
atmosphere

Article

A Near-Field Gaussian Plume Inversion Flux
Quantification Method, Applied to Unmanned Aerial
Vehicle Sampling

Adil Shah 1,* , Grant Allen 1 , Joseph R. Pitt 1, Hugo Ricketts 1,2, Paul I. Williams 1,2,
Jonathan Helmore 3, Andrew Finlayson 3, Rod Robinson 3, Khristopher Kabbabe 4 ,
Peter Hollingsworth 4 , Tristan C. Rees-White 5, Richard Beaven 5, Charlotte Scheutz 6 and
Mark Bourn 7

1 Centre for Atmospheric Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
2 National Centre for Atmospheric Science, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK
3 National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK
4 School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Oxford Road,

Manchester M13 9PL, UK
5 Faculty of Engineering and Physical Sciences, University of Southampton, University Road,

Hampshire SO17 1BJ, UK
6 Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115,

2800 Kongens Lyngby, Denmark
7 Environment Agency, Tyneside House, Skinnerburn Road, Newcastle upon Tyne NE4 7AR, UK
* Correspondence: adil.shah@manchester.ac.uk; Tel.: +44-(0)-161-306-6852

Received: 3 July 2019; Accepted: 9 July 2019; Published: 15 July 2019
����������
�������

Abstract: The accurate quantification of methane emissions from point sources is required to better
quantify emissions for sector-specific reporting and inventory validation. An unmanned aerial vehicle
(UAV) serves as a platform to sample plumes near to source. This paper describes a near-field Gaussian
plume inversion (NGI) flux technique, adapted for downwind sampling of turbulent plumes, by fitting
a plume model to measured flux density in three spatial dimensions. The method was refined and
tested using sample data acquired from eight UAV flights, which measured a controlled release of
methane gas. Sampling was conducted to a maximum height of 31 m (i.e. above the maximum
height of the emission plumes). The method applies a flux inversion to plumes sampled near point
sources. To test the method, a series of random walk sampling simulations were used to derive an
NGI upper uncertainty bound by quantifying systematic flux bias due to a limited spatial sampling
extent typical for short-duration small UAV flights (less than 30 min). The development of the NGI
method enables its future use to quantify methane emissions for point sources, facilitating future
assessments of emissions from specific source-types and source areas. This allows for atmospheric
measurement-based fluxes to be derived using downwind UAV sampling for relatively rapid flux
analysis, without the need for access to difficult-to-reach areas.

Keywords: methane; flux quantification; Gaussian plume; UAV

1. Introduction

Methane is the second most important greenhouse gas in terms of radiative forcing [1], with
a direct radiative forcing of +0.61 W m−2 [2]. Though a global mean methane concentration up to
800,000 years prior to 1850 was constrained between 300 ppb and 800 ppb [3], recent global mean
measurements (2018) have exceeded 1850 ppb [4]. Following a hiatus at the turn of this millennium, a
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gradual annualised concentration increase has resumed since the year 2007 [5,6], at an annual growth
rate of (5.7 ± 1.2) ppb yr−1 up to the year 2014 [7]. Approximately 64% of global methane emissions are
anthropogenic [8–10], with approximately one-fifth of all anthropogenic methane originating from
landfills [11], representing the dominant source of methane waste emissions, produced primarily by
the anaerobic microbial decomposition of organic municipal solid waste [6]. Though most methane
emission source types are known, the quantification of source emission contributions to the global
methane budget may be poor [12], especially on a facility-scale. This prioritises the retrieval of
facility-scale methane emission fluxes using near-field (~100 m from the source) sampling to help
constrain and improve emission inventories by top-down validation and ultimately their global
extrapolation [6]. By carefully targeting potent anthropogenic methane emission sources, accurate
facility scale flux quantification is crucial in efforts to mitigate climate change.

Existing facility-scale methane flux quantification methodologies require atmospheric methane
concentration ([CH4]) measurements, which can be obtained using either remote sensing or in-situ
methods [13–16], although in-situ measurements are more commonly used [17]. Examples of previously
used methane in-situ measurement-based techniques include eddy covariance [18], mass balance box
models [17,19–24], and the tracer dispersion method (TDM), which compares the downwind ratio
of methane concentration to an inert tracer [13,25–31]. Alternatively, inversion dispersion models
may be used for flux quantification on a facility scale [17,21,32–34]. For example, Gaussian plume
inversions have been applied using middle distance (~1 km from the source) [CH4] sampling [33,35–38].
Foster-Wittig et al. [39] used near-field [CH4] measurements from a stationary position, downwind of
the source, to derive fluxes using a Gaussian plume inversion.

Far-field (defined here as > 1 km from source) in-situ sampling on a downwind two-dimensional
vertical flux plane, roughly perpendicular to mean wind direction, has successfully been used to
calculate fluxes using mass balance box modelling [40–42]. These previous far-field studies utilised
geospatial kriging [43] to interpolate between sparse spatial sampling of a well-defined emission plume,
characterised by dispersion [20]. Near-field sampling on a two-dimensional vertical flux plane cannot
easily be treated in the same way, as turbulent fluctuations in wind direction through the flux plane
are fast compared with the typical timescale of near-field sampling techniques, resulting in poorly
defined plume morphology for short sampling times typical of single small unmanned aerial vehicle
(UAV) flights. To address this challenge, we describe a near-field Gaussian plume inversion (NGI)
flux quantification technique (Section 2) which is suitable for near-to-source sampling on a vertical
flux plane.

The NGI method is ideally suited to derive fluxes from near field sampling, typical of small UAV
platforms (<20 kg take-off mass). We define in-situ UAV sampling here to mean any sampling in which
a UAV is used to obtain air samples for either live or subsequent analysis. Though aircraft-based [CH4]
measurements have been used to derive far-field methane fluxes in the past for strong emitters and
area-sources such as urban environments [40,41], manned aircraft are unsuitable for near-field sampling
due to their typically fast speed (>50 m s−1) and flight restrictions on proximity and height [44]. They are
significantly costlier to maintain and operate than small UAV platforms. Small UAVs have a recent
and growing variety of scientific applications [44–46], especially in hazardous environments [47–51].
A key advantage of UAVs is their ability to fly in difficult-to-access areas quickly which, for example,
stationary towers may struggle with, as they can be difficult to move on muddy terrain and can be
logistically difficult to operate.

Here, we list some past examples of the use of UAVs in various applications, which is by no means
an exhaustive list in this rapidly developing field. Vanegas et al. [52] used a suite of hyperspectral,
multispectral and visible optical sensors on-board a 6 kg UAV platform to improve pest surveillance [52].
An algorithm was used to combine ground-based and airborne measurements to map the spread of
a pest infestation in a vineyard [52]. Kim et al. [53] used an ultrasonic displacement sensor along
with a camera module on-board a 1.8 kg UAV to detect cracks in concrete structures. They found
that their algorithm was capable of measuring cracks thinner than 0.1 mm with an error of 7.3% [53].
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Wang et al. [54] used a 1 kg light detection and ranging system mounted on-board a small UAV to
measure biomass cover and canopy height over grassland. Arabi et al. [55] used a UAV to wirelessly
recharge depleted batteries. The system was tested to recharge a network of depleted ground based
data transmitters [55]. Schuyler et al. [56] used a 5.14 kg UAV, in the form of a balloon-launched glider,
to derive measurements of temperature, pressure and humidity from up to 25 km in height, which were
used to validate the results of a weather model. Nolan et al. [57] developed an Eulerian diagnostics
wind velocity model suitable for single UAV flights, which they tested by simulating a UAV flying in
circles. Elsewhere, Nolan et al. [58] measured wind speed, wind direction and temperature at 0.07 Hz
using two UAVs combined with ground-based (tower) measurements to determine wind fields, which
were then used to model the atmospheric transport of emissions.

