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Abstract: The United States Environmental Protection Agency (EPA) has implemented a Bayesian
spatial data fusion model called the Downscaler (DS) model to generate daily air quality surfaces
for PM2.5 across the contiguous U.S. Previous implementations of DS relied on monitoring data
from EPA’s Air Quality System (AQS) network, which is largely concentrated in urban areas. In
this work, we introduce to the DS modeling framework an additional PM2.5 input dataset from
the Interagency Monitoring of Protected Visual Environments (IMPROVE) network located mainly
in remote sites. In the western U.S. where IMPROVE sites are relatively dense (compared to the
eastern U.S.), the inclusion of IMPROVE PM2.5 data to the DS model runs reduces predicted annual
averages and 98th percentile concentrations by as much as 1.0 and 4 µg m−3, respectively. Some urban
areas in the western U.S., such as Denver, Colorado, had moderate increases in the predicted annual
average concentrations, which led to a sharpening of the gradient between urban and remote areas.
Comparison of observed and DS-predicted concentrations for the grid cells containing IMPROVE
and AQS sites revealed consistent improvement at the IMPROVE sites but some degradation at the
AQS sites. Cross-validation results of common site-days withheld in both simulations show a slight
reduction in the mean bias but a slight increase in the mean square error when the IMPROVE data is
included. These results indicate that the output of the DS model (and presumably other Bayesian
data fusion models) is sensitive to the addition of geographically distinct input data, and that the
application of such models should consider the prediction domain (national or urban focused) when
deciding to include new input data.
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1. Introduction

Several recent epidemiology and exposure studies linking air pollution concentrations to health
effects have transitioned from using composite monitors to continuous air quality surfaces [1–3],
necessitating the need for additional refinement and evaluation of the methods used to generate these
surfaces. Conceptually, continuous surfaces are an improvement because they capture the gradients of
exposure fields that composite monitors neglect. These studies have generated air quality surfaces
by fusing monitoring data with chemical transport models, satellite-based estimates, land surface
models, and/or population density estimates [4–7]. In addition to the different types of input data,
several different statistical models have been used for the fusion calculations. For a recent review
of the different input data and statistical models used for data fusion of ambient air pollution, see
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Shaddick et al. [8]. Few of these past studies, however, describe the sensitivity of these surfaces to the
spatial coverage of observed input data used to derive the fields.

In recent years, the United States Environmental Protection Agency (EPA) has used a Bayesian
spatial downscaling fusion model called the Downscaler (DS) model [9] to create air quality surfaces of
24-h average PM2.5 concentrations of the contiguous U.S. for use in the draft Policy Assessment of
the National Ambient Air Quality Standards (NAAQS) for Particulate Matter [10] and the Centers for
Disease Control and Prevention’s (CDC) National Environmental Public Health Tracking Network [11].
The DS model also has the potential to be utilized in other air quality applications, including data
fusion for EPA’s AirNow or citizen scientists using low-cost sensors to monitor pollution levels in
their region.

2. Methods

As inputs to the DS model, we used both point-level monitoring data from EPA’s Air Quality
System (AQS) network and gridded model output from the Community Multiscale Air Quality (CMAQ)
model [12]. The two data sources combine the accuracy of measurement data and the spatial coverage
of CMAQ predictions to create an accurate air quality surface with realistic gradients. The DS model
uses a spatially varying weighted model to derive spatial covariate terms for the CMAQ grid cells
surrounding the monitoring station. A local smoothed surface is generated via a mean-zero Gaussian
Markov random field with an exponential covariance structure, which then implicitly relates the
monitored values to the CMAQ modeled output within the neighboring grid cells via random weights
that are spatially varying according to an exponential kernel with an empirically estimated decay
parameter [9]. A spatial regression relationship between monitoring station point-level measurements
and gridded model output is then determined by regressing monitoring data onto the derived CMAQ
regressors. Applying the model on the spatially complete gridded CMAQ surface allows for point-level
predictions at locations where a monitor may not exist, hence downscaling. The regression relationship
is applied separately for each time step of data, and can be expressed in a generalized equation
as follows:

