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Abstract: The first aim of this study is to determine if changes in precipitation and more specifically
in convective precipitation are projected in a warmer climate over Belgium. The second aim is to
evaluate if these changes are dependent on the convective scheme used. For this purpose, the regional
climate model Modeéle Atmosphérique Régional (MAR) was forced by two general circulation models
(NorESM1-M and MIROCS5) with five convective schemes (namely: two versions of the Bechtold
schemes, the Betts—Miller—Janji¢ scheme, the Kain-Fritsch scheme, and the modified Tiedtke scheme)
in order to assess changes in future precipitation quantities/distributions and associated uncertainties.
In a warmer climate (using RCP8.5), our model simulates a small increase of convective precipitation,
but lower than the anomalies and the interannual variability over the current climate, since all MAR
experiments simulate a stronger warming in the upper troposphere than in the lower atmospheric
layers, favoring more stable conditions. No change is also projected in extreme precipitation nor in
the ratio of convective precipitation. While MAR is more sensitive to the convective scheme when
forced by GCMs than when forced by ERA-Interim over the current climate, projected changes from
all MAR experiments compare well.

Keywords: precipitation; climate change; regional modeling; convective scheme; Belgium

1. Introduction

Due to the warming of the troposphere, its water vapor content is expected to increase over the
next few decades, leading to changes in clouds and precipitation [1-3]. Some regions are projected to
experience an increase in precipitation, while others might be subject to precipitation declines [3,4].

For instance, an increase in annual precipitation is expected in the northern part of Europe,
while the opposite is projected for the southern part and particularly for the Mediterranean Basin [3,5,6].
Furthermore, precipitation should increase in winter and decrease in summer over a significant part of
the European territory [3,6].

Belgium is located in the transition zone between wetter and driers areas as projected by IPCC [3,7].
Consequently, the evolution of precipitation over Belgium highlights the uncertainties and complexities
related to climate projections although it could deeply impact ecosystems [8,9] since the seasonal
variability of precipitation could also change [6,10-12].

However, all the aforementioned studies were based on the total precipitation amounts without
distinguishing between convective and stratiform precipitation (we refer to [13] for more details
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about these two types of precipitation). In a warmer climate, convection processes are expected to
intensify [14,15], especially near moisture sources such as the seas [2,16], potentially leading to higher
precipitation intensities, thunderstorms and major material damages.

In Belgium, the work in [17] showed that an ensemble of General Circulation Model (GCM)
outputs under different future scenarios simulates an amplification in the intensity of precipitation
extremes for 2100 with uncertainties following the GCM used and the greenhouse gas scenario used [18].
Nevertheless, GCM results are limited by their coarse spatial resolution and the approximations made
in the microphysics and convective schemes, but can be partially improved through downscaling
approaches with a Regional Climate Model (RCM) [6]. As both GCMs and RCMs do not represent
convective precipitation explicitly since the spatial scale of convective systems is significantly smaller
than their spatial resolutions, parameterized methods have to be employed in order to represent the
statistical effects of an ensemble of convective processes inside an air column of the model.

As highlighted in [19] where the regional model MAR (for “Modeéle Atmosphérique Régional”)
has been used at a resolution of 10 km over Belgium, the simulated precipitation showed the same
changes over the present climate, but could significantly differ locally depending on the convective
scheme used. Regarding the uncertainties linked to the geographical position of Belgium mentioned
above and the diversity of GCM-based future scenarios and convective schemes available for modeling
precipitation in RCMs, the evolution of (convective) precipitation remains an open challenging question.

The aim of this study is to expand the work of [19] by forcing MAR with two GCMs (NorESM1-M
and MIROCS from the Coupled Models Inter-comparison Project Phase 5 “CMIP5”) in order to assess
the future precipitation changes projected under the RCP8.5 scenario and their sensitivities to the
convective scheme used. The projected changes are quantified with respect to the historical experiments
representing the average climate over the last decades of the 20th century.