A number of previous studies have measured boundary layer winds and turbulent parameters
using UAV sampling [59–61]. Barbieri et al. [62] tested 23 different UAVs with a variety of atmospheric
sensors designed to measure pressure, temperature, humidity and winds, by comparing UAV
measurements to measurements made from a stationary tower on the ground. Lee et al. [63] calibrated
a meteorological sensor (sampling at 1 Hz) on board two multi-rotor UAV platforms to characterise
variability in moisture and temperature up to a height of 300 m. Alaoui-Sosse et al. [64] tested a 3.5 kg
fixed-wing UAV (including payload) which made use of a fast inertial measurement unit to measure
turbulence in the boundary layer. The platform was successfully tested by comparing UAV turbulence
measurements to measurements from a stationary tower at a fixed height of 60 m at 10 Hz [64].
The UAV could also be used as a mobile data transmission base station [55]. Hemingway et al. [65]
used a variogram analysis of temperature and humidity measurements, derived from a 1.2 kg UAV
flying within the atmospheric boundary layer, to observe meteorological phenomena of a sub-kilometre
spatial scale. Zhou et al. [66] made in-situ measurements of aerosol concentrations from on-board a
small UAV in Nanjing, China during an air pollution episode. The position of the sensor was optimised
to be on top of the UAV, using computational fluid dynamics to simulate downwash through the
propellers [66].

Berman et al. [67] published the first high-precision (2 ppb at 1 Hz) UAV-derived in-situ [CH4]
measurements from the Arctic, albeit without flux calculation. Golston et al. [68] developed a
lightweight (1.6 kg) open-path in-situ methane sensor with a relatively high precision (10 ppb at 1 Hz)
which was mounted to a small UAV with a take-off mass of 4.9 kg. Brosy et al. [51] connected a small
UAV to a high-precision in-situ sensor on the ground using 70 m of tubing to investigate methane
altitude gradients. Andersen et al. [69] used their AirCore system to collect a time-continuous air
sample on a small UAV platform, which they later analysed on the ground, resulting in a 0.5 Hz
precision of 0.5 ppb, to investigate methane altitude profiles. Emran et al. [70] attached a cheap sensor
to a small UAV platform to make remote sensing measurements between the ground and the UAV at a
fixed height in order to map a landfill emission plume. Thus, UAVs can be used to measure methane
in-situ by either collecting air samples for subsequent analysis, by using on-board instrumentation,
or by connecting the UAV to a sensor on the ground. All three approaches have their advantages and
drawbacks. Tethered sampling lacks flexibility, as the instrument must remain connected to the tether,
potentially restricting spatial sampling extent. On-board sampling is ideal, but this requires sufficiently
light-weight sensors with correspondingly high precision and resolution. At the time of writing, such
instruments (less than 5 kg) were not commercially available, but rapid advances continue to be made
in this regard [44].

UAVs have been used in previous near-field methane flux quantification work. Allen et al. [71]
used UAV-derived carbon dioxide measurements to infer a landfill methane emission flux using
characteristic landfill gas emission ratios: This yielded inaccurate results, as carbon dioxide was a poor
proxy for landfill emissions due to extraneous sources of carbon dioxide [19,72], such as those expected
in densely industrialised locations which were considered in this previous study. Nathan et al. [73]
calculated a mass balance box model flux from a gas compressor station using sparse UAV-derived
open path in-situ [CH4] measurements of a relatively low precision (100 ppb at 10 Hz), where kriging



Atmosphere 2019, 10, 396 4 of 25

was used. However, as near-field in-situ sampling was used in the Nathan et al. [73] study, the use
of kriging as a form of interpolation could be subject to error due to effects of near-field turbulence.
Yang et al. [74] used a downward facing remote sensing instrument attached to a small UAV platform
to detect gas leaks, using a new interpretation of mass balance box modelling tailored for remote
sensing sampling. Their UAV performed concentric circles around the presumed emission source at a
fixed height [74]. Mass balance box modelling can be a highly suitable method for UAV sampling,
as shown in a study by Yang et al. [74], whose method integrated the statistical average of remote
sensing measurements from above an emission plume.

In this paper, an NGI mass balance method (see Section 2) is developed and tested using a
preliminary sample dataset of geospatially mapped in-situ [CH4] measurements obtained from eight
UAV flights. The NGI method used here was specially adapted to allow fluxes to be quantified
using near-field UAV sampling downwind of (assumed) point sources by tethering the UAV to a
high-precision in-situ methane sensor on the ground. An advantage of UAV sampling is that it does
not require access to difficult-to-reach areas (for example, access to industrial or restricted sites). In this
study, controlled releases of methane were conducted by the UK National Physical Laboratory (NPL)
for evaluation. The refinement of flux quantification techniques using known controlled emission
fluxes, such as those provided by the NPL in this study, is crucial in order to legitimise the integrity
of further work [21,25,34,35,74]. The NPL fluxes were also used to test simultaneously-derived TDM
fluxes (described in detail in Fredenslund et al. [75]) by two TDM teams operating independently of
the UAV team and each other. In Section 3, we then test the NGI method and account for inherent
flux biases associated with the method, using simulated measurements acquired from a random walk
simulation sampling a static plume. These simulations also serve as further guidance on improvements
to the sampling approach in future use of the method.

2. Method

The NGI method is a mass continuity model in principle, applied to near-field sampling, where
in-situ [CH4] measurements upwind and downwind of an emission source are differenced and
combined with a wind vector, resulting in a measured flux density (qme). This makes the NGI
method suitable for near-field UAV sampling. Provided that upwind air is relatively homogenous
in comparison to downwind enhancements and well mixed (regardless of whether it is enhanced
in methane overall), the NGI method can be used to difference between upwind and downwind
methane sampling. The NGI method requires near-to-source sampling (defined here to be ~100 m
from the source) on a vertical two-dimensional plane roughly perpendicular to mean wind direction
(θ), to define a net source flux into a volume of air advecting with the wind. The [CH4] value upwind
of the source (background) is assumed to be roughly constant compared with enhancements expected
from the source of interest. This background variability can be measured and accounted for in error
budgeting (see later). This assumption requires there to be no nearby interfering emission sources that
are detectable from the point of sampling. Additionally, loss terms between the source and sampling
plane are assumed to be negligible, as is the case for methane as its atmospheric lifetime (~9 years [9])
significantly exceeds the timescale of near-field advection downwind of a facility-scale source. For
highly reactive trace gases, such considerations may become important if this method was adapted.

Under turbulent conditions, near-field sampling may not map out a characteristic conceptual
time-invariant Gaussian plume for constant sources. Instead, a non-Gaussian distribution of qme may
be observed across the flux plane due to sampling different positions of an instantaneous plume,
sampled at different times. However, provided that sampling on the vertical flux plane captures
the centre of a time-averaged plume and extends sufficiently far outwards, a flux can be derived
by assuming that the time-averaged plume also exhibits a Gaussian plume morphology. Sampling
duration should also be sufficient to ensure unbiased measurement of the flux plane. This is the basis
of the NGI approach, applicable to near-field UAV measurements of point source emissions. In the
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later discussion, we attempt to assess and account for the limitations of such sampling and examine
sources of bias and error in the method using simulations.

2.1. Preparing the Sample Data

A DJI S900 hexacopter UAV (flying up to (24 ± 3) m above ground level) was used to obtain [CH4]
measurements using a Los Gatos Research, Inc. Ultra-portable Greenhouse Gas Analyzer (UGGA) on
the ground, sampling air at a rate of 1 Hz, which was connected using a 150 m length of PFA tube to an
inlet above the plane of the UAV rotors (see Appendix A for further experimental details including the
sampling location, instrumental set-up, geolocation measurements and time corrections). These data
served as a sample dataset of geospatially-mapped in-situ [CH4] measurements, with corresponding
measurements of altitude, latitude, and longitude, downwind of the NPL Controlled Release Facility
(CRF). Eight flights were conducted for between 13 and 28 min each (see Table S2 for individual flight
details). Each flight was conducted with the intention that it would be centred around the time-averaged
plume as projected onto the flux plane and was adapted in-flight to capture the maximum extent of the
plume. The UAV was directed towards the time-averaged plume mid-flight to maximize in-plume
sampling based on mid-flight knowledge of its position estimated from smoke flares released near to
the emission source. Such targeted sampling can result in a positive flux bias that (with hindsight)
invalidates the assumptions of mapping a time-averaged plume.