Y(s) =
∼

β0 + β1
∼
x(s) + ε(s) (1)

where Y(s) is the observed concentration at point s,
∼
x(s) is the CMAQ concentration at point s based

on the weighted average of both the grid cell containing the monitor and neighboring grid cells (in
our application, up to three neighboring grid cells were used in each direction from the monitor

location s, with the grid weights decreasing exponentially over distance as described above),
∼

β0(s)

is the intercept where
∼

β0(s) = β0 + β0(s) is composed of both a global component, β0, and a local
component, β0(s), that is modelled as a mean-zero Gaussian process with exponential decay, β1 is the
global slope, and ε(s) is the model error. A comprehensive discussion of the DS methodology is given in
Heaton et al. [13]. This framework allows for multiple levels of spatial dependence, where the spatially
varying regression coefficient describes the spatial relationship between monitoring stations, with
dependence decaying over the distance between sites, and the spatial dependence between CMAQ
grid cells is accounted for via the spatially varying weighted derived regressors. Conjugate priors are
used for the spatial covariates and the error variance, with the spatial decay parameters estimated via
a grid search placing discrete mass at varying percentages of the maximum observed differences from
the monitor location (as described in Heaton et al. [13]). The DS modeling framework uses Markov
chain Monte Carlo methods to draw random samples from iteratively updated parameter distributions
during the parameter estimation, allowing for uncertainty quantification for the resulting predictions
via estimates of the standard error associated with these sampling distributions. The Downscaler
model is fully described in a series of three papers [9,14,15], with the version of DS used here based on
Berrocal et al. [9].

In this work, we evaluated the impact of adding Interagency Monitoring of Protected Visual
Environments (IMPROVE) PM2.5 concentrations from sites in remote regions to the DS inputs. Typical
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DS applications use only PM2.5 measurements from AQS sites, whose land use is heavily urban in
nature (i.e., biased towards urban). Specifically, we conducted DS model simulations with and without
IMPROVE measurements to quantify the scale and direction of the changes in DS PM2.5 predictions.
Two annual DS model runs were performed in this study to predict PM2.5 concentrations at a 12 ×
12 km2 grid resolution for the year 2014 using the CMAQv5.1 continental U.S. domain. For both model
runs, a consistent set of monitoring (2014 ambient PM2.5 concentrations at the urban-focused AQS sites)
and modeling (CMAQ predictions from a 2014 annual simulation) inputs were used, with the second
run also incorporating data from the IMPROVE network. These IMPROVE PM2.5 concentration data
were added without modifications to test the impact on the DS predictions. This evaluation not only
quantifies the impact of the new monitoring inputs to DS but also identifies the domain-wide effect
of adding a geographically distinct (in this case only remote sites) observational dataset to DS. The
previous DS model runs performed by the EPA for the NAAQS and CDC used only regulatory-quality
PM2.5 concentrations from the AQS network as inputs, and therefore did not include the IMPROVE
PM2.5 data.

3. Data Sources

The AQS PM2.5 concentrations include only the 24-h average regulatory-quality measurements
from the federal reference method (FRM) or federal equivalent method (FEM) monitors across the 48
contiguous United States. Monitors at AQS sites measure regulatory-quality PM2.5 concentrations on a
variety of sampling frequencies, with roughly 13%, 47%, and 40% of sites having monitors operating on
a 1-in-6 day, 1-in-3 day, or daily sampling, respectively, in 2014. No annual completeness criteria were
applied to the AQS sites, but missing daily data were ignored in the DS model runs. The AQS input
datasets were summarized by annual means (circles, Figure 1A) and 98th percentile values (circles,
Figure 2A) to approximate the averaging times of the PM2.5 NAAQS. The 934 AQS sites, shown as the
circles in Figures 1A and 2A, are relatively widespread in the eastern U.S. and California and sparse in
the Intermountain West. This spatial distribution is a function of the network design intent, which
focuses on higher concentration areas and populated areas.
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Figure 1. Annual average PM2.5 concentrations (in units of µg m−3) (A) observed at AQS (circles)
and IMPROVE (triangles) sites and predicted on IMPROVE sample dates by the (B) CMAQ model,
(C) Downscaler with the baseline configuration, and (D) Downscaler with IMPROVE data.
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Figure 2. 98th percentile PM2.5 concentrations (in units of µg m−3) (A) observed at AQS (circles)
and IMPROVE (triangles) sites and predicted on IMPROVE sample dates by the (B) CMAQ model,
(C) Downscaler with the baseline configuration, and (D) Downscaler with IMPROVE data.