The area of interest, the models, and the convective schemes used are described in Section 2.
Section 3 presents the results (precipitation amounts, extreme precipitation, convective precipitation
ratio, and dry days, both annually and during summer) of MAR over the present period (1987-2017),
used here as the reference, and over a future warmer period (2070-2100). Section 4 discusses the results
before concluding in Section 5.

2. Models and Methods

The studied area, including Belgium and the nearby regions (Figure 1), is subjected to precipitation
all year round with an average annual precipitation amount ranging from 700 mm/year in the lowlands
to more than 1400 mm/year over the upper summits [20]. The convective events occur mainly between
April and September and are most frequent in the highlands [21]. Three orographic zones are defined in
Belgium: low Belgium (0 m-100 m), medium Belgium (101 m-300 m), and high Belgium (301 m-694 m).

The RCM used in this study was Version 3.9 of MAR. It is a hydrostatic primitive equation model
initially developed for Polar regions [22] such as the Greenland ice sheet (e.g., [23,24]) or the Antarctic
region (e.g., [25,26]). However, MAR has successfully been adapted for Western European temperate
regions [27-31] and has also been chosen to be part of the European branch of the international
COordinated Regional climate Downscaling EXperiment (EURO-CORDEX) project thanks to the
Belgian CORDEX.be project [32]. For more details about the physical parameterization of the MAR
model used here, we refer to [19].

In this study, MAR simulations were performed at a horizontal resolution of 10 km over a domain
of 800 km x 750 km centered over Belgium as in [19]. The model was constrained every 6 h at its lateral
boundary (by temperature, pressure, wind, specific humidity at each of its vertical level, and by sea
surface temperature over the ocean provided by reanalysis or GCM). The reanalysis and GCMs used
here as forcing fields were:

e the ERA-Interim reanalysis (ERA; [33]), available at a spatial resolution of 0.75° x 0.75° as in [19].
e the MIROC5 GCM (MIR; [34]) from CMIP5 available at a spatial resolution of 1.4° x 1.4°.
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e the NorESM-1-M GCM (NOR; [35]) from CMIP5 available at a spatial resolution of 1.89° x 2.5°.
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Figure 1. Model elevation of the study area (in meters). The dotted black lines represent the 100-m
and 300-m elevation; the blue lines represent the main rivers in our studied area, and the country
(in red letters) borders are shown by solid black lines.

The selection of these two GCMs was made after evaluation of their abilities to represent the
current (1976-2005) average climate over Europe on the basis of the skill score methodology used by [36].
About 30 GCMs from the CMIP5 project were classified by skill scores for six climate variables, and both
NorESM1-M and MIROCS performed significantly better than the other models [37]. In addition,
these two GCMs were also successfully used by [24,38] to force MAR over different domains of the
North Atlantic region.

In the following, two periods will be discussed. The first period 19872017 (called “present”)
is represented by the ERA-Interim reanalysis from 1987-2017 or by the historical scenario over 1987-2005
and extended by the RCP8.5 scenario from 20062017 for the GCM-based forcing. The second period,
2070-2100 (called “future”), is exclusively represented by both GCMs using the RCP8.5 scenario.

To assess the sensitivity of the convective precipitation in warmer climates over Belgium,
five different experiments have been performed: each of them used one of the following convective
schemes in MAR as done in [19]:

e the mass flux scheme of Bechtold [39], which is the Standard convective scheme in MAR (STD);
e an updated version of the convective scheme of Bechtold (MES) with different optimization and

parameter adjustments compared to STD. It is the version used in Version 5.3.1. of the RCM
MESOscale Non-Hydrostatic model (MESO-NH) [40];
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e the adjustment convective scheme of Betts—Miller—Janji¢ [41,42] (BM]). This convective scheme
comes from the Weather and Research Forecast model Version 3.9.1.1. from 28 August 2017
(WREF; [43]);

e the mass flux Kain—Fritsch Scheme [44] (KFS). This convective scheme also comes from the
WRF model;

e the modified Tiedtke mass flux scheme [45,46] (hereafter called NTK), which also comes from the
WRF model.

