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Abstract: The response of Mediterranean small catchments hydrology to climate change is still
relatively unexplored. Regional Climate Models (RCMs) are an established tool for evaluating the
expected climate change impact on hydrology. Due to the relatively low resolution and systematic
errors, RCM outputs are routinely and statistically post-processed before being used in impact studies.
Nevertheless, these techniques can impact the original simulated trends and then impact model
results. In this work, we characterize future changes of a small Apennines (Central Italy) catchment
hydrology, according to two radiative forcing scenarios (Representative Concentration Pathways,
RCPs, 4.5 and 8.5). We also investigate the impact of a widely used bias correction technique, the
empirical Quantile Mapping (QM) on the original Climate Change Signal (CCS), and the subsequent
alteration of the original Hydrological Change Signal (HCS). Original and bias-corrected simulations
of five RCMs from Euro-CORDEX are used to drive the CETEMPS hydrological model CHyM. HCS
is assessed by using monthly mean discharge and a hydrological-stress index. HCS shows a large
spatial and seasonal variability where the summer results are affected by the largest decrease of mean
discharge (down to −50%). QM produces a small alteration of the original CCS, which generates a
generally wetter HCS, especially during the spring season.

Keywords: regional climate models; statistical bias correction; hydrological simulations;
Mediterranean basin hydrological scenario; hydrological stress index; bias correction impact on
climate change signal; climate simulations’ bias correction impact on hydrological change signal

1. Introduction

Projecting the response of the hydrological cycle to climate change is essential for managing
freshwater resources in future decades. An accurate representation of hydrological regime changes,
according to different greenhouse gases (GHGs) concentration scenarios, is one of the most challenging
issues in climate change science. While representing a second-order effect of a temperature increase,
precipitation change projections are affected by higher uncertainty. There is a particular concern
on how different precipitation statistics (i.e., mean and extremes) will scale with different levels of
global warming [1,2]. In spite of these uncertainties, a large consensus prevails on expecting an
acceleration of the hydrological cycle in warmer climate conditions [3–9]. Another level of complexity
is added when projected changes, to be efficiently informative, have to be scaled at the regional scale

Atmosphere 2019, 10, 799; doi:10.3390/atmos10120799 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0002-8838-1391
https://orcid.org/0000-0003-1630-2698
https://orcid.org/0000-0002-4449-1513
http://dx.doi.org/10.3390/atmos10120799
http://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/2073-4433/10/12/799?type=check_update&version=2