In 2014, the IMPROVE network [16,17] consisted of 153 sites located in remote areas, like National
Parks and Wilderness Areas mostly in the western U.S. (hereafter defined as the region with a longitude
west of 100◦ W containing 98 IMPROVE sites). IMPROVE sites measure concentrations of PM2.5 mass
and concentrations of PM2.5 chemical components on the same 1-in-3-day schedule throughout the
U.S. Although PM2.5 mass concentrations are measured at IMPROVE sites using a filter-based method
similar to an FRM, it is not considered regulatory quality [17]. The IMPROVE input datasets were
summarized by annual means (triangles, Figure 1A) and 98th percentile values (triangles, Figure 2A).
The IMPROVE sites fill in the spatial gaps in many of these Intermountain West areas.

Of the 153 IMPROVE sites, 17 were collocated with AQS sites and can be intercompared.
Analysis of the 2014 PM2.5 observations from temporally and spatially collocated IMPROVE and AQS
measurements indicates that the IMPROVE annual averages are biased low (−15%) compared to AQS
annual averages but with a difference that is not statistically significant (p-value = 0.368). This bias
is similar to the results of Hand et al. [18], which compared monthly averages from six collocated
IMPROVE and CSN sites between 2008 and 2011. We also found that 2014 IMPROVE and AQS PM2.5

data at the 17 collocated sites have high correlation coefficients (0.72 to 0.99) and slopes near unity
(0.73 to 1.13). Only six IMPROVE sites in the western U.S. are collocated with AQS sites; analysis of the
2014 PM2.5 observations from temporally and spatially collocated IMPROVE and AQS measurements
at these western U.S. sites indicates that the low bias of the IMPROVE annual averages is reduced
(−7%) and also not statistically significant.

The 2014 CMAQ annual simulation used version 5.1 coupled to the Weather Research and
Forecasting (WRF) version 3.7.1 for the meteorological inputs [19,20]. The CMAQ model configuration
included bi-directional ammonia (NH3) air-surface exchange (v2.1) using the Massad formulation [21],
CB05e51 chemical mechanism, AERO6 aerosol module, and lightning NOx-adjusted to lightning strike
data. The PM2.5 concentrations predicted by CMAQ were calculated by adding up the concentrations
of several chemical species including sulfate, nitrate, ammonium, sodium, chloride, elemental carbon,
organic matter, and other minor components and multiplying those values by the fraction of the
three model modes with diameters <2.5 µm. The CMAQ input datasets were summarized by annual



Atmosphere 2020, 11, 103 5 of 12

averages (Figure 1B) and 98th percentiles (Figure 2B). Note the complete spatial coverage and qualitative
similarity in the national spatial gradients seen in the AQS and IMPROVE measurements.

In order to study the impact of the inclusion of the IMPROVE data on DS predictions, the two
DS model runs consisted of (1) a “baseline” run using AQS inputs without IMPROVE data and (2) a
“w/IMPROVE” run, which includes both AQS and IMPROVE data, i.e., the inclusion of IMPROVE
data being the only difference between the two model runs. For both model runs, every day of 2014
was simulated despite the fact that all IMPROVE sites operate on the same 1-in-3-day schedule and
only affect those days in the DS model runs. Therefore, we report the DS results only for days with
IMPROVE sample (hereafter “IMPROVE sample dates”) in the main text but show the results for
all days in 2014 (hereafter “entire period”) in the supplemental information to provide a context
for the impact on a typical application of the DS model. In the following section, we compare the
annual average and 98th percentile values predicted by the two DS model runs as well as evaluate DS
predictions to the AQS and IMPROVE PM2.5 data used as in the input to the model.