The performance of each convective scheme for representing convective precipitation over Belgium
by using ERA-Interim as forcing over 19872017 was discussed in [19].

For readability purposes, each experiment is named as follows: MAR-CCC-FFF with CCC the
acronym of the Convective scheme and FFF the acronym of the Forcing model. The acronyms are the
same as defined in the previous section. Sometimes MAR-CCC or MAR-FFF is used to refer to all the
experiments using the same convective scheme or the same forcing model, respectively.

The analyzed weather variables were the total precipitation amounts, the extreme precipitation
amounts, which correspond to the 95th percentile of daily precipitation, the rate of convective
precipitation, which corresponds to the ratio between convective precipitation and total precipitation,
and finally, the yearly dry day sums, which correspond to the number of days with a total precipitation
amount less than 0.1 mm/day (this threshold corresponds to the numerical precision in the MAR
outputs for precipitation).

The anomalies simulated by MAR forced by a GCM over the present period with respect to
MAR-ERA were considered as being significant if the differences between MAR forced by the GCM
and MAR-ERA were larger than one standard deviation (i.e., interannual variability) of MAR-ERA.
The projected changes simulated by MAR forced by a GCM over the future period were considered as
being significant when the difference with regard to MAR forced by the same GCM over the present
period was larger than one standard deviation of MAR forced by this GCM over the present period.

Before analyzing the projected changes, the ability of each experiment (e.g., MAR forced by a
GCM with one of the five convective schemes) to simulate the present climate over Belgium was
evaluated in order to estimate its relevance to perform projections.

3. Results

3.1. Total Precipitation

MAR-MIR and MAR-NOR mostly overestimated precipitation compared to MAR-ERA over
1987-2017 whatever the convective scheme used (Figure 2). The only exceptions were MAR-NTK-MIR,
which simulated insignificant anomalies over Belgium, and MAR-NTK-NOR, which significantly
underestimated precipitation over low and medium Belgium, while it overestimated it over
high Belgium. MAR-BMJ-MIR and MAR-BMJ-NOR showed the highest anomalies (on average,
+350 mm/year compared to MAR-BMJ-ERA), respectively, over the whole of Belgium and over high
Belgium. Figure S1 (in the Supplementary Materials) shows the same anomalies for summer except
for MAR-NTK-NOR and MAR-KFS-MIR, which respectively underestimated and overestimated
precipitation significantly over the whole domain.

Regarding the future, only MAR-BM] projected significant positive changes in mean annual
precipitation (+600 mm/year for MAR-BMJ-MIR and +300 mm/year for MAR-BM]-NOR) compared
to the other experiments, but these results remain questionable and will be discussed in Section 4.
The other experiments did not show any significant changes in a warmer climate, and even though
significant changes were simulated in some limited areas, they remained lower than the anomalies
between MAR forced by the two GCMs and MAR-ERA over the current climate. It should be
noted nevertheless that MAR-NTK-NOR projected an increase in the precipitation amount of about
70 mmy/year for the northern part of low Belgium in a warmer climate, while it showed a negative
anomaly over the present period. Similar conclusions can be drawn for summer from Figure S1.
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The standard deviations of daily precipitation of MAR-MIR (Figure S2) were also overestimated
compared to MAR-ERA. Regarding MAR-NOR, only MAR-NOR-BMJ and MAR-NOR-NTK showed
significant anomalies compared to MAR-ERA over 1987-2017. Regarding the future, there were some
local increases of the daily standard deviation, but globally, no significant changes for both the year
and summer time scale.
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Figure 2. (Top) ERA-Interim: Mean annual precipitation (in mm/year) over 19872017 simulated
by Modéle Atmosphérique Régional (MAR) forced by ERA-Interim for the five convective schemes.
(Middle) PRESENT: Anomalies (in mm/year) between the mean annual precipitation over 1987-2017
simulated by MAR forced by MIROC5 and NorESM1-M compared to MAR-ERA for the five convective
schemes. (Bottom) FUTURE: Future changes (in mm/year) between the mean annual precipitation over
2070-2100 simulated by MAR forced by MIROC5 and by NorESM1-M compared to MAR forced by
MIROCS5 and by NorESM1-M over 1987-2017 for the five convective schemes. Cross-hatched pixels
indicate that anomalies are statistically insignificant with respect to the interannual variability of the
reference field. MAR-STD represents the results of MAR using the standard version of the convective
scheme (based on the former version of the MESO-NH model); MAR-MES uses a new version of
the convective scheme from the MESO-NH model; MAR-BM]J uses the Betts-Miller—Janji¢ convective
scheme; MAR-KFS uses the Kain-Fritsch convective scheme while MAR-NTK uses the modified Tiedtke
convective scheme.