Altitude, longitude, and latitude corresponding to each [CH4] measurement were converted into
height above ground level (z), the horizontal distance perpendicular to mean wind direction (y) and
the distance from the source along the mean wind vector (x). To calculate z, the lowest in-flight altitude
measurement was set to the height of the air inlet above the base of the UAV. Thus, the systematic
accuracy of geospatial height measurements is not important, provided that they are of a sufficient
precision (random uncertainty). To calculate x and y, longitude and latitude were converted into
distances in metres (assuming a spherical Earth). These distances were then projected onto a sampling
plane parallel to mean wind direction (θ) to calculate x and onto a plane perpendicular to θ to calculate
y for the duration of sampling. The assumed y position of the emission source projected onto the
sampling plane was set to 0 m as a reference, and the assumed x position of the source was set to 0 m.
Figure 1a gives an example of a UAV flight track, with geospatially mapped measured [CH4] as a
function of x, y and z ([CH4]me) on the flux plane (see Figure A3 for all UAV flight tracks). The upwind
background methane concentration ([CH4]0) and corresponding background uncertainty (σb) was
assumed here to be constant for each flight. [CH4]0 was found by taking the peak of a log-normal
distribution applied to a histogram of the lowest [CH4] measurements (see supplement for full details).
All sampling uncertainties in this paper are expressed as single standard deviations.

Anemometers positioned at various heights were used to infer continuous wind speed (U(z))
and wind direction profiles, along with corresponding wind speed variability (σU(z)) profiles
(see Appendix A for further details of the anemometers used). A single mean value of θ was
derived for each flight: This was calculated from the average of two-dimensional wind vectors at the
height of each [CH4]me measurement. The atmospheric methane mass density (ρ), assuming all of
air is methane (in units of kg m−3), was calculated using Equation (1), where M is the molar mass of
methane (0.0164 kg mol−1), R is the gas constant (8.314 m3 Pa mol−1 K−1), and T and P are the average
temperature and pressure, respectively, for the duration of each UAV flight. Provided that changes in
T and P are small, ρ can be assumed to remain constant for the duration of sampling.

ρ =
PM
TR

. (1)
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values calculated using [CH4]me values in panel “a”; (c) qmo values modelled on qme values in panel 
“b.” Panel “b” and panel “c” share a mutual colour scale; (d) Residuals between qme values in panel 
“b” and qmo values in panel “c.” 
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estimate an initial flux using the NGI method. The qme, as a function of y, z, and x, was calculated 
using Equation (2), assuming constant ρ. The qme is the emission flux per unit area on the flux plane, 
derived from each individual [CH4]me measurement (see Figure 1b for flight 2, for example). As 
Equation (2) requires the concentration enhancement over the background, instrumental resolution 

Figure 1. (a) In situ [CH4]me measurements obtained during flight 2 from the sample data (117 m from
the emission source). z is plotted on the vertical axis and y is plotted on the horizontal axis; (b) qme

values calculated using [CH4]me values in panel “a”; (c) qmo values modelled on qme values in panel “b.”
Panel “b” and panel “c” share a mutual colour scale; (d) Residuals between qme values in panel “b” and
qmo values in panel “c.”

2.2. Flux Estimation Using the NGI Method

Here, we describe the procedure applied to each UAV flight from the sample data in order to
estimate an initial flux using the NGI method. The qme, as a function of y, z, and x, was calculated using
Equation (2), assuming constant ρ. The qme is the emission flux per unit area on the flux plane, derived
from each individual [CH4]me measurement (see Figure 1b for flight 2, for example). As Equation (2)
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requires the concentration enhancement over the background, instrumental resolution (1 ppb for
the sample data) can be a limiting factor in the magnitude of fluxes detectable: If fluxes are too low,
concentration enhancements may be undetectable.

qme =
(
[CH4]me − [CH 4]0

)
U(z)ρ. (2)

Equation (3) was used to calculate the uncertainty in qme (∆qme), using the instrumental Allan
deviation precision (σAV, specifically 0.00127 ppm for the sample data) and an instrumental uncertainty
factor (σi([CH4])) associated with each [CH4]me measurement (see Appendix A for details on σi([CH4])).

∆qme = qme

√√√√
σAV2 + ([CH4]meσi([CH 4]))

2 + σb
2(

[CH4]me − [CH 4]0

)2 +

(
σU(z)
U(z)

)2

+

(
σρ

ρ

)2

. (3)

The NGI method assumes that spial variability in the time-averaged plume is Gaussian.
As a consequence, the NGI method also assumes that the plume is not capped in the z direction
by an atmospheric temperature inversion. Conceptually, over an infinite period of randomised
sampling, and assuming that the prevailing meteorology does not vary, a Gaussian morphology of
qme would be observed as an average of instantaneous sampling. This essentially smooths out the
manifestation of turbulence in the time-averaged plume morphology. However, in practice, limited
sampling time constraints (particularly for UAV sampling) may potentially lead to the observation
of non-Gaussian qme across the sampling plane due to turbulence (see Figure A3 for the example of
the sample data). The NGI method is therefore a trade-off between the need to sample for a long
enough time to characterise the time-averaged plume as much as possible and the need to minimise
the systematic effect of any potential dynamic changes in atmospheric stability, source strength and
prevailing meteorology over the course of measurement (parameters which may be derived from
complementary specialised UAV sampling [57]). Such competing needs would need to be considered
on a case-by-case basis by considering weather forecasts, the local topography and the nature of the
expected sources being studied.

An initial flux estimate (Fe) can be derived by fitting qme values to corresponding modelled flux
density (qmo) values using an adaptation of the two dimensional Gaussian plume model [76] given
by Equation (4). Equation (4) does not include wind speed, as this has been incorporated into qme

in Equation (2). An advantage of incorporating wind speed into qme in this way is that variations
in wind speed with altitude are incorporated into the measured plume morphology in flux space.
An advantage of this method is that it does not require us to assume any stability class, as plume
spatial variance is implicitly measured.

qmo =
Fe

2πσy(x)σz(x)
exp

 −(y − y c

)2

2σy(x)
2


exp

−(z − h)2

2σz(x)
2

 + exp

−(z + h)2

2σz(x)
2

. (4)

σy(x) is the crosswind mixing factor, σz(x) is the vertical mixing factor, yc is centre of the plume in the y
direction (based on the actual sampled qme measurements) and h is the emission height.

On an idealised downwind vertical flux plane, perpendicular to θ, σy(x) and σz(x) would be
constant for all qme values. However, as σy(x) and σz(x) are both functions of x, they may vary depending
on the orientation of the sampling plane, if not perfectly perpendicular to θ. In reality, it is difficult to
sample on a perfect perpendicular plane, especially with UAV sampling (see Figure S2 for the example
of the sample data), as θ may vary throughout the sampling period. To account for this variability
in sampling distance from the source, we assume σy(x) and σz(x) to increase linearly with x (i.e., qme

decreases with increasing distance from the source). Though σy(x) and σz(x) may not increase linearly
with x over large distances, they can be approximated to be linear functions of x under near-field
conditions and where the variation in x remains small (less than 40 m). σy(x) and σz(x) for each stability
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class were plotted up to 500 m, using the equations found in Turner [76], to test the validity of this
assumption (see Figures S4 and S5). This assumption of linearity allowed us to define a crosswind
mixing factor evaluated at a distance of 1 m (τy) using Equation (5) and a vertical mixing factor
evaluated at a distance of 1 m (τz) using Equation (6). τy and τz are both then scalable factors that can
be used to derive σy and σz as a function of x and are therefore applicable to the variable sampling
typical of UAV measurement.

