone and then tries to optimize the energy
supplied to the individual zones based on temperature set-points provided by the user by adjusting the
duty cycle of the toggler. This way both IAQ and energy is optimized by the hybrid ventilation scheme.

4.2. Indoor Air Quality

The performance of the DCV with the proposed energy optimizer is evaluated. For this study;,
we first collect information on the ventilated space over different periods. Then, we compare the
results with and without hybrid ventilation system. It was seen that without the hybrid ventilation
system the TVOC, carbon dioxide, temperature, and humidity levels were not maintained, as there
was no control on IAQ and space cooling.

The variations in humidity with the hybrid ventilation scheme and the energy optimizer is shown
in Figure 9. One can see that the humidity is maintained within acceptable values of 60 even during
the nights when the ventilation system is shut out. This is due to the pre-conditioning created by the
fresh air introduced by the proposed hybrid ventilation system. Contrary to this before installing the
Healthbox 3.0, the humidity cannot be maintained and the behavior is almost random.

Relative Humidity during Validation Period with Healthbox 3.0
L] L

65 L] L | 1

60 |- -

55 -

RH in %

35 1 1 1 1 1 1
20-Apr-2019 00:00:0022-Apr-2019 00:00:0024-Apr-2019 00:00:0026-Apr-2019 00:00:0028-Apr-2019 00:00:0030-Apr-2019 00:00:00

Figure 9. Humidity variations with the hybrid ventilation system.

The variation in CO; levels with the hybrid ventilation system installed is shown in Figure 10.
The CO, levels are well maintained with the proposed energy and IAQ optimizer. A clear pattern
of the variation is shown and the maximum value reaches 850 ppm though there are approximately
5-6 occupants in the room. This results shows the capability of the proposed system to maintain CO,
levels. While the Helathbox maintains the IAQ, the energy optimizer also coordinates its action by
using the fresh-air flow as the variable.
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450 Indoor CO2 Concentration during Validation Period with Healthbox 3.0
T
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Figure 10. The carbon dioxide levels with Hybrid Ventilation system.

The variations in TVOC with the proposed hybrid ventilation system is shown in Figure 11.
One can see that the TVOC is maintained within a ppb of 1000 during normal days and exceeds to
1400 only when the system is turned OFF. This results shows the ability of the system to maintain IAQ
by limiting the TVOC.

Indoor Volatile Organic Compounds (VOC) during Validation Period with Healthbox 3.0
i ] -1

1800 —= — — —
OFF OFF
OFF
1600 |- -
OFF
OFF OFF OFF

1400 |- .

=

1200 - |/ -

Q
o
-

1000 |- -
800 | -
600 |- -

1 1 1 1 1 1

400
20-Apr-2019 00:00:0022-Apr-2019 00:00:0024-Apr-2019 00:00:0026-Apr-2019 00:00:0028-Apr-2019 00:00:0030-Apr-2019 00:0
Figure 11. The Total Volatile Organic Compound levels with Hybrid Ventilation system.

4.3. IAQ and Thermal Comfort

As seen in the results, one can see that the IAQ variables are maintained within acceptable values
throughout the period, and the temperature is also maintained within user-defined comfort values
by the system. The occasional spurts represent the night times when the system is kept off, but the
temperature is maintained well within the user defined comfort margin of 20-25 degree °Celsius.
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4.4. Energy Optimizer

The performance of the energy optimizer for a 12 h period with a sampling time of 15 min is
shown in Figure 12. Here, the control input is the duty cycle, i.e., ugc = t%—N. A value of uyc = 0.5
means that the air-conditioner should be operated for 7.5 min within 15 min. However, this gives rise to
frequent switching and transient energy gets wasted. Therefore, to overcome this, we use an averaging
approach, i.e., the control inputs computed at two time-instants are implemented for a time-frame
of 30 min. For example, usc(k) = 0.5 and usc(k — 1) = 0.3, where k — 1 was not implemented to
avoid transient energy loss, then a total of 12.5 min is turned ON during the kth time-instant. Such an
averaging may sometimes result in the zone temperature to raise above the comfort band of 28 °C.
However, considering that the time constant of the zone is very high in the order of 12-13 min, this is
negligible period for which the thermal comfort could be breached by a small margin, but the savings
in transient energy is quite high. Therefore, we implement the wait and apply strategy to reduce the
transient energy consumption.

K|

g ]

k) | | | | |
0 5 10 15 2 % X % L] % 50

Figure 12. Variations in zone temperature, control input, heating due to cooling load, and ambient
temperature (x-axis: 1 unit = 15 min).

The energy consumption was recorded with and without the proposed control strategy. We found
that an average saving of 19.2-21.4% was observed with the proposed control strategy over
conventional thermostat control while maintaining the IAQ. These savings are for 12 h period in
a working day. The savings are mainly due to switching between fan and air conditioner. This result
illustrates the energy savings potential of the proposed hybrid ventilation and control scheme.

Our results showed that the proposed hybrid ventilation scheme achieved good IAQ and energy
savings without breaching the comfort band proposed by the occupant. We also showed that an energy
savings of up to 19-21% can be achieved, and the IAQ parameters were maintained within bounds
specified. We also demonstrated the role of soft-sensors and implementation aspect of the proposed
hybrid ventilation scheme, i.e., demand controlled ventilation, sensors for measuring IAQ parameters
and energy relevant data, communication architecture and other aspects were also presented. The results
demonstrated the value of soft-sensor to measure parameters like cooling loads, TVOC, carbon dioxide
concentration and others which were not possible before. An additional benefit of soft-sensor is the
ability to generate short-term predictions which could be used to plan ventilation schedules.
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5. Conclusions

This paper presented a novel design of a hybrid ventilation system for optimizing energy
consumption in variable air volume (VRV) systems while maintaining indoor air quality (IAQ) and the
thermal comfort of the building occupants. We showed that the problem is multi-objective, multi-time
step optimization problem as the objective to optimize both IAQ and energy requires a model predictive
controller (MPC). As such implementing MPC schemes on low-cost hardware is a challenge and the
absence of sensed information/predictions on IAQ and cooling loads posed additional challenges.
To overcome this, we proposed IoT based sensing that was extended with deep learning tools to design
soft-sensors that provided measurements on parameters, which could not be measured with physical
sensors. Then, the multiple objectives was decoupled into IAQ and energy savings. To achieve IAQ
we proposed a novel hybrid ventilation system which used RENSONs’ Healthbox 3.0, which is an
off-the-shelf demand controlled ventilation. On the other hand, we designed an MPC in Rasperry Pi
using the Gnu Linear Programming Kit (GLPK) which provided optimal solution to the multi-time
step optimization problem to realize the energy optimizer. We provided results which showed the
performance of soft-sensors, IAQ and energy optimization capabilities of the hybrid ventilation scheme
while meeting user defined comfort bands. Extending the hybrid ventilation scheme to other IAQ
measures and including thermal comfort with predictive mean vote or other standards is the future
course of this investigation.
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The following abbreviations are used in this manuscript.

HVAC Heating, Ventilation and Air-Conditioning

VRV Variable Refrigerant Volume

IoT Internet of Things

IAQ Indoor Air Quality

TVOC Total Volatile Organic Compound
PM Particulate Matter

MPC Model Predictive Control

ASHRAE  American Society of Heating, Refrigerating and Air-Conditioning Engineers
DCV Demand Controlled Ventilation

CNN Convolution Neural Network

EPA Environmental Protection Agency

C-RACE  Center for Research in Automatic Control Engineering
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