Atmosphere 2019, 10, 799 2 of 25

and tailored in a function of peculiar regional features. This represents a particularly urgent need
for regions, which are responding to climate change faster than the world average such as for the
Mediterranean basin [10–12]. While the response of large basin hydrology to climate change has
been tackled by several studies [13–19], the response of small catchments hydrology is still relatively
unexplored. Furthermore, these latter systems are implicitly more responsive to precipitation regime
alterations and, consequently, highly vulnerable to climate extremes (both droughts and floods). Such
a reduced climate change resilience requires accurate climate information, which is aimed at enabling
stakeholders to limit current and future climate effects. Regional Climate Model (RCM) simulations
are established tools for climate impact studies [20–22]. However, due to imperfections on physical
processes formulation and parameterizations, coupled with the unpredictability of future natural
variability, RCMs are still affected by systematic errors that can result in unrealistic results of the
impact models’ results [23–25]. In addition, when future climate information is sought at a regional
scale to a local scale, climate simulations are affected by the representativeness error, which does not
arise from incorrect physical formulation, but rather from the simulated and observed fields’ spatial
scale mismatch [26]. Generally, the combination of these errors leads to substantial differences in
climate simulations and observations of statistical properties. For these reasons, in recent years, climate
simulations’ bias adjustment has become a routine procedure to properly connect climate simulations
to impact studies [24]. However, even though the post-processing techniques produce simulations’
statistical properties close to the observed climate, they can potentially modify original simulations
of the Climate Change Signal (CCS, i.e., difference/ratio between climate statistics of a future and a
historical temporal segment). The modification of the original CCS implicitly alters the results of
impact models [27–35]. The plausibility of letting bias correction alter the original simulated CCS
is currently strongly debated. The aspect conferring plausibility to CCS alteration, produced by a
statistical post-processing phase, is the assumption of temporal stationary of climate model biases.
This assumption is not universally recognized [33,36]. In the case of temporal-dependency of model
biases, a CCS alteration should be avoided because of mathematical artifacts [33]. In recent years,
this assumption has been investigated through a pseudo-reality experiment [37,38], which allowed
for different interpretations [33,34]. On the other hand, several studies [23,24,31,34] point out that
biased climate model simulations produce biased CCS and they found a dependence between biases
and the magnitude of the simulated values (i.e., higher precipitation affected by larger bias) such as
an intensity-dependence of the model biases. Intensity-dependence model biases refer to the fact
that the higher the simulated value is, the higher the bias magnitude affecting such a value would
be. In this context, the summer season values and related CCS could be more largely affected by
biases [23]. According to this perspective, the impact of bias correction on the original CCS would be
beneficial as derived by the original simulations’ bias removal. In any case, accepting the need for some
climate model outputs statistical adjustment, its formulation and the potential artifacts introduced
must be carefully evaluated in the entire modeling chain (climate model and impact model simulations).
It is essential to avoid a “blind” usage of such techniques over the wide spectrum of climate impact
applications [39,40]. In this regard, this study provides empirical evidence on the impact of using
original and bias corrected climate simulations on defining basin-scale hydrological future changes,
under two different emission scenarios. Specifically, we will discuss the alteration of the CCS and
its propagation in the Hydrological Change Signal (HCS) through the use of an ensemble of five
RCMs, according to the Representative Concentration Pathways 4.5 and 8.5 [41–43]. Different works
attempt to analyze the impact of CCS on the flood hazard in Europe [44–48], where the importance of
investigating the potential effect of a warmer atmosphere on hydrological extremes at regional scales is
highlighted. To this aim, original and bias-corrected climate simulations will be used as forcing fields
for the CETEMPS Hydrological Model (CHyM) operationally used for hydrological risk forecast over
Italy. Similar to the CCS, the HCS will be derived by comparing future and reference periods among
hydrological simulations. This comparison refers to both mean and extreme discharge flows. The latter
will be derived by means of the computation of a hydrological stress conditions index. Regarding
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what concerns the statistical bias correction, it consists of a widely employed technique in climate
services such as empirical Quantile Mapping (QM). Its central idea is to establish a correction function
(CF) that maps a simulated climate distribution on a corresponding observation-based reference
distribution during a calibration period and then it applies the CF to the entire simulation. In this
study, we use a QM application, which implicitly couples bias correction and downscaling properties.
In fact, we derived the QM correction functions considering observed products at a station scale. This
application implicitly takes into account systematic biases and the representativeness error arising from
the spatial-scale gap between simulations and observations such as in References [26,34,35,49–51]. We
take advantage of five high-resolution (~12 km) climate simulations provided by the Euro-CORDEX
initiative [52]. Climate simulations are extracted from the nearest grid nodes to reference observational
sites within the Pescara-Aterno river basin (Central Italy) that represents the study area. Original and
bias corrected climate simulations, according to the two emission scenarios, have been, in turn, used as
forcing fields for the hydrological simulations of a reference and future period. Each acronym found
throughout the manuscript are defined and reported in the Appendix A.