4. Results

4.1. Concentrations from Downscaler Model Runs

Compared to the CMAQ-predicted PM2.5 annual average and 98th percentile concentrations in
Figures 1B and 2B, respectively, the annual average and 98th percentile PM2.5 values from all DS model
runs (Figure 1C,D and Figure 2C,D, respectively) have smoother gradients and fewer areas at the
extremes of the data range. This can be seen for the lower values in Maine, and in Georgia and Alabama
as well as Louisiana for the higher values, with differences in both lower and higher values shown in
Washington. The differences between the baseline and w/IMPROVE DS annual average predictions
are largest in areas near IMPROVE monitors across the western U.S., the Ozarks region of Arkansas,
and the Appalachian Mountains. For the 98th percentile DS predictions, a similar pattern of smoother
gradients than CMAQ and less extreme values emerges for both the baseline and w/IMPROVE DS
model runs. For the entire period (see Figures S1 and S2), the CMAQ and baseline DS annual average
and 98th percentile values are similar to those on IMPROVE sample dates.

4.2. Differences in Concentrations between Downscaler Model Runs

The w/IMPROVE—baseline difference plot in Figure 3A showing the difference in annual average
w/IMPROVE DS and baseline predictions identifies three distinct regions: (1) Isolated areas in the San
Joaquin Valley, CA and Denver, CO with increased PM2.5 (>0.5 µg m−3), (2) widespread areas in the
central and eastern U.S. with little change or slight increases (0–0.4 µg m−3), and (3) widespread areas in
the western U.S. where PM2.5 predictions were reduced by more than 1.0 µg m−3. The largest reduction
in PM2.5 predictions were in states like Idaho and Oregon, where a smaller number of AQS sites with
moderate PM2.5 values are combined with several IMPROVE sites with very low PM2.5 to reduce
PM2.5 predictions by more than 2.0 µg m−3. Isolated areas, such as San Joaquin Valley, CA and Denver,
CO, with increased PM2.5 concentrations in the w/IMPROVE DS model run are near high elevation
areas with reduced PM2.5; this results in a sharper gradient of PM2.5 concentrations in these regions
predicted by the w/IMPROVE DS model run. This is likely due to a decrease in spatial covariance,
allowing for both higher/lower local concentrations. Relative to the annual average difference plot,
the 98th percentile difference plot for w/IMPROVE—baseline in Figure 3B shows fewer areas with
reduced PM2.5 concentrations (mainly in Oregon) and more areas with slightly higher PM2.5 (mainly
in the central U.S.). For the entire period, these annual and 98th percentile differences are smaller (see
Figure S3).

When the differences between the w/IMPROVE and baseline DS predictions are separated into
quarterly averages, a strong seasonal cycle is evident (see Figure 4 and Figure S4). Relative to the
warmer months in quarters 2 and 3, the colder months of quarter 1 and quarter 4 have much larger
changes in the w/IMPROVE DS predictions (both increases and decreases). The cause of this seasonality
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is as follows: (1) The absolute wintertime PM2.5 concentrations are higher than in other seasons for
most areas of the U.S. and (2) wintertime inversions contribute to much higher PM2.5 concentrations
in the valleys (where AQS sites are typically located) than at higher elevations (where IMPROVE
sites are typically located), and (3) summertime PM2.5 concentrations in most areas of the U.S. are
dominated by secondary components, such as sulfate and organic carbon, which affect both urban
and remote areas [22]. By virtue of the 1-in-3-day sampling schedule for all the IMPROVE sites across
the U.S., 2/3 of the days have no impact from the IMPROVE data and are identical to the baseline
DS model run. Figures S1 and S2 indicate that the impact of including the IMPROVE PM2.5 data in
DS is much smaller for the entire period. The DS modeling framework also generates standard error
estimates, which quantify the model uncertainty. The difference plot of the standard error estimates for
the w/IMPROVE and baseline model runs (Figure S5a) shows that there is a general trend of much
lower errors over much of the western U.S. and moderately higher errors over much of the eastern U.S.
Near the IMPROVE sites, the w/IMPROVE predictions consistently have lower errors regardless of
geography. Much like the predicted concentration differences, the standard error differences between
the two DS model runs are smaller for the entire period (see Figure S5b).
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4.3. Downscaler Evaluation