3.2. Extreme Precipitation

Over 1987-2017, MAR-STD-MIR and MAR-MES-MIR slightly overestimated extreme precipitation
(Figure 3) as defined in [19] (i.e., the 95th percentile of daily precipitation), but significantly overestimated
extreme summer precipitation (Figure 53). MAR-BM] largely overestimated extreme precipitation
compared to MAR-ERA. As for the mean annual precipitation, MAR-NTK-NOR underestimated
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extreme precipitation over low and medium Belgium (and over the whole domain in summer). All the
other experiments exhibited insignificant anomalies.
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Figure 3. Same as Figure 2, but for the 95th percentile of daily precipitation in mm/day.

In a warmer climate, all experiments presented either no significant changes or changes lower
than the anomalies over the present period, except MAR-BM], which still projected positive significant
changes, but significantly overestimated extreme precipitation over the present period. However, as the
expected changes in the future were lower than or of the same order as the model anomalies over the
present period, no robust conclusions can be drawn about the value of these changes. Finally, a similar
analysis can be made for summer in Figure S3.

3.3. Convective Precipitation

Compared to MAR-ERA, MAR-MIR and MAR-NOR overestimated by ~20% the ratio between
convective precipitation and total precipitation over 1987-2017, except MAR-NTK, which showed
negative or insignificant anomalies (Figure 4).

In a warmer climate, MAR-BM]J tended to increase significantly the ratio of convective precipitation,
but as for the mean annual precipitation and extreme precipitation, MAR-BM] stood out from the pack
and must be discussed separately. The other experiments project slight significant positive changes
(+5%/year—+10%/year), but lower than or of the same order as the anomalies over the present climate.

In summer (Figure S4), all GCM forced experiments overestimated by 10-40% the ratio between
convective precipitation and total precipitation compared to MAR-ERA over the present period,
except for MAR-NTK, which simulated no significant anomalies. MAR-STD-NOR and MAR-NTK-NOR
projected a significant increase of this ratio over high Belgium, but only MAR-NTK-NOR was larger
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than the present anomalies. The other MAR experiments did not suggest any significant changes for
summer in a warmer climate, except MAR-BM] for a reason discussed later.
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Figure 4. Same as Figure 2, but for the ratio between convective precipitation and total precipitation in
%]year.

3.4. Dry Days

Figure 5 presents the annual mean number of dry days (i.e., a day with a precipitation amount
smaller than 0.1 mm/day) by year. Except MAR-BMJ-NOR and MAR-NTK-NOR, which significantly
overestimated the mean number of dry days by year for 1987-2017 over the northern half part of
Belgium, all other GCM forced simulations underestimated it.

In a warmer climate, MAR-STD, MAR-MES, and MAR-KFS projected a significant increase in
the number of dry days over northwest Belgium and over the North Sea. However, these significant
increases were smaller than the anomalies over the present period. The projected changes were
statistically insignificant over the rest of the domain.