τy =
σy(x)

x
. (5)

τz =
σz(x)

x
. (6)

As τy and τz are both independent of x, Equation (4) can now be expressed as a three dimensional
Gaussian plume, using Equation (7).

qmo =
Fe

2πτyτzx2 exp

 −(y − y c

)2

2
(
τyx

)2


exp

−(z − h)2

2(τzx)2

 + exp

−(z + h)2

2(τzx)2

. (7)

One could attempt to solve Equation (7) iteratively for the four unknown constant parameters
(F, yc, τy and τz). However, such a solution is not always well constrained by the sampled data. Instead,
by utilising the separability of Equation (7), we can place constraints on yc and τy by equating the
mean and standard deviation (in the y dimension) of qmo to the equivalent values for qme. This requires
us to remove the vertical (z) component of qme using Equation (8) to define qme with the z Gaussian
component removed (qme,y). As Equation (8) depends on τz, good spatial sampling in the z direction is
required in order to derive τz.

qme, y = qme
x
√

2π(
exp

(
−(z − h)2

2(τzx)2

)
+ exp

(
−(z + h)2

2(τzx)2

)) . (8)

yc and τy were then derived analytically from measured data using Equations (9) and (10), respectively,
which require each “j” value of z, x and qme,y. Foster-Wittig et al. [39] used an equation similar to
Equation (10) to derive σy(x), rather than τy, using downwind concentration measurements acquired at
a single position on the ground. As τz in Equation (8) was unknown, Equation (9) and (10) were solved
simultaneously along with Equations (7) and (8) as part of the model. A key advantage of calculating yc

in this way is that, provided geospatial measurements of a sufficient precision are recorded, the overall
systematic accuracy of geospatial sampling is not crucial, as the centre of the plume is derived from
spatial measurements relative to each other.

yc =

∑
j

(
qme, y jy j

)
∑

j

(
qme, y j

) . (9)

τy =

√√√√√√√√√∑
j

(
qme, y j

(
y j − yc

x j

)2
)

∑
j

(
qme, y j

) . (10)

Equations (9) and (10) require good spatial sampling in the y direction, as yc weights the flux
contributions to the position of the centre of the measured plume (as sampled), independent of z.
This means that if qme at any point in the y direction was equal to 0, it would have no influence in
changing the centre of the calculated plume morphology in the y direction. By calculating yc and τy

in this way we constrain the model and optimise the flux calculation procedure, such that the only
remaining unknown variables in Equation (7) are τz and Fe.
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The initialised values of τz and Fe were then evaluated computationally to minimise the sum of
squared residuals between all qme and qmo values by solving Equations (7), (9), and (10) simultaneously
(as yc and τy are both derived from values of qme,y, which ultimately depend on τz). This was achieved
here using the lsqcurvefit function of Matrix Laboratory (MATLAB) 2016a, which applies a least-squares
solution to the input data. During the optimisation procedure τz and Fe were both constrained to
ensure good parameterisation, as described below, without which the model may produce unrealistic
flux results. It was clear that the maximum constraining value of τz (τz,max) had an impact on Fe:
If τz,max was too small, τz may have been equal (or almost equal) to τz,max (as illustrated in Figure A4
for example). Furthermore, Fe sometimes failed to stabilise as τz,max increased, regardless of how
high τz,max was set to (see Appendix C for further discussion). Therefore, before a final constant Fe

result could be produced, the flux evaluation procedure had to be repeated at various values of τz,max.
A constant value of Fe was assumed to be produced once incremental changes in τz,max no longer
resulted in changes in Fe. Figure 1c gives an example of final constant modelled qmo values for flight
2 from the sample data. Final τz and Fe values were then substituted into Equations (9) and (10) to
establish definite values of yc and τy. All resulting yc, τy and τz values for the sample data are given in
Table S4.

Once constant values of τz and Fe were acquired for each flight, a measurement uncertainty in
Fe (∆Fm) could be calculated through Equation (11), by using each “j” value of qme and ∆qme from
Equation (3), assuming each ∆qme term is uncorrelated.

∆Fm = Fe

√√√√∑
j

(
∆qme j2

)
∑

j

(
qme j2

) . (11)

A total minimum uncertainty (∆F−) was then calculated using Equation (12) from residuals
between each “j” calculation of qme and qmo (see Figure 1d for flight 2, for example). Equation (12) finds
the average qme residual, weighted by qme.

∆F− = −Fe

∣∣∣∣∣∣∣∣∣∣∣
√√√√√√∑

j

((
qme j − qmo j

)2
)

∑
j

(
qme j2

)
∣∣∣∣∣∣∣∣∣∣∣. (12)

The residuals between qme and qmo in Equation (12) incorporate uncertainty in wind direction.
Under stable wind conditions, at a constant wind direction, and with infinite spatial sampling,
the residual (qme j−qmo j) term in Equation (12) would converge to zero. However, under turbulent
(or variable) wind conditions, regardless of sampling spatial extent and sampling duration on the flux
plane, the residual (qme j−qmo j) term may be non-zero due to the potential for overlap of various qme

measurements at the same point in space at different times. Furthermore, the limited extent of spatial
sampling on the flux plane can lead to a flux under-estimate, which must be incorporated into the total
maximum uncertainty (∆F+). This is described in Section 3.

3. Flux Sensitivity Random Walk Simulations

The capability of the NGI method to derive a prescribed modelled point source target flux (Ft)
was tested here by simulating randomised near-field sampling of a time-averaged plume. As well as
evaluating ∆F+, these simulations can be used for guidance to better plan future sampling, to yield
fluxes within some threshold of acceptable uncertainty in operational settings. The simulations
were designed to replicate real sampling in the y, z, and x directions (see Figure S6 for an example).
Each simulation was based on parameters retrieved when calculating Fe from the NGI model (yc, h, τy

and τz), the orientation of the qme sampling plane in the x direction and the spatial distribution of qme

sampling. Each simulation was constrained by the maximum bounds of qme sampling.
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Each simulation was initialised from a random y and z position on the sampling plane (point 1
in Figure 2, where Figure 2 is a schematic diagram of a random walk). The distance of each step
in the random walk was constant (on a plane perpendicular to x), with a length (L) equal to the
average distance between successive real measurement points. In order to replicate changes in
sampling direction on the plane perpendicular to x, an exponential probability distribution was fitted
to the absolute change in angle between each successive measurement step (see insert in Figure 2).
This probability distribution was used to model the change in angle (in magnitude but not in sign)
between each successive step in the random walk (δθ), from an initial random direction (θR). At the
sampling plane boundary, the random walk direction was deflected by an angle of either 135◦ or 225◦,
provided that the random walk remained within the spatial confines of sampling. The orientation of
the simulated sampling plane in the x and y direction, relative to mean wind direction, was chosen to
match the orientation of the sampling plane from real sampling (see supplement for details). Simulated
qme values were then generated for each step in the random walk using Equation (7), where Fe was
replaced by Ft and qmo was replaced by qme.
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Figure 2. A schematic of the random walk simulation with an example δθ exponential probability
distribution function (pdf ) in the top right hand corner. Each step in the random walk is numbered from
1 to 4. Upon reaching the plane boundary at point 4, a deflection of 225◦was applied, since a deflection of
135◦ (red square) failed to keep the random walk within the confines of spatial sampling. The sampling
plane spans from the minimum real y measurement (ymin) to the maximum real y measurement (ymax)
and from the minimum real z measurement (zmin) to the maximum real z measurement (zmax).

For each test described in the following sections, multiple independent random walks
(and simulated qme values) were generated from scratch, for either a single fixed simulated sampling
time (t) or for various values of t. For each random walk in each test, t was adjusted by altering the total
number of steps in the random walk. Each individual random walk sampled the flux plane following
a different route, making each random walk unique. A virtual flux estimate (Fe,v) was calculated from
each random walk (which is a function of t), following the NGI method. As modelled fluxes can fail to
stabilise when τz,max is equal to model output value of τz, five conditions were put in place to ensure
that the model had stabilised. These conditions are described in detail in Appendix B.
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3.1. Upper Flux Uncertainty Bounds

The difference between Ft and simulated flux (Fe,v) was assessed at a fixed simulated sampling
time corresponding to the duration of actual sampling for each flight in the sample data. Fluxes for
this analysis were derived by continuously repeating a random walk simulation to accumulate a
large number (180 for the sample data) of virtual fluxes (see green lines in Figure 3a for example).
The average value of Fe,v (Fe, v, solid green line in Figure 3a) was negatively biased from Ft due to three
independent effects.