If we assume that the DS prediction at the grid centroid is consistent with the grid average,
the PM2.5 concentrations at the AQS and IMPROVE sites can be used to evaluate the baseline and
w/IMPROVE DS model runs. For the AQS sites, Figure 5 shows that the PM2.5 concentrations are
well-predicted (mean bias within ±1 µg m−3) by both the baseline (Figure 5A) and w/IMPROVE
(Figure 5C) DS model runs; this result is not surprising because these data are used as input in both.
The absolute mean bias difference (|w/IMPROVE −AQS| − |baseline −AQS|) plot in Figure 5E identifies
the location of AQS sites with improved or degraded predictions by the w/IMPROVE DS model run
relative to the baseline. Most of these sites had slight increases or decreases in their mean bias, but
a few had their mean biases degrade by >0.5 µg m−3. The AQS sites with degraded predictions in
the w/IMPROVE DS model run were clustered in areas near multiple IMPROVE sites, including parts
of California and Oregon, with underpredictions that were made worse by introducing low PM2.5

concentrations from the IMPROVE sites (Figure 6).

Atmosphere 2020, 11, 103 7 of 12 

 

4.3. Downscaler Evaluation 

If we assume that the DS prediction at the grid centroid is consistent with the grid average, the 

PM2.5 concentrations at the AQS and IMPROVE sites can be used to evaluate the baseline and 

w/IMPROVE DS model runs. For the AQS sites, Figure 5 shows that the PM2.5 concentrations are well-

predicted (mean bias within ±1 μg m−3) by both the baseline (Figure 5A) and w/IMPROVE (Figure 

5C) DS model runs; this result is not surprising because these data are used as input in both. The 

absolute mean bias difference (|w/IMPROVE − AQS| − |baseline − AQS|) plot in Figure 5E identifies 

the location of AQS sites with improved or degraded predictions by the w/IMPROVE DS model run 

relative to the baseline. Most of these sites had slight increases or decreases in their mean bias, but a 

few had their mean biases degrade by >0.5 μg m−3. The AQS sites with degraded predictions in the 

w/IMPROVE DS model run were clustered in areas near multiple IMPROVE sites, including parts of 

California and Oregon, with underpredictions that were made worse by introducing low PM2.5 

concentrations from the IMPROVE sites (Figure 6). 

For the IMPROVE sites, Figure 5B shows that the baseline DS model run almost universally 

overpredicts concentrations with many sites having a mean bias >2 μg m−3. Overpredictions at the 

IMPROVE sites are also common in the w/IMPROVE DS model run (Figure 5D), but most sites have 

a mean bias within ±1 μg m−3. The absolute mean bias difference in Figure 5F shows that nearly all 

predictions in the w/IMPROVE DS model run were better than that of the baseline, often by more 

than 1 μg m−3. Of the few IMPROVE sites with degraded predictions in the w/IMPROVE DS model 

run, most were clustered near AQS sites whose concentrations are underpredicted in both DS model 

runs. 

 

Figure 5. Mean bias for the (A,B) baseline Downscaler prediction, (C,D) Downscaler prediction with 

IMPROVE data, and the difference in the absolute mean bias between the two model runs for the 

PM2.5 observations at (E) AQS and (F) IMPROVE sites for 2014. The green colors on the bottom row 

figures represent locations where the Downscaler predictions with IMPROVE data had a lower model 

bias (improved prediction) and purple colors represent locations where the Downscaler predictions 

with IMPROVE data had a higher model bias (worse prediction). 

Figure 5. Mean bias for the (A,B) baseline Downscaler prediction, (C,D) Downscaler prediction with
IMPROVE data, and the difference in the absolute mean bias between the two model runs for the PM2.5

observations at (E) AQS and (F) IMPROVE sites for 2014. The green colors on the bottom row figures
represent locations where the Downscaler predictions with IMPROVE data had a lower model bias
(improved prediction) and purple colors represent locations where the Downscaler predictions with
IMPROVE data had a higher model bias (worse prediction).
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Figure 6. Denver, Colorado-area annual average PM2.5 concentrations on IMPROVE sample dates that
were (A) predicted by Downscaler with the baseline configuration and (B) predicted by Downscaler
with IMPROVE data superimposed with annual averages observed at the AQS (circles) and IMPROVE
(triangles) sites. The time series charts give the 24-h average PM2.5 concentrations observed and
predicted at Long’s Peak and Boulder, CO.