Regarding summer, Figure S5 indicates that the summer mean number of dry days tended to be
significantly underestimated for 1987-2017 whatever the experiment, except MAR-NTK, for which
anomalies were insignificant. Nevertheless, there was no significant change in a warmer climate,
except for MAR-NTK, which projected a significant increase over the whole domain, and for MAR-MES,
MAR-STD-NOR, and MAR-KFS-NOR, which showed a significant increase in the number of dry days
near and above the North Sea.
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Figure 5. Same as Figure 2, but for the annual mean number of dry days (days without precipitation)
in days/year.

4. Discussion

Three main statements can be drawn from our results.

Firstly, MAR forced by MIROC5 and NorESM1-M overestimated the annual mean precipitation
amount compared to MAR-ERA over 1987-2017, as well as the extreme precipitation amount. In a
warmer climate, MAR-MIR and MAR-NOR projected slight precipitation increases, but they were
weaker than the anomalies compared to MAR-ERA over 1987-2017. Figure 6 sustains these results
by showing that future differences were clearly lesser (no higher than 150 mm/year) than present
anomalies (comprised between —300 and 400 mm/year), except for MAR-BM]J, which had as large
(and abnormal) present anomalies as future differences. MAR-GCM-BM]J was distinctly out of the
range of the other simulations.

The work in [47,48] showed that GCM uncertainties of precipitation over the present climate were
also higher than projected changes in warmer climates and especially for Belgium and neighboring
regions. In addition, the GCMs used by [48] did not agree on an increase or a decrease in precipitation
in the area of Belgium, which might be related to the fact that Belgium is situated between the northern
part of Europe where most of the models projected an increase of precipitation and the southern part
of Europe where precipitation was projected to decrease. Moreover, an ensemble of several RCMs
forced by different GCMs projected an annual precipitation increase of 5-15% over Belgium with the
RCP8.5 scenario and a heavy summer precipitation increase of ~10% [6], which is in the same order as
our results.

To corroborate our results and to make sure that our MAR simulations were consistent with their
forcing GCM forcing-based fields, changes in annual precipitation from MIROC5 and NorESM1-M
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are compared to our MAR results in Figure 7. As for the MAR simulations, the forcing GCM did not
project a significant increase of precipitation.
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Figure 6. Mean present anomalies (Histo-ERA-Interim) of annual precipitation (mm/year) versus
future differences (RCP8.5-Histo) of annual precipitation (mm/year) for each pixel of the Belgian
domain of MAR forced by the GCMs MIROCS5 (left) and NorESM1-M (right). Each color represents the
MAR version depending on the convection scheme used. “Histo” and “ERA-Interim” correspond to
the present-day simulation period (1987-2017) when MAR is forced by both GCMs based Historical
scenarios or by the ERA-Interim reanalysis.
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Figure 7. Annual precipitation anomalies (in mm/year) between the future period 2070-2100 and the
present period 1987-2017 from MIROCS5 (left) and NorESM1-M (right). Cross-hatched pixels indicate
that values are statistically insignificant.

Secondly, as MAR-MIR and MAR-NOR mostly projected an increase of the mean annual number
of dry days, as well as extreme precipitation, this suggests that precipitation is projected to become
less frequent, but more intense in our simulations. However, this conclusion is nuanced because
the projected future changes were smaller than present day anomalies. The authors of [6,49,50]
worked with different sets of GCMs and RCMs over Western Europe and concluded that for the
90th percentile, intensities and heavy precipitation tended to increase over 2070-2100, but again
the statistical significance was debatable. A similar conclusion can be drawn for summer when no
significant change was detectable in a warmer climate.
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Furthermore, even if most of our results presented insignificant changes, they were consistent
with an increase in extreme precipitation, convective precipitation, and dry days in the northern part of
Belgium in a warmer climate. This type of change is in line with other studies. For instance, the work
in [51] reported a future increase (decrease) in extreme precipitation over the north (south) of Belgium
simulated by a Convective Permitting Scale (CPS) model, while non-CPS models did not corroborate
this geographical pattern. The work in [12,52] also indicated an increase in extreme precipitation
(and in dry days for [52]) over Belgian in a warmer climate.