1. The simulated sampling extent was restricted as a consequence of the managed sampling strategy,
resulting in an inadequate characterisation of the entire emission plume.

2. Sampling was physically restricted in the z direction due to the non-zero height of the air
inlet (as was the case for our UAV platform), resulting in an under-sampled area very close to
the ground.

3. The random walk was time-limited, resulting in an incomplete exploration of the available flux
plane and hence, sampling gaps, leading to a residual negative flux bias.

These effects collectively result in a lack of spatial sampling across the flux plane and thus
insufficient sampling with which to calculate τy and τz, which are derived here from measurements of
qme across the sampling plane. In theory, these effects can be alleviated with infinite spatial sampling
on an infinitely sized sampling plane, but this cannot realistically be achieved from a UAV (or any)
sampling platform. These three effects were incorporated into ∆F+ by adding the deviation of Fe,v

from Ft to ∆F−, using Equation (13).

∆F+ = +
(
|∆F−| +

(Fe

Ft

(
Ft − Fe, v

)))
. (13)

Thus, Figure 3a shows that as a consequence of the three effects outlined above, the NGI method
can result in a large variation in flux estimation with the potential for a large negative flux bias.

3.2. Uncertainty Sampling Thresholds

By gradually increasing t in each simulation, the convergence of Fe,v towards Ft was assessed
(blue crosses in Figure 3b, for example). This makes it possible to analyse the limiting uncertainty that
exists in Fe,v as a function of t, due to the random error associated with the NGI method itself rather
than due to the quality of sampling. This test is only valid for relatively non-variable atmospheric
conditions, as it assumes the time-averaged plume to be static. For each flight from the sample data,
independent random walks of up to four hours were generated. A simulated scale factor as a function
of t was applied to these fluxes to correct for the inherent negative bias that occurs as a function of t
(see previous section). This scale factor was derived by repeatedly performing random walks at a range
of fixed sampling times to quantify the average negative flux bias as a function of t (see supplement
for details). Without applying this scale factor, Fe,v gradually increased towards Ft, as a function of
t (see Figure S7 for example). Following the application of this scale factor, the absolute difference
between bias-corrected Fe,v and bias-corrected Fe, v was used to find the flux anomaly (A) as a function
of t (red diamonds in Figure 3b, for example). The decrease of A with increasing t represents a reduction
in the fundamental methodological uncertainty due to a greater understanding of the time-averaged
plume morphology. The flux anomalies in Figure 3b show that with a sufficient sampling duration,
the fundamental methodological uncertainty can gradually be reduced until it converges towards zero.
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Figure 3. (a) Fe,v at fixed t (green vertical lines), simulating flight 3 from the sample data, with Fe, v,
(blue vertical line) and Ft (dashed black vertical line) also shown. (b) Bias corrected Fe,v values as
a function of t (blue crosses), plotted against left-hand axis, with Ft (black line) also shown. Flux
anomalies as a fraction of Ft (red diamonds) are plotted against the right-hand axis with an exponential
fit plotted as a red line (see text for further details).

The flux anomaly was assumed to decrease exponentially with t, from which a fit could be
produced using Equation (14) to define an anomaly coefficient, α, and an anomaly decay constant,
β (see Table S5 for values for the sample data). This fit was weighted to take into account fewer
simulations at longer t, such that the fit was evenly applied as a function of t.

A = Ftα exp
(
−t
β

)
. (14)

By setting t in Equation (14) to the duration of each UAV flight in the sample data and by setting
Ft to Fe, the limiting uncertainty (Af) associated with each flight could be derived. Af represents the
inherent limiting uncertainty, determined by the sampling strategy (assuming non-variable atmospheric
conditions), which decreases as a function of t. Alternatively, Equation (14) could be rearranged to
make t the subject. Then, by setting A to a specified target fraction of Ft, the minimum time required to
surpass a target limiting uncertainty threshold could then be derived. This may be useful to decide
future UAV sampling durations within a desired minimum confidence level. For example, setting A
to 1% of Ft yielded the 1% fundamental uncertainty sampling threshold (t1%). The use of limiting
confidence timescales is only valid if non-variable atmospheric conditions are assumed. Therefore,
the threshold time must be comparably smaller than the timescale of prevailing meteorological change.

3.3. Testing the NGI Method

Finally, virtual flux simulations were used to test the NGI method in principle. First, the flux plane
was extended to mitigate biases due to the limited size of the sampling plane. The maximum sampling
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extent in the z direction was doubled, and the left and right x bounds were also doubled (resulting in
an increase in the size of the original sampling plane by a factor of approximately 6). Furthermore,
the flux plane was extended down to ground level. The total simulated sampling time (t) was then
set to an arbitrary (approximately 72 h) sampling time across the extended flux plane to mitigate the
effects of limited spatial sampling coverage, as well as to minimise the limiting uncertainty discussed
in the previous section. The simulation was then repeated 60 times for each flux. Average Fe,v results
deviated from Ft by (−0.7 ± 0.5)%, (see Table S6 for results using the sample data). This test validates
the utility of the NGI method by confirming that it accurately yields Ft, in principle.

4. Results and Future Guidance

The sample data used to develop the NGI flux quantification method described here was acquired
using the controlled release of natural gas (supervised by the NPL) at two flux rates ((1.5 ± 0.1) g s−1

and (3.0 ± 0.2) g s−1). The NGI fluxes for each of eight UAV flights are displayed in Figure 4, along
with flux uncertainty bounds, expressed as a percentage of the NPL controlled release facility (CRF)
reported emission flux (see Table S1 for individual flux values for each flight). All values of Fe, ∆F+,
and ∆F− are given in Table S7. As this was a preliminary study, regardless of uncertainty, we note that
most NGI fluxes calculated for the sample data exceeded CRF fluxes due to the biased nature of our
sampling. Though potential sources of negative bias due to sampling limitations are incorporated
into the NGI flux uncertainty range, the effects of positive bias are clearly dominant here. One such
source of positive bias is the targeted sampling strategy described in Section 2.1, resulting in plume
chasing. The NGI method inherently assumes that the measurements constitute an unbiased sample of
the time-averaged Gaussian plume. However, during the acquisition of the sample data, the UAV was
directed towards the perceived position of the instantaneous plume to maximise in-plume sampling.
Future studies adopting this technique should avoid chasing the plume in this way, as it results
in the over-representation of in-plume measurements, which biases NGI fluxes. Another possible
source of bias may be wind measurements; if the winds at the location of the anemometers were
systematically different from those at the UAV sampling locations, this would have a direct impact on
the calculated fluxes.
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Figure 4. Near-field Gaussian plume inversion (NGI) flux results for the sample data, expressed as a
ratio to the controlled release facility (CRF) emission flux. The calculated uncertainty flux range (from
∆F− to ∆F+) is expressed as a cyan bar and Fe is a vertical blue line for each flight. The ∆Fm range is
expressed as a horizontal blue line. The solid yellow line represents Fe being equal to the CRF flux.
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The flux biases in this work can be compared to a previous study by Brantley et al. [35],
which quantified the controlled release of methane using Gaussian plume modelling of stationary
measurements; their method both overestimated and underestimated fluxes by between −87% and
+184%, respectively. The wide variation in fluxes acquired by Brantley et al. [35] highlights issues
similar to those experienced in other studies using near-field concentration measurements in turbulent
(non-ideal) conditions with time-limited sampling, i.e. that sampling a non-disperse emission plume
can result in large flux uncertainty.