For the IMPROVE sites, Figure 5B shows that the baseline DS model run almost universally
overpredicts concentrations with many sites having a mean bias >2 µg m−3. Overpredictions at the
IMPROVE sites are also common in the w/IMPROVE DS model run (Figure 5D), but most sites have a
mean bias within ±1 µg m−3. The absolute mean bias difference in Figure 5F shows that nearly all
predictions in the w/IMPROVE DS model run were better than that of the baseline, often by more than
1 µg m−3. Of the few IMPROVE sites with degraded predictions in the w/IMPROVE DS model run,
most were clustered near AQS sites whose concentrations are underpredicted in both DS model runs.

Domain-wide validation statistics (based on sensitivity runs where 10% of the input data is left
out) were also calculated for the baseline and w/IMPROVE model runs, which we limited only to
(1) AQS sites and (2) the common site-days (1889 or ~10% of withheld baseline DS site-days) from
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the two model runs. When looking at withheld AQS site-days, the w/IMPROVE bias (0.18 µg m−3)
is significantly lower than baseline (0.29 µg m−3) while the mean squared error and fraction of time
that the prediction is included within the 95% confidence interval (aka, coverage) are not significantly
different. When looking at the common site-days withheld in both simulations, the w/IMPROVE
model has a lower bias (0.30 µg m−3) than baseline (0.35 µg m−3) but the low number of site-days
led to no performance differences being statistically significant. Random withholding can in some
cases underestimate actual model error [23]. In this case, the error is being used in a relative sense to
compare two simulations, so the effect is not expected to be influential. More details of the validations
are available in Table 1. Scatter density plots of the validation results for the baseline and w/IMPROVE
DS model runs when AQS site-days are withheld (Figure S6) show that the correlation coefficients
are similar between the two model runs and are comparable to those reported in a cross-validation
experiment by Berrocal et al. [24].

Table 1. Validation (10% of site-days randomly withheld) results for 2014 Downscaler model runs
(baseline and w/IMPROVE) for all site-days (All), AQS site-days (AQS), or all common site-days
(common). The statistics shown include the number of site-days (N), mean bias, mean square error,
and coverage. Here, 90% confidence intervals are shown in parentheses.

Simulation Selection N Mean Bias Mean Sq. Error Coverage

Baseline AQS 18,518 0.29 (0.25, 0.33) 10.85 (9.86, 11.84) 0.95 (0.95, 0.96)
w/IMPROVE All 20,257 0.28 (0.24, 0.32) 11.51 (10.43, 12.60) 0.95 (0.94, 0.95)
w/IMPROVE AQS 17,317 0.18 (0.14, 0.23) 11.87 (10.65, 13.09) 0.95 (0.95, 0.95)

Baseline Common 1889 0.35 (0.24, 0.46) 8.67 (7.42, 9.92) 0.95 (0.94, 0.96)
w/IMPROVE Common 1889 0.30 (0.19, 0.41) 8.69 (7.41, 9.98) 0.96 (0.95, 0.97)

4.4. Case Study for Denver, CO

An illustrative example of DS predictions near Denver, Colorado (Figure 6) gives some insight
to the impact of including IMPROVE data in the DS model run. In the Denver region, an urban core
with high PM2.5 concentrations monitored by AQS sites is near high elevation areas with low PM2.5

concentrations monitored by IMPROVE sites. The numerous AQS and IMPROVE sites near Denver,
CO combine to inform the gradients in the DS-predicted PM2.5 between the urban core and nearby
mountains. The gradients are sharper in the w/IMPROVE DS model run, and while the IMPROVE site
nearest to the urban core (Long’s Peak) is overpredicted in both DS model runs the overprediction is
mitigated in the w/IMPROVE DS model. This is seen in both the annual average spatial field as well
as across the 2014 time series (Figure 6). DS performance at the AQS site on the edge of the urban
core (Boulder, CO, USA) has the opposite problem; in the baseline model run, the underpredictions
are increased under the w/IMPROVE run. This underprediction is especially evident on high PM2.5

concentration days at Boulder, CO when the w/IMPROVE DS model run is trying to fuse these data
with much lower PM2.5 concentrations at the nearby IMPROVE site. The time series plots for the
IMPROVE site in Figure 6 also shows an unintended consequence of using the IMPROVE data as input
to DS; because all IMPROVE sites sample on the same schedule (1-in-3 days) throughout the United
States, the w/IMPROVE DS model run has more day-to-day variation than the baseline run for the
entire period.

