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1. G-Pod cooking area micro-environment monitoring 

The G-Pod air quality monitor sampling inlets were placed 1-meter away from the cookstove of 
interest, at 1-meter height, with BLE Beacons bolted to the outside of the cases.  CO was measured 
with Alphasense CO-B4 electrochemical sensors.  CO2 was measured with NDIR sensors (S200, ELT 
Corp.).  Temperature, humidity, and barometric pressure were also measured in the G-Pod, and on 
a subset of samples, total VOCs were measured with PID sensors (pID-Tech Plus Silver, Baseline-
Mocon Inc.).  Integrated PM2.5 was collected and analyzed as described elsewhere [1].  From 
December 2013 through November 2014, only the most-used cooking area was monitored, but from 
November 2014 – January 2016, the two most-used cooking areas were monitored.  

2. Cooking area microenvironment measurements calibration and data processing 

We employed a multi-step protocol to ensure data quality over the duration of the study.  CO 
and CO2 sensors underwent lab calibrations at the University of Colorado before and after each 
sampling period (November 2013, October 2014, May 2015, October 2015, and February 2016).  An 
exponential calibration model controlling for temperature was used for the Alphasense CO sensor 
[2], while a first order linear model was used for the ELT CO2 sensor [3].  Span checks were 
performed at the NHRC in March 2015 after receiving cylinders of span gases.  Calibrations were 
very consistent over time for these sensors, as has been previously shown [3]. 

The G-Pods were configured to sample at 15-second intervals, and 1-minute medians were used 
for further analysis.  CO and CO2 data were baseline-adjusted to the 5th percentile of the ambient 
background concentration, to mitigate baseline sensor drift over time.  We found evidence of 
uniform background levels of these pollutants (data not yet published), and since ventilation rates 
are very high in the measured microenvironments due to building styles, we considered this to be a 
reasonable approach since we could not perform full calibrations as often as desired. 

3. Beacon distance calibration 

The iBeacon protocol includes a calibration constant to normalize the RSSI-to-distance 
conversion, but Android devices do not use this method, which made it necessary to perform a 
calibration with our specific hardware (Figure 1).  Calibration was performed on an open sports field 
free of extraneous objects using an equation of the form distance =10(p1 * RSSI)/p2), as has been used 
commonly in beacon work [4].  Stationary data was collected with two phones and two beacons at 
distances of 2, 5, 10, 20, and 40m, for durations of three minutes at each distance. 

The data from each phone/beacon combination was fit individually to but in the end a single 
calibration using all the data was kept for further analysis because we determined that the inter-
phone and inter-beacon differences were due to random experimental error, like orientation, rather 
than systemic differences in hardware.  Additionally, not all phones were available at the time of 
calibration, so a bulk approach was deemed prudent. An R-squared value of 0.72 was obtained using 
all the data, with evenly distributed residuals.  
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Figure S1. RSSI-to-distance calibrations for various calibration models.  The bold black line shows a 
fit using aggregate data from both phones, and both beacons, while the thin lines are phone/beacon 
specific.  Box and whisker plots show the distributions of the all the raw data, with whiskers 
representing 5th and 95th percentiles.  Note that the outlying curves on the top and bottom of the 
plot are from phone 4, suggesting a performance issue with that phone. 
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Figure S2. Modeled categories vs. known categories for all merged beacon signal data.  Percentages 
add up to 100 by column, as the x-axis represent the known category values. 

4. Participant protocol compliance 

Compliance was calculated using the rolling standard deviation of one-hour segments of the 
minute beacon data and flagging hours in which the standard deviation of any available beacon 
signal in units of RSSI was greater than 2, excluding nighttime between 21:00 and 7:00.  Standard 
deviation of 2 was selected based on noise variability during calibration periods and is in units of 
RSSI because the residuals are normally and evenly distributed throughout the distance categories, 
but residuals are not evenly distributed after passing through the exponential calibration curve in 
conversion to distance (m).  Using this approach, average compliance was measured at 81.9%. 