Though seven out of eight Fe values were above the CRF flux due to the biased sampling,
all reported CRF fluxes fell within the full UAV flux uncertainty range, which spanned between
(−76 ± 5)% and (+132 ± 15)% of Fe. Flight 6 had a particularly high NGI flux uncertainty range due to
a high quantity of sampling at the edge of the plume (see Figure A3), rather than the centre. Failure to
adequately sample the centre of the plume can result in a much larger false plume being extrapolated,
using the NGI method, in certain cases. It is clear from Figure 4 that the ∆Fm uncertainty range was
dwarfed by the extended uncertainty range, which was higher in all cases due to the dominating effect
of the uncertainty in wind direction. To assess the various sources of UAV sampling uncertainty in
∆Fm, a sensitivity test was performed (see Table S8). The principal source of uncertainty in ∆Fm was
from uncertainty in wind speed (see Table S8). An improved understanding of the temporal variability
of the two-dimensional wind field on the flux plane, either by on-board UAV wind measurement or
by other means, would serve to reduce this dominant source of uncertainty. However, the combined
effects of instrumental uncertainty and uncertainty in the background were small compared with effects
associated with natural variability in the wind field, which suggests that instruments such as the UGGA
are suitable for measurement of fluxes similar to those in our study at similar downwind distances.

We compared the UAV flux uncertainties from the sample data to other methods. Seven of the
eight TDM flux estimates which were acquired simultaneously during this study (see Table S1) agreed
with the CRF, within uncertainty, with an average bias of (−2 ± 10)%. The average uncertainty in
individual TDM fluxes (through comprehensive uncertainty budgeting) was ±21% [75]. In a different
study using mass balance box modelling, Krautwurst et al. [42] derived the emission flux from a
single landfill site based on both remote sensing column-concentration aircraft measurements and
in-situ aircraft concentration measurements, with average flux uncertainties of ±34.5% and ±19.7%,
respectively. Elsewhere, the uncertainty in fluxes obtained by Nathan et al. [73], using mass balance
box modelling of polar coordinates and kriging to quantify the emission flux from a natural gas
compressor station, was ±55%, although we dispute the use of kriging as an appropriate tool in that
case. Yacovitch et al. [37] used a Gaussian plume inversion of ground based measurements to quantify
emission fluxes from oil and gas infrastructure facilities, which used σy(x) and σz(x) values based
on stability classes (rather than derived from qme), with asymmetric 95% confidence uncertainties of
between −33.4% and +334%. Therefore, we conclude that the NGI method using UAV sampling can be
a competitive tool for rapid flux assessments of emitter facilities, assuming sampling from point source
emitters. While the uncertainties we derived are comparatively large, the NGI method is able to derive
rapid flux estimates from time-limited UAV sampling.

Though we report large NGI flux uncertainties for the sample data, alternative techniques such as
mass balance box modelling cannot be used reliably to quantify fluxes using off-site downwind UAV
sampling. To explain these conclusions, we have assessed the suitability of two mass balance box
modelling approaches here. Mass balancing using geospatial kriging cannot be used, as kriging
requires the interpolation of time-invariant downwind sampling. In this work, the qme plume sampled
by a UAV near-to-source was not time invariant due to turbulent fluctuations in the position of the
plume on the sampling plane. Though kriging may be used in principle in stable (non-turbulent) wind
conditions, stable winds are unlikely when sampling with a UAV near-to-source. Alternatively, mass
balancing may be applied by averaging qme into equally sized grid squares on a plane perpendicular
to mean wind direction. However, this requires the entire extent of the time-averaged plume to be
captured by the UAV, down to ground level. It also requires dense spatial sampling without any
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large sampling voids. While the method of grid square averaging may again be possible in principle,
in order to produce sufficiently dense spatial sampling, a longer UAV sampling duration would be
required compared to the sampling presented here. Furthermore, sampling down to ground level can
be problematic, as it relies on the position of the air inlet on a UAV being close to the base of the UAV,
and effects or prop-wash may be expected. Thus, we suggest that neither mass balance box modelling
approach can be used for the type of near-field UAV sampling presented here—rather, the NGI method
is a suitable flux quantification technique for near-field UAV sampling.

Future UAV flight sampling should be planned to minimise flux uncertainties, including potential
sources of bias. The random walk simulations were used to generate values of Af for each flight from
the sample data, which are given in Table 1. They show that regardless of measurement uncertainty,
wind variations and the spatial extent of sampling, an average (58 ± 30)% limiting threshold uncertainty
remains due to limited spatial coverage on the sampling plane. The random walk simulation could also
be applied to obtain t0.01 required to surpass a 1% uncertainty threshold, assuming good randomised
sampling of a static plume. It is clear that the theoretical t0.01 values in Table 1 (of at least 5 h) are
unrealistic for UAV sampling, which cannot practically be achieved by a single light UAV platform
over the timescale of a single flight (typically < 30 min using current battery technology constraints).
However, using multiple UAV flights or tethered power (for uninterrupted sampling) may increase
sampling time. The t0.01 values are only valid when sampling in stable atmospheric conditions with a
relatively non-variable wind direction. In reality, over the t0.01 times given in Table 1, non-variable
atmospheric conditions are unlikely, leading to the potential for large NGI uncertainties from UAV
sampling. Therefore, if additional UAV sampling is used, a compromise sampling time must be
reached over which atmospheric conditions change very little while the sampling period is maximised
to minimise uncertainty.

Table 1. Af as a fraction of Fe and t0.01 for each unmanned aerial vehicle (UAV) flight in the sample data.

UAV Flight Af/Fe t0.01 (Hours)

1 (57 ± 3)% 14.0 ± 1.8
2 (22 ± 2)% 5.1 ± 0.5
3 (41 ± 3)% 5.8 ± 0.5
4 (26 ± 2)% 5.0 ± 0.5
5 (71 ± 4)% 6.8 ± 0.5
6 (123 ± 41)% 7.3 ± 2.8
7 (68 ± 4)% 12.7 ± 1.2
8 (53 ± 4)% 8.2 ± 0.8

5. Conclusions

A near-field Gaussian plume inversion was used to quantify methane emission fluxes from eight
UAV flights downwind of a controlled emission source. The new NGI method takes into account
the imperfect orientation of a two-dimensional vertical sampling plane perpendicular to mean wind
direction. The number of unknown parameters in the inversion was reduced by deriving constraining
parameters in the y direction from flux density measurements. Uncertainties were derived from
measurement uncertainty as well as the difference between measured and modelled flux density
results. The upper flux uncertainty bound was further enhanced by taking into account the lack of
spatial sampling extent, using a random walk simulation of sampling. The random walk sensitivity
tests also highlight areas of future improvements to the sampling strategy, which will be a focus of
future experimental work. They also highlight the importance of evenly-distributed sampling of an
adequate duration and the need for a sufficiently large sampling plane.

We suggest that the NGI method is a highly suitable technique that can be used to accurately
quantify emission fluxes from static point sources of both methane and other trace gas sources, with
measurement potential by UAVs. This allows for the full potential of near-field in-situ spatial sampling
that UAVs provide to be realised. Though we acknowledge the magnitude of uncertainty may be high
over a single UAV flight, the NGI method allows for rapid flux estimation with a defined maximal
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uncertainty. Mass balance box modelling may not be suitable for UAV in-situ sampling as it requires
either the sampling of a time invariant plume or dense spatial sampling of a time-averaged plume.
Though the NGI method yielded highly successful results when using a random walk simulation, the
preliminary fluxes from the sample data resulted in high uncertainties. It is suggested that future
studies that utilise the NGI method should adopt a sampling strategy that addresses the potential
sources of bias highlighted here by ensuring that plume-chasing is avoided and by ensuring that
sampling is sufficient to capture the entire extent of the time-averaged plume.