5. Conclusions

Prior to completing the DS model runs, we expected that incorporating IMPROVE data would
result in better predictions at both AQS and IMPROVE sites compared to the baseline using only AQS
data. The results were more nuanced. The IMPROVE sites were much better predicted by the inclusion
of IMPROVE data, but some of the AQS sites experienced a slight degradation in predictions. The
effect of including IMPROVE data is most obvious in preserving broad low-concentration areas in the
western U.S. that are present in both the CMAQ model and the IMPROVE network but are absent in
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the AQS-only DS predictions. In areas like Denver, CO with strong gradients of PM2.5 concentrations
associated with elevation changes, incorporating IMPROVE data in DS enhances those gradients.
These examples highlight the effect of a bias in the AQS network towards urban and polluted areas that
impacts DS predictions at unmonitored and/or more rural locations. Incorporating the relatively low
PM2.5 concentrations from IMPROVE sites to the DS model also resulted in an increase in predicted
concentrations for some areas. Overall, the cross-validation results of common site-days withheld in
both simulations show both a slight reduction in the mean bias and a slight increase in the mean square
error when the IMPROVE data is included. These nonintuitive results are due to the combination
of global and local components of the DS equations and the pollutant process itself, suggesting that
without the IMPROVE data the spatial covariance in the baseline DS model run is overestimated.
They suggest that the domain (national- or urban-focused) and the type of data inputs to DS must be
carefully considered.

Another consideration for the incorporation of the IMPROVE network data is the day-to-day
variation in the PM2.5 predictions, particularly near IMPROVE sites. The effect of leaving out IMPROVE
observations can only be evaluated for 1-in-3 days but is implicitly present on all days. When performing
daily DS simulations, only 1/3 of all days are affected by IMPROVE and much of the impacts are lost (see
Figures S1 and S2). Even with IMPROVE 1-in-3-day observations, the average day observational input
is still biased towards urban and polluted areas. This highlights the need to either incorporate other
sources of data with greater temporal coverage (e.g., AOD derived from a geostationary satellite like
the Geostationary Operational Environmental Satellite (GEOS) series) and/or higher spatial resolution
(e.g., 4 km CMAQ domain), or to apply DS using time aggregates (e.g., monthly average) to minimize
the unmonitored time periods. The use of IMPROVE and/or other irregular inputs to data fusion
techniques need to be carefully considered when utilizing DS predictions. This study does not address
the ability of CMAQ or other potential DS inputs to replicate the PM2.5 surface; using high-quality
inputs is fundamental for any data fusion application regardless of the methodology.

The distinct change in DS model bias at IMPROVE vs. AQS sites shows that more input data
for fusion applications does not always directly improve all predictions. The consistent reduction
in bias when adding IMPROVE measurements suggests that the baseline DS increases predictions
in rural areas as the original inputs are based on urban monitors. The worsening underpredictions
at AQS sites when adding IMPROVE to DS suggests that concentrations at urban sites are reduced
by addition of information from generally lower concentration rural monitors. This may point to a
need to differentiate PM2.5 species with long lifetimes (i.e., secondary species) and short lifetimes (i.e.,
primary species) when applying the statistical downscaling approaches. More research is needed to
further constrain appropriate scales of influence.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/1/103/s1,
Figure S1: Annual average concentrations, Figure S2: 98th percentile concentrations, Figure S3: Annual and 98th
percentile Downscaler simulation differences, Figure S4: Quarterly Downscaler simulation differences, Figure S5:
Downscaler standard error differences, Figure S6: Cross validation results.
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