Thirdly, MAR experiments using different convective schemes gave different changes when
forced by GCMs in contrast to [19], who showed that MAR forced by ERA with the same different
convective schemes gave similar trends in sign and in order of value over 1987-2017. In our study,
MAR-BM]J and to a lesser extent MAR-NTK reacted differently compared to the other MAR experiments.
The MAR-BM]J experiments significantly overestimated precipitation quantities, while MAR-NTK
experiments were the only ones showing negative anomalies over 1987-2017. Temperature (Figure 8)
and humidity (Figure S6) profiles can be useful to explain these discrepancies between both of these
convective schemes.
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Figure 8. Anomalies of annual mean vertical temperature profiles (in °C) between all MAR experiments
and the MAR-STD experiment between the surface and 7000 m above the surface. The vertical profiles
are here averaged over Belgium.

The vertical temperature profiles of the MAR-BM] experiments (Figure 8) showed atmospheric
temperatures systematically lower below 5000 m compared to MAR-STD (and also to MAR-MES and
MAR-KFS). As the temperature profiles of MAR-BM] had the same behavior of the MAR without a
convective scheme, this probably means that the BMJ convective scheme did not correctly play its
role: the temperature profile always remained unstable without enough reheating coming from the
convective scheme. Moreover, the specific humidity profiles showed wetter conditions for MAR-BM]
(and MAR without convective scheme) than for MAR-STD (as shown in Figure S6).

These two elements explain the overestimation of precipitation in the MAR-BM] experiments,
especially since MAR-BM]J-MIR and MAR-BMJ-NOR temperature profiles were consequently lower
than MAR-BMJ-ERA and led thus to more precipitation. It should also be noted that BM] was the only
adjustment convective scheme type depending on some reference profiles, which were probably not
adapted to GCM forcing conditions.
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The MAR-NTK experiments reacted differently: In Figure 8, MAR-NTK was colder than MAR-STD
below 1000 m and also between 1800 m (2200 m for MAR-ERA) and 4000 m, while they were warmer
between 1000 m and 1800 m and also above 4000 m. This corresponds to a stable air temperature
profile in the lower layers. The NTK convective scheme seemed to work only around 1600-2000 m,
where it heated the layer and removed humidity (see Figure 56), but precipitation evaporated before
reaching the surface, leading to a smaller precipitation amount than the other MAR experiments.

The two other convective schemes, MAR-MES and MAR-KFS, were clearly warmer below 4000 m
than MAR-STD, but the resulting precipitation and convective precipitation were in the same order as
MAR-STD, as shown in Figures 1-3.

In a warmer climate, the mean annual vertical temperature profiles of MAR-MIR and MAR-NOR
showed a stronger increase of temperature in the upper levels (+6 °C) than in the lower levels (+4°) over
Belgium (Figure 9A,C). This result is consistent with [3], who indicated a stronger warming of zonal
average atmospheric temperature around 400 hPa than around 1000 hPa at 50°N. This should imply
a general stabilization of the troposphere, and thus, this mainly leads to a decrease in atmospheric
conditions favorable to convective precipitation.

MIROC5 (Future—Present) NorESM1—M (Future—PresentP
| | | | | I Y ) Y A I | | | | | | | S ) I |
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B C ‘ D
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Figure 9. Projected evolution (2070-2100) of the mean annual temperature profiles for MIROC5 (A) and
NorESM1-M (C) in °C and of the specific humidity profile for MIROC5 (B) and NorESM1-M (D) in
g/kg with regard to the present climate (1987-2017) and averaged over the study domain.
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In addition, Figure 9B,D show that the changes in specific humidity in a warmer climate were
less important for MAR-NTK even if the future changes in temperature of this experiment were of
the same order of magnitude as the other experiments. A warmer temperature profile and a dryer
humidity profile of MAR-NTK confirmed the explanation of the underestimation of the precipitation
amount for this experiment with respect to the other schemes.