With the possibility of in-situ UAV wind measurements in future, there is further scope to improve
flux accuracy. Future progress may be made by mounting an in-situ methane sensor directly onto a
UAV, to eliminate issues associated with the use of a tether. Such improvements and further near-field
sampling studies using the NGI method can play an important role in efforts to improve emission
inventories. Additionally, UAVs may be used to add a vertical sampling dimension to the TDM
technique using in-situ tracer gas detection. To conclude, a Gaussian plume inversion flux quantification
method, using in-situ [CH4] measurements of a sub-ppm precision, has been characterised here and
future improvements are viable. This permits future studies of unknown well-defined sources (such as
landfill sites, oil and gas infrastructure facilities, or herds of cattle) to be conducted using the method,
depending on the precision of instrumentation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/7/396/s1,
Table S1: Reported CRF methane flux releases with the time duration of continuous methane emission given in
seconds past midnight (spm), local time (GMT); Figure S1: A photograph of the UAV platform at rest (without
battery), with the PFA tubing pointing upwards; Table S2: UAV flight details and flight track colours; Figure S2:
Aerial view of the three emission source locations (black dots) and flight tracks (coloured dots); Figure S3a:
A histogram of methane concentration measurements obtained throughout flight 1 from the sample data;
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Appendix A

Four NPL CRF releases of natural gas (provided by BOC Ltd., Guilford, Surrey, UK) were
conducted at the UK Met Office’s Meteorological Research Unit (MRU) in Cardington, Bedfordshire,
UK (longitude: 0◦25′21” W; latitude: 52◦6′32” N), on 2 November 2016 and 3 November 2016. Further
details of the CRF are given in the supplement. The operating site is a mown grass field with
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single-storey office facilities. The site has a maximal length of ~600 m and a maximal width of ~400 m.
During each flight, fluxes were released at one of two prescribed emission rates from three locations
around the site from a ~6.2 m tower, selected for optimal downwind UAV sampling for the prevailing
wind direction at the time of each flight experiment (see Table S1 for release details). The MRU was
ideal for the acquisition of sample data, as it was distant (>5 km) from any expected significant sources
of off-site (and therefore interfering) methane such as large towns, cities or landfill sites.

Four 10 Hz sonic 3D anemometers (HS-50 Horizontal-Head Ultrasonic Anemometer, Gill Instruments
Limited) were positioned on the site at heights of 2, 10, 25, and 50 m above ground level. The average wind
speed and wind direction for the duration of each UAV flight was interpolated (using a shape-preserving
piecewise cubic interpolation) as a function of z to derive a continuous wind profiles as a function of
height for each flight. Thus, θ took into account wind shear by interpolating wind speed measurements
from the four anemometer towers. The variability in wind speed measured by each anemometer was
interpolated as a function of altitude to produce a continuous uncertainty profile.

During each controlled release, a modified DJI Spreading Wings S900 hexacopter UAV (Figure A1)
was manually piloted by experienced personnel on the ground and guided for sampling by an assistant,
acting as a lookout. The pilot had a qualification in UK airspace legislation and was experienced
and competent in flying small UAVs. As the UAV was used for scientific (rather than commercial)
purposes, a pilot qualification from the Civil Aviation Authority (CAA) was not required, in accordance
with UK airspace legislation. The UAV flew at an average speed of (0.4 ± 0.1) m s−1. It was directed
mid-flight to capture as much of the plume as possible based on mid-flight knowledge of the plume
position, using the release of smoke flares. Though the UAV was limited to a physical height of
150 m (i.e., the length of the tubing), the UAV only flew up to (24 ± 3) m to ensure extensive vertical
sampling of the emission plume; the maximum height of the plume was determined using a visible
plume observed from the release of smoke flares. Prior to each flight, the CRF release point and UAV
sampling area were defined in a planning and safety briefing, using forecasts of wind direction to
optimise the available operational sampling area around on-site buildings and obstructions (such as
the anemometer masts) and to ensure minimum UAV safety distances (50 m) from personnel and
property beyond the pilot’s control, as defined by CAA regulations [77]. Each flight track was roughly
aligned in a vertical sampling plane perpendicular to θ by manual piloting, (90 ± 30) m from the source.
However, there was a clear inclination between the sampling plane and the plane perpendicular to θ,
which was accounted for in the NGI method. UAV longitude, latitude, and altitude were recorded at a
5 Hz frequency by an on-board Pixhawk computer (independent of the on-board flight controller),
connected to a Cirocomm 00BY satellite geolocation antenna, which was secured to the top of the UAV.
For a continuous stationary 60 s sampling period, x, y, and x varied with a standard deviation of no
more than ±0.15 m. Thus, the precision of the sensor was suitable for our flux quantification purposes.

Atmosphere 2019, 10, x FOR PEER REVIEW 17 of 25 

 

single-storey office facilities. The site has a maximal length of ~600 m and a maximal width of ~400 
m. During each flight, fluxes were released at one of two prescribed emission rates from three 
locations around the site from a ~6.2 m tower, selected for optimal downwind UAV sampling for the 
prevailing wind direction at the time of each flight experiment (see Table S1 for release details). The 
MRU was ideal for the acquisition of sample data, as it was distant (>5 km) from any expected 
significant sources of off-site (and therefore interfering) methane such as large towns, cities or 
landfill sites. 

Four 10 Hz sonic 3D anemometers (HS-50 Horizontal-Head Ultrasonic Anemometer, Gill 
Instruments Limited) were positioned on the site at heights of 2, 10, 25, and 50 m above ground level. 
The average wind speed and wind direction for the duration of each UAV flight was interpolated 
(using a shape-preserving piecewise cubic interpolation) as a function of z to derive a continuous 
wind profiles as a function of height for each flight. Thus, θ took into account wind shear by 
interpolating wind speed measurements from the four anemometer towers. The variability in wind 
speed measured by each anemometer was interpolated as a function of altitude to produce a 
continuous uncertainty profile. 

During each controlled release, a modified DJI Spreading Wings S900 hexacopter UAV (Figure 
A1) was manually piloted by experienced personnel on the ground and guided for sampling by an 
assistant, acting as a lookout. The pilot had a qualification in UK airspace legislation and was 
experienced and competent in flying small UAVs. As the UAV was used for scientific (rather than 
commercial) purposes, a pilot qualification from the Civil Aviation Authority (CAA) was not 
required, in accordance with UK airspace legislation. The UAV flew at an average speed of (0.4 ± 0.1) 
m s−1. It was directed mid-flight to capture as much of the plume as possible based on mid-flight 
knowledge of the plume position, using the release of smoke flares. Though the UAV was limited to 
a physical height of 150 m (i.e., the length of the tubing), the UAV only flew up to (24 ± 3) m to 
ensure extensive vertical sampling of the emission plume; the maximum height of the plume was 
determined using a visible plume observed from the release of smoke flares. Prior to each flight, the 
CRF release point and UAV sampling area were defined in a planning and safety briefing, using 
forecasts of wind direction to optimise the available operational sampling area around on-site 
buildings and obstructions (such as the anemometer masts) and to ensure minimum UAV safety 
distances (50 m) from personnel and property beyond the pilot’s control, as defined by CAA 
regulations [77]. Each flight track was roughly aligned in a vertical sampling plane perpendicular to 
θ by manual piloting, (90 ± 30) m from the source. However, there was a clear inclination between 
the sampling plane and the plane perpendicular to θ, which was accounted for in the NGI method. 
UAV longitude, latitude, and altitude were recorded at a 5 Hz frequency by an on-board Pixhawk 
computer (independent of the on-board flight controller), connected to a Cirocomm 00BY satellite 
geolocation antenna, which was secured to the top of the UAV. For a continuous stationary 60 s 
sampling period, x, y, and x varied with a standard deviation of no more than ±0.15 m. Thus, the 
precision of the sensor was suitable for our flux quantification purposes. 
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[CH4] was recorded at ~1 Hz by securing a 150 m long, 4.76 mm inner diameter perfluoroalkoxy
alkane (PFA) tube to the UAV, through which air was pumped (at a continuous flow rate of 0.5 litres
per minute) to a commercially available 15 kg UGGA methane sensor (Figure A3) which was fixed
on the ground, operating at a fixed pressure of 140 Torr. The UGGA uses off-axis integrated cavity
output spectroscopy to derive concentration measurements (see Baer et al. [78] and Paul et al. [79]
for full spectroscopic details): A 1650 nm tuneable laser is reflected between two mirrors in a high
finesse cavity, with the output spectrum integrated as a function of wavelength, to derive concentration
using the Beer–Lambert law. Live concentration measurements from the UGGA could be viewed on
a computer screen on the ground, where data was saved for subsequent analysis. The UGGA was
powered in the field using a 12 V lead-acid battery. Though the ground-based sampling used here
allows for high-precision heavier instrumentation (like the UGGA) to be used, it also suffers a number
of drawbacks, such as lag time through the tubing (which we account for) and the kinking of the tube,
resulting in air failing to reach the sensor on the ground (which we omitted during flux analysis).
A small loop at a fixed position on the tubing was fastened to the same point beneath the UAV, prior to
flight, to ensure consistency in the length of the tubing between flights. In this work, the tip of the
inlet was positioned ~20 cm above the plane of the rotor blades to ensure that sampled air was not
disturbed by propwash or air flow through the rotors (see Zhou et al. [66] for example). Computational
fluid dynamics (CFD) model simulations (not shown) demonstrated that the inlet was positioned
sufficiently far enough away from the rotors to exclude this. The CFD simulations showed that there
was no significant vertical disturbance to air a sufficient distance above the plane of the propellers.
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Figure A2. (a) The Ultra-portable Greenhouse Gas Analyzer (UGGA) with its lid closed and an air inlet
attached; (b) the UGGA with its lid open.