5. Beacon system validation  

To understand signal measurement uncertainty, we can first look at the results of a simple test 
we conducted outdoors with one phone and one Beacon.  When the body is directly between a 
phone and Beacon, the signal attenuation is equivalent to predicting a change in distance from ~1 
meter to ~10 meters.  When performed indoors, the results are usually less pronounced, due to signal 
reflectance aiding the Beacon signal to reach the phone.  A validation test was performed as part of 
an outdoors cookstove test.  The same distance ranges were prepared, and a user walked throughout 
each range for 20 minutes.  Three phones were placed at the epicenter of the region arcs, along with 
the stove.  There were more obstructions in this test than the open field, making it a more realistic 
scenario.  There are still limitations with this approach, and it is not meant to represent all indoor 
use, which could be highly variable due to placement of equipment, home layouts, building 
materials, and user behaviors.  Dedicated indoor testing in a variety of environments would provide 
a better understanding of the expected performance. 

Validation testing for both deployments and all combinations of phones and beacons showed 
correct classification of distance categories on 30.9% of observations on average, and 67.4% of 
observations were within one distance zone of the correct zone.  System performance was not 
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significantly different between the initial validation test and the outdoor cooking test.  However, 
classification errors were not evenly distributed among distance categories, with lower matching 
success rates for the more distant ranges (Figure 3).  This was expected, since the relative signal 
drop-off due to bodily interference is higher for closer ranges.  Calibration showed inter-phone 
variability of 4.4m (RMS error) (Figure 1), suggesting that each of our phones would have benefitted 
from individual calibrations, though such variability is model specific for the phone and may not be 
the case with other phone models. 

 
Figure S3. Performance from the validation deployment in an open field.  Light colored boxes show 
the match rate, and dark boxes show the rate at which the algorithm predicted within one zone of the 
correct zone.  Left frames show performance by distance zone, while right frames show overall 
performance.  Top frames show match rates using the MV algorithm, the middle frames show rates 
using minute medians, and the bottom frames show match rates using the merged beacon data along 
with the MV algorithm. 
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Figure S4. Performance from the test deployment with additional obstructions.  Light colored boxes 
show the match rate, and dark boxes show the rate at which the algorithm predicted within one zone 
of the correct zone.  Left frames show performance by distance zone, while right frames show overall 
performance.  Top frames show match rates using the MV algorithm, the middle frames show rates 
using minute medians, and the bottom frames show match rates using the merged beacon data along 
with the MV algorithm. 

The MV filter provided a 2.2% and 3.4% improvement over the simple medians for the direct 
match rate of the ‘open field’ and ‘obstructed’ data sets, and 0% and 6.1% improvement for the within-
one match rate of the ‘open field’ and ‘obstructed’ data sets (Figure 2,3).  The physical reasoning 
behind this approach suggests that it would improve performance in more variable and dynamic 
environments, with only minor potential drawbacks in outlying use cases. 

Merging the data from both beacons worn by the user resulted in substantially better 
performance, since the attenuation effects were much less pronounced due to the improved direct 
line-of-sight to the phones at nearly all times.  53.1% of observations were correctly classified on 
average, while 89.5% of observations were classified within one zone for the ‘open field’ test, while 
in the obstructed data set the values were 46.0% and 91.3%.  The merged data had errors that were 
more evenly distributed among categories. 

6. CO and beacon modeling results 

Table S1. Summary of time-activity states and defining criteria used in Equations 1 and 2. 

State Time-activity category Proximity criteria Cooking area CO 
concentration criteria 

1 Away From Home more than 90m away from both 
cooking areas NA 

2 Home Not Cooking within 90m of any cooking area CO < 10 ppm 
3 Home Cooking (control) within 90m of any cooking area CO > 10 ppm 
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4 Home Cooking 
(Gyapa/Gyapa) within 90m of any cooking area CO > 10 ppm 

5 Home Cooking 
(Philips/Philips) within 90m of any cooking area CO > 10 ppm 

6 Home Cooking 
(Gyapa/Philips) within 90m of any cooking area CO > 10 ppm 

 

Table S2. Summary of results from modeling personal CO exposure by cooking area CO. 