2. Study Area, Materials, Methods, and Analyses

Data collection was carried out in the eastward section of the Aterno-Pescara river catchment
area (Figure 1), which is the largest and most inhabited watershed of the Abruzzo Region located in
Central Italy. It comes with the longest river (about 145 km), which flows into the Adriatic Sea. The
Aterno river originates from the northern part of the Abruzzo Region in the Laga Mountains area,
on the western side of the Gran Sasso d’Italia major peak. Its course is parallel to the Apennines’
ridge for about 100 km in the south-east direction, before turning northeastward and becoming the
“Aterno-Pescara” river. The Aterno part of the watershed is characterized by a torrential regime with
significant infiltration. The substrate is mainly composed of calcareous and marly-calcareous terrain.
The Pescara branch is connected to other tributaries and, from this point, the shallow runoff increases
and the response to the precipitation becomes more rapid, for the presence of more frequent clayish
sediments. The maximum discharge, on average, estimated at S. Teresa station (6 km upstream of
the river outlet) is 594.08 m3/s, while the minimum discharge average is 18.40 m2/s (Aterno-Pescara
Protection Program, Legislative Decree no. 152/2006).
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2.1. Observed Data Sets

This study considers two climatic variables: 3-hourly mean temperature and 3-hourly cumulative
precipitation. For each variable, observed and simulated time series refer to 17 reference sites chosen
for properly taking into account the main climate and morphological sectors of the basin (coastal, hill,
and mountain). The observed time series, which refer to the 2002-2016 period, are provided by the
Abruzzo Regional Hydrological Service (Table 1).

Table 1. Reference sites with weather stations providing data for the 2002–2016 period. Elevation data
refer to both observational sites and the relative nearest grid node of the RCA4 RCM.

Station Name Longitude
(dec.)

Latitude
(dec.)

Elevation
(m a.s.l.)

Elevation
RCA4 Nearest

Grid Node
(m a.s.l.)

Giulianova 13.9572 42.7513 68 171
Pescara 14.2205 42.4600 29 145
S. Teresa 14.1625 42.4213 12 114

Chieti 14.1672 42.3488 293 195
S. Stefano 13.6002 42.6505 820 868
Teramo 13.6772 42.6138 630 359
Arsita 13.7925 42.4805 470 988

Catignano 13.9455 42.3461 330 569
Caramanico 14.0191 42.1008 820 1126

Passo Lanciano 14.1091 42.1947 1306 786
Montereale 13.2444 42.5222 910 1120
Campotosto 13.4063 42.5361 1340 1300

Assergi 13.5105 42.4186 991 1410
L’Aquila 13.4316 42.3391 590 956

Barisciano 13.5830 42.3250 960 1160
Goriano Sicoli 13.7927 42.0933 969 760

Sulmona 13.9513 42.0580 370 843

The reasons for choosing station-scale observed data instead of widely used gridded observational
data sets in climate services, e.g., ECAD-EOBS [53], are the following.

First, the latter results from an interpolation process. Its reliability relies on the density of
observational stations, which is very poor in the study area [53–55].

Second, when considering high temporal (i.e., sub-daily) and spatial simulations (i.e., 12 km),
gridded observational products offer daily temporal resolution and spatial resolution ~25 km (at the
time this work is being written) in the studied area. This would involve an “upscaling” of the original
simulations [56].

However, it must be considered that point-scale observations present limitations due to the
small size of the time series (i.e., 15 years) available, which limits the calibration process of the bias
correction functions.

2.2. Simulations

The simulated climate variables are extracted at the reference sites from the nearest grid
nodes (Figure 2). Climate simulations are provided by five RCM runs in the context of the
Euro-CORDEX initiative.

As can be seen in Table 2, we consider simulations from the same RCM (RCA4), driven by five
different Global Climate Models (GCMs). These simulations are chosen because they are the only
ones archived at a 3-h temporal frequency as required to force the ChyM hydrological runs. For the
simulations, we considered two 15-year segments, a future period (2081–2095), and a reference one
(2002–2016). This choice of the reference period was imposed by the 3-hourly observed time series
availability (2002–2016). In order to define the QM correction functions simulated and the observed
reference (or calibration), the analyzed period must be the same.
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Table 2. RCMs used in this study. All the RCMs share the same horizontal resolution of ~12.5 km and
are forced by the RCPs 4.5 and 8.5.