5. Conclusions

This study comes within the scope of a previous work, where [19] assessed the sensitivity of MAR
forced with the ERA-Interim reanalysis to different convective schemes and determined precipitation
trends over 1987-2017 in Belgium. The aim of the current study was to determine whether trends
in the evolution of precipitation and more specifically convective precipitation were projected in a
warmer climate (RCP8.5 scenario) over Belgium. For this purpose, MARv3.9. was forced by two GCMs
(NorESM1-M and MIROCS5 from CMIP5) with the same five convective schemes as in the previous
study (namely: the two Bechtold schemes, the Betts—Miller—Janji¢ scheme, the Kain—Fritsch scheme
and the modified Tiedtke scheme) in order to assess the changes in future precipitation quantities and
associated uncertainties. The main findings can be summarized as follows:

e  Atboth the annual and summer time scales, MAR forced by the GCMs MIROC5 and NorESM1-M
overestimated mean precipitation, as well as extreme precipitation amounts compared to
MAR-ERA over 1987-2017. In a warmer climate, MAR-MIR and MAR-NOR projected slightly
positive precipitation changes, but they were weaker than the anomalies over the current climate
with respect to MAR-ERA. This result was corroborated by the precipitation changes projected by
the forcing GCMs without MAR downscaling.

e MAR-MIR and MAR-NOR seemed to produce less frequent, but more intense precipitation over
the present and future periods and thus reinforced a bit the convective nature of precipitation.
During summer, over the present period, the frequency of convective precipitation seemed
to increase in the MAR experiments. Nevertheless, the relevance of the increase remained
questionable as the projected changes were smaller than the present day anomalies.

e MAR-BMJ and MAR-NTK experiments diverged from the other experiments, either through
projecting opposed changes or by showing a significant overestimation of precipitation over the
current climate. We assume that these results were due to these convection schemes, because the
latter did not react properly or they were unsuitable for this kind of simulation.

e All MAR experiments seemed to indicate a stronger warming in the upper troposphere than in
the lower atmospheric layers. This could indicate a generalized stabilization of the air column
and therefore a weakening of the instability, leading to atmospheric conditions less favorable
to convection.

At this stage, the general conclusion is that MAR forced by MIROCS5 and NorESM1-M did not
indicate a significant change, neither in annual/summer precipitation, nor in extreme precipitation,
nor in the ratio of convective precipitation. The next step is now to use the new future scenarios from
CMIP6 to assess the relevance of these MAR-based projected changes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/6/321/s1:
Figure S1: ERA-Interim: Mean summer (JJA) precipitation (in mm/summer) over 1987-2017 simulated by MAR
forced by ERA-Interim for each experiment. PRESENT: Anomalies (in mm/summer) between the mean summer
precipitation over 1987-2017 simulated by MAR forced by MIROC5 and NorESM1-M compared to MAR-ERA for
each convective scheme. FUTURE: Future changes (in mm/summer) between the mean summer precipitation
over 2070-2100 simulated by MAR forced by MIROC5 and by NorESM1-M with RCP8.5 scenario compared to
MAR forced by MIROC5 and by NorESM1-M over 1987-2017 for each convective scheme. Cross-hatched pixels
indicate that values are statistically insignificant.; Figure S2: Same as Figure S1, but for the standard deviation of
daily precipitation in mm/day; Figure S3: Same as Figure S1, but for the 95th percentile of daily precipitation in
mm/day.; Figure S4: Same as Figure S1, but for the ratio between convective precipitation and total precipitation
in %/summer.; Figure S5: Same as Figure S1, but for the summer mean of dry days (days with none precipitation)
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in days/summer.; Figure S6: Anomalies of annual mean specific humidity profiles (in g/kg) between all MAR
experiments and the MAR-STD experiment between the surface and a 7000-m height.
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