The accuracy of UGGA concentration measurements was enhanced using a post-flight water
vapour correction (see O’Shea et al. [80] for details). Measurements were then further calibrated using
a two term linear correction (derived from an average of eight calibration procedures, described in
detail by Pitt et al. [81]), such that dry methane concentration measurements were robustly traceable to
the World Meteorological Organization greenhouse gas calibration scale [82].

Equation (A1) was used to calculate σi([CH4]) values specific to the UGGA (required to calculate
of uncertainty in qme in Equation (3)).

σi([CH 4]) =

√(
σGF
GF

)2
+

(
σWC

WC([CH 4])

)2

. (A1)

GF was the average of eight previously calculated gain factors, and σGF was its corresponding
standard deviation. The ratio between σGF and GF was 0.00282. WC([CH4]) is a water correction
factor which was directly applied to raw concentration measurements and is a function of water
concentration. σWC was the uncertainty associated with the water correction.
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Each longitude, latitude, and altitude measurement from the UAV was interpolated onto the lower
frequency UGGA time grid (avoiding extrapolation of [CH4] measurements). UGGA measurements
were also corrected to the UAV sampling time by calculating the lag time (τlag), in order to geospatially
reference UGGA measurements (by subtracting τlag from the UGGA time-stamp), to account for the
time taken for air to travel through the tubing. τlag was tested prior to and immediately following each
flight (by blowing into the inlet and timing the carbon dioxide concentration response). τlag varied
flight-to-flight with a mean (and maximal range from flight-to-flight) of (300 ± 10) s. τlag was measured
before and after each flight and found to be constant. However, it gradually varied throughout the day.
This small variation may have been due to changes in ambient pressure, which slightly alter the mass
flow rate through the pump in the UGGA. τlag was assumed to remain constant throughout each flight,
as was it controlled by the strength of the pump (operating at a controlled pressure), with ambient
pressure changes assumed to be minimal over the short period of each UAV flight.

Appendix B

Geospatially mapped [CH4]me measurements for each UAV flight have been plotted in Figure A3,
where z has been plotted on the y-axis, and y (obtained by rotating the distance from the Prime Meridian
and the Equator, respectively, by θ) has been plotted on the x-axis. For each of the eight flight tracks
shown in Figure A3, the CRF emission point was from a tower ~6.2 m above ground level. For each
flight bar flight 4, the highest concentration measurements were typically detected by the UAV to the
left of the position of the emission source projected by θ onto the sampling plane (set to 0 m in the y
direction in Figure A3). The CRF emission flux for flights 1–6 was (3.0 ± 0.2) g s−1, while the emission
flux for flights 7 and 8 was (1.5 ± 0.1) g s−1. Methane was released at these flux rates throughout the
period of sampling.Atmosphere 2019, 10, x FOR PEER REVIEW 20 of 25 
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The highest recorded concentrations during flight 1 were observed between ~−10 m and ~−35 m
horizontally, where the UAV clearly intersected the centre of the advecting emission plume. The highest
concentration measurements from flight 2 were made nearer to ground level from between ~−25 m
and ~+15 m horizontally. These concentration measurements were the highest experienced during
all eight flights (~25 ppm). High concentration measurements were also detected during transects
~10 m above ground level, with some to the very right (~+30 m) of the extent of UAV sampling.
The dominating high concentration measurements acquired from flight 4 were made between ~0 m
and ~+20 m horizontally.

Flight 3 featured the narrowest sampling by the UAV, with the far left side (>−25 m) mostly
composed of background (~2 ppm) measurements. The highest concentration measurements were
randomly distributed towards the centre of the sampling plane. Flight 8 was similar with high
concentration measurements overlapping background measurements between ~−70 m and ~−20 in
the y direction, with the highest measurements made at ground level between ~−60 m and ~−50 in the
y direction.

The highest concentration measurements observed during flight 5 occurred in a small area near
ground level at ~−48 m in the y direction. Other moderately high measurements were scattered
between ~−60 m and ~−20 m in the y direction. Similarly, the highest concentrations observed in flight
6 occurred in a small area near ground level ~−69 m in the y direction to the very edge of the extent of
UAV sampling. The highest concentrations in flight 7 were overlapped by lower (but still elevated
relative to background) concentrations between the ground and ~15 m above ground level at ~−50 m
in the y direction. The plume was intersected at other positions (between ~−30 m and ~−60 m in the
y direction).

Appendix C

In order to derive Fe using the NGI method, Equations (7), (9) and (10) are required simultaneously.
The model could be initialised using prior values of Fe and τz, along with maximum and minimum
constraints to both of these values. When running the model under various constraining parameters,
it was observed that τz was equal to τz,max, when τz,max was low (see Figure A4 for example).
As a consequence, the model failed to produce a stable value of Fe, representing the true flux. This was
because the model’s sampling space was constrained, which constrained an optimum value of Fe

from being attained: The size of the plume in the z direction was restricted from expressing its full
magnitude at low τz, potentially suppressing Fe. This issue was resolved by incrementally increasing
τz,max until it was clear that any further increase in the τz,max would fail to increase τz. Once τz had
stabilised (as a function of increasing τz,max), it was clear that Fe also stabilised (see Figure A4 for
example), provided that the maximum containing value of Fe was also sufficiently large. Until such a
point could be reached, Fe was rejected.

Unsuitable fluxes were manually rejected during the initial flux quantification procedure. However,
for the random walk simulations, a more robust automated procedure was required with which to
accept or reject the final NGI Fe values (i.e., corresponding to the highest value of τz,max), using the
following five conditions

1. 0.98 times the final τz value must be less than the penultimate τz value (which ensures τz has
stopped increasing).

2. The final τz value must be less than 0.98 times τz,max for that modelled run (which ensures that
τz,max has sufficiently exceeded τz).

3. The penultimate τz value must be less than 0.98 times τz,max for that modelled run (which ensures
that τz,max has sufficiently exceeded τz).

4. The final Fe value must be less than 0.98 times the maximum constraining Fe value (which ensures
that Fe has stopped increasing).
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5. The penultimate Fe value must be less than 0.98 times the maximum constraining Fe value (which
ensures that Fe has stopped increasing).

The first three conditions ensured that τz has stabilised. The fourth and fifth conditions ensured
that the maximum constraining Fe value was sufficiently large to avoid it constraining Fe.
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