RCM Driving GCM
(RCP 4.5 | RCP 8.5)

SMHI-RCA4 CERFACS-CNRM-CM5
ICHEC-EC-EARTH
IPSL-CM5A-MR
MOHC-HadGEM2-ES
MPI-ESM-LR

2.3. The Hydrological Model Cetemps Hydrological Model (CHyM)

The Cetemps HYdrological Model (CHyM) is a distributed, grid-based model developed at the
Centre of Excellence CETEMPS since 2002 for flood events’ early warning [57,58]. Nevertheless, the
CHyM model has also been successfully used within the ACQWA project (www.acqwa.ch) to assess
the climatic impact over the upper Po basin hydrological regime [16].

The model simulates the standard hydrological processes, such as surface runoff, infiltration,
evapotranspiration, percolation, melting, and return flow. A comprehensive description of the physical
processes, governing equations, and CHyM calculation schemes and parameterizations can be found
in Reference [59]. In particular, evapotranspiration is computed according to Reference [60], where
potential evapotranspiration is considered as a function of the evapotranspiration in soil saturation
conditions. The actual evapotranspiration is a fraction of potential evapotranspiration and it is
calculated as a linear function of ground relative humidity.

One of the main features of the model is the use of the Cellular Automata (CA) theory-based
algorithms [61] to extract the drainage network starting from an arbitrary Digital Elevation Model
(DEM) resolution for the spatialization of the rainfall and temperature fields by assimilating different
data sources. The first algorithm defines the flow direction at every point on the DEM where singular
points are present (pits or flat areas). A second algorithm is a CA-based numerical technique for
assimilating different data sources of rainfall to rebuild the rainfall field on a grid. CA algorithms
have been implemented and tested on a large number of different domains [58,59,62]. Results show

www.acqwa.ch
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a coherent reproduction of the meteorological data in gridded maps, starting from a sparse data set
without any geometrical artifacts that often produce unrealistic rain gradients [59]. Extreme discharge
values are usually defined through statistical-based thresholds, identified by means of percentiles and
return periods. In order to guarantee reliable hydrological data, those methods require consistent
historical discharge time series as well as quality ex-post control and application of filtering techniques.

For climatological applications, the CHyM model has been calibrated in the upper Po basin [16],
which represents the Italian catchment where the longest historical discharge timeseries is available, as
well as information about uncertainties associated with the application of the rating curve method [63].
As assessed by the same authors, the Po river dynamics can be considered representative of the
conditions of many alluvial rivers in Europe and the same calibrated parameters have been used
to set up hydrological simulations in this work. As for flood event detection, we introduced a
discharge-based hydrological stress index, since the use of hydrological indices is very common in
operational hydrology activities [64–66]. The Aterno-Pescara catchment is well instrumented with
hydrometers, but rating curves, as well as river sections, are not available after 2005. For this reason,
we decided to identify flood events as we do in operational applications, by means of a hydrological
stress index, which has been calibrated over the Abruzzo Region in collaboration with the Civil
Protection Functional Centre, in the framework of a specific agreement with CETEMPS (officially
appointed as Civil Protection competence centre). Hydrological stress index thresholds were calibrated
and validated upon hydrometric level thresholds, and used to predict flood events, as described in
References [67,68].

The BDD (Best Discharge-Based Drainage) index is calculated for each grid-point of the drainage
network, according to the following formula.

BDD(t)i,j =
Q(t)i,j

R2
i,j

(1)

where Q and R represents the natural discharge and the hydraulic radius, respectively, associated with
the grid point i-j at each hourly time step t. Index dimensions are expressed as mm/h. As for many
other models (for a general reference, see Reference [69]), the hydraulic radius can be approximated as
a linear function of the drained area.