  Personal vs. cooking area CO by zones 
(Equation 3) 

Daily average personal vs. cooking area 
CO (Equation 4) 

 
Expected 

value 
ppm 

(95% CI) 

Coefficient 
(95% CI) 

% 
change 
(95% 
CI) 

P-
value 

Expected 
value 
ppm 

(95% CI) 

Coefficient 
(95% CI) 

% 
change 
(95% 
CI) 

P-
value 

Intercept 0.1 (0.07, 
0.16) 

-2.27 (-2.69, 
-1.85) NA 0.00 

0.14 
(0.07, 
0.25) 

-2.0 (-2.62, 
-1.38) NA 0.00 

log(Weighte
d cooking 
area CO) 

2.74 
(2.25, 
3.33) 

1.01 (0.81, 
1.2) 

173.54 
(124.75

, 
232.92) 

0.00 2.24 (1.5, 
3.36) 

0.81 (0.4, 
1.21) 

124.25 
(49.87, 
235.56) 

0.00 

Random 
effect by 

individual 
  0.35 (0.13, 

0.94)       0.00     

Random 
error 

covariance 
  1.0 (0.76, 

1.31)       1.28 (0.82, 
2.01)     

Adjusted R-
squared   0.63       0.28     

N   123       38     

 
 

  

 
Figure S5. Mean exposure distributions categorized by zones.  Marker colors indicate the 
participant’s average exposure from the entire day, and red stars represent means by zone.  Slope of 
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decreasing average exposure by zone was not found to be statistically significant by univariate linear 
regression. 

7. Daily average modeling by stove group using only the data available with Beacons 

Model information: 

    Number of observations              71 

    Fixed effects coefficients           4 

    Random effects coefficients         31 

    Covariance parameters                2 

 

Formula: 

    LogPersonalCOMeans ~ 1 + StoveGroup + (1 | UserID) 

 

Model fit statistics: 

    AIC       BIC       LogLikelihood    Deviance 

    274.86    288.44    -131.43          262.86   

 

Fixed effects coefficients (95% CIs): 

    Name                  Estimate    SE         tStat       DF    pValue     Lower      Upper   

    '(Intercept)'         -0.38888      0.689    -0.56442    67    0.57435    -1.7641    0.98636 

    'StoveGroup_C'         -1.1923    0.84385     -1.4129    67    0.16232    -2.8766    0.49207 

    'StoveGroup_B'         -1.0066    0.73792     -1.3642    67    0.17708    -2.4795    0.46626 

    'StoveGroup_A'         -1.2481    0.76329     -1.6351    67    0.10671    -2.7716    0.27544 

 

Random effects covariance parameters (95% CIs): 

Group: UserID (31 Levels) 

    Name1                Name2                Type         Estimate      Lower    Upper 

    '(Intercept)'        '(Intercept)'        'std'        6.4937e-07    NaN      NaN   

 

Group: Error 

    Name             Estimate    Lower    Upper  

    'Res Std'        1.5406      1.307    1.8161 

Figure S1: RSSI-to-distance calibrations for various calibration models. The bold black line shows a fit using 
aggregate data from both phones, and both beacons, while the thin lines are phone/beacon specific. Box and 
whisker plots show the distributions of the all the raw data, with whiskers representing 5th and 95th percentiles.  
Note that the outlying curves on the top and bottom of the plot are from phone 4, suggesting a performance 
issue with that phone. Figure S2: Modeled categories vs. known categories for all merged beacon signal data.  
Percentages add up to 100 by column, as the x-axis represent the known category values. Figure S3: Performance 
from the validation deployment in an open field. Light colored boxes show the match rate, and dark boxes show 
the rate at which the algorithm predicted within one zone of the correct zone. Left frames show performance by 
distance zone, while right frames show overall performance. Top frames show match rates using the MV 
algorithm, the middle frames show rates using minute medians, and the bottom frames show match rates using 
the merged beacon data along with the MV algorithm. Figure S4: Performance from the test deployment with 
additional obstructions. Light colored boxes show the match rate, and dark boxes show the rate at which the 
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algorithm predicted within one zone of the correct zone. Left frames show performance by distance zone, while 
right frames show overall performance. Top frames show match rates using the MV algorithm, the middle 
frames show rates using minute medians, and the bottom frames show match rates using the merged beacon 
data along with the MV algorithm. Figure S5: Mean exposure distributions categorized by zones. Marker colors 
indicate the participant’s average exposure from the entire day, and red stars represent means by zone. Slope of 
decreasing average exposure by zone was not found to be statistically significant by univariate linear regression. 
Table S1: Summary of time-activity states and defining criteria used in Equations 1 and 2. Table S2: Summary of 
results from modeling personal CO exposure by cooking area CO. 
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