Two warning BDD thresholds (orange and red thresholds) are then defined through a
calibration/validation activity, carried out in collaboration with the Abruzzo Region Functional
Centre (CFA), in the framework of the official agreement that ratifies CETEMPS as the official Centre of
Competence for the regional Civil Protection. The BDD index is operationally used for the daily flood
forecast over Italy. Its warning-level thresholds (reported in color-codes maps) are assessed in order to
replicate the hydrometric level-based warningstates [70].

Since the BDD index calculation is given by the relationship between the natural discharge and
the river geometry, which is represented by the hydrometric radius, the defined thresholds are found
to be applicable for the whole drainage network.

2.4. Methods and Statistical Bias Correction of the Climate Simulations

In this study, we applied an empirical QM configuration, which is a statistical bias correction
technique widely employed in climate services [33]. This method derives a quantile-specific correction
function (CF) derived from the difference between the observed and simulated inverse Empirical
Cumulative Distribution Functions (ecdfs, or quantile functions) during the calibration period.
Considering the point-scale observed product, this QM configuration implicitly combines bias correction
and downscaling properties.

The CF is determined for a set of physical values corresponding to discrete quantiles (1, 2, 3,
. . . , 99) and then interpolated to adjust all the physical values (not only those corresponding to the
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quantiles where the function has been derived). In this case, it is used in a 3-hourly configuration of a
purely empirical approach as in References [27,35,49,50,71–73], where a daily-based QM configuration
was used.

Three main modifications to the standard QM configuration are applied in this study.
(i) CF Moving window. CF was built on a 91-day sliding time window centered on each day of

the year. Given the 3-hourly QM configuration, for each time window iteration, an ecdf is built on a
number of values corresponding to the size of the window (i.e., 91 days) times the number of the time
steps in one day (i.e., 8), namely on 728 values. This latter value is then multiplied for the number of
years constituting the period subjected to the correction (i.e., 728 × 15 = 10,920). The time window
was set wide enough to adequately take into account weather patterns and extremes characterizing
multi-month seasons [32]. In this way, the CF specifically adjusts for each 3-hourly time step of years
within the period subjected to the statistical adjustment. The moving window prevents correction
factor jumps that may occur when each month is statistically adjusted, according to its own CF.

Specific quantile-based correction factors are then applied to the physical values of the simulated
time series under correction while obtaining a new statistically adjusted time series.

(ii) CF extrapolation is applied for the correction of a future period. The CF was constantly
extrapolated beyond the highest and the lowest quantiles of the calibration period.

(iii) Preliminary adjustment of the simulation dry-day frequency, given the well-known
overestimation of the very low precipitation events frequency produced by original RCMs [74,75],
a correction is preliminarily performed on the dry 3-hourly time step for precipitation such as in
Reference [35]. This consists of deriving the threshold beneath the simulated precipitation, which is
considered equal to zero.

In this way, the CFs have been derived and applied only to the rainy 3-hourly time steps.
The 3-hourly rainfall and temperature field, simulated by each model set-up listed in Table 2,

have been used as input to carry out the CHyM hydrological simulations for both future and reference
periods. Each 15-years hydrological simulation is continuous and performed at an hourly time-step
where the RCM’s output temporal resolution is set to 3 h. The hourly temperature has been obtained
when considering the temperature value constant for the three consecutive hours. The cumulated 3-h
precipitation amount has been divided by three as well.

2.5. Analyses

In this study, the analyses are applied to climate and hydrological fields as follows.
(i) Assessment of the CHyM driving fields, in terms of capability of the original and bias-corrected

climate simulations (precipitation and temperature) to reproduce the observed station-scale statistical
distributions during the reference period. In this context, biases are reported as the difference (◦C)
between simulation and observation for the temperature and, in relative terms, for the precipitation
(i.e., (simulated statistics/observed statistics)-1). The impact of QM on the original temperature and
precipitation CCS will be discussed as well. The CCS is derived as the difference between the future
(2081–2095) and the reference (2002–2016) period statistics for the temperature, and, in terms of the
relative ratio ((future statistics/reference statistics)-1), for the precipitation.

(ii) Assessment of the monthly mean discharge flow at Pescara river mouth simulated by CHyM
forced by original and bias-corrected simulations during the reference period (2002–2016). In this
context, an observation-driven CHyM simulation will be considered as a reference product. The impact
of the bias correction on the hydrological scenarios will be investigated in terms of discharge variations
(i.e., differences) between values characterizing a future period (2081–2095) and the reference period
(2002–2016). This consists of the comparison of the HCS obtained with CHyM forced by original and
bias-corrected climate simulations. The analyses will be focused on the point-scale HCS, considering
the monthly mean discharge at the Pescara river mouth grid node. Furthermore, the spatial distribution
of the mean discharge change will be presented over the whole Aterno-Pescara basin.
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Lastly, expected changes regarding hydrological-stress conditions will be assessed. These latter
conditions are identified by means of a dedicate index known as the Best Discharge-based Drainage
(BDD, mm/h), which is aimed at detecting catchment segments that are most likely to be stressed by
critical swelling discharge. Changes of the BDD index are represented by the number of events (i.e.,
number of hours) on which the BDD index value exceeds a predefined empirical threshold, specifically
calibrated for the Aterno-Pescara basin.

3. Results and Discussions

3.1. Original and Bias Corrected Climate Simulations, Calibration Period, and Climate Change Signal

3.1.1. Calibration Period

In this section, we will start providing an analysis of the original and bias-corrected climate
simulation Probability Density Functions (PDFs) compared to the observed PDFs over the reference
(or calibration) period. Results are shown for both the variables driving the hydrological simulations
such as temperature and precipitation. In this case, the attention should not be paid to the improvement
provided by the QM, which by construction leads simulated PDFs much closer to the observed PDFs
but rather to the original simulations’ capability of reproducing station-scale climatology. In this regard,
in Figure 3, the original (a,c) and bias corrected (b,d) annual precipitation (a,b) and temperature (c,d)
simulations for a representative RCM (CM5-RCA4) over the seventeen reference sites are reported.
Biases over three statistics corresponding to wet-day frequency (WDF), 50th (ρ50), and 99th (ρ99)
percentiles for precipitation and 5th (ρ5), 50th (ρ50), and 95th (ρ95) percentiles for temperature are
shown in the tables (right of the plots) for all the reference sites. In the bottom line of the tables, the
site-averaged biases are reported. From this, it can be observed that original simulations tend to
underestimate severe to extreme precipitation, represented by the 99th percentile and consistently
overestimate the frequency of wet days (in this case, defined as days characterized by at least one
three-hourly time step with precipitation ≥ 0.2 mm). This bias pattern can be observed for the
other RCMs (supplementary materials, Figure S1a). For the temperature, a general and consistent
underestimation of the observed temperature can be seen. For the reference RCM considered, similarly
to the other RCMs (Figure S1b), a station-averaged biases of 2–3 ◦C can be observed. These biases
focus on the central (median) and left tail (low percentiles) of the distribution (representing a cold
temperature). However, considering individual stations (e.g., n. 17, Sulmona), negative biases
regarding the 5th percentile can reach 8–9 ◦C. This bias magnitude suggests that special attention
should be paid toward evaluating the plausibility of using original RCM outputs as forcing fields for
regional-to-local scale climate impact modeling exercises.
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Figure 3. Original (a,c) and bias corrected (b,d) annual precipitation (a,b) and temperature (c,d) statistical
distributions (PDFs) over the 17 reference sites for the calibration (or reference) period 2002-2016.
On the tables at the right of the figures, we report biases over three statistics: wet-day frequency (WDF),
median (ρ50), and the 99th percentile (ρ99) for precipitation and 5th, 50th, and 95th percentiles for the
temperature. Simulations shown belong to a representative RCM (CNRM-CM5-RCA4).
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3.1.2. Climate Change Signal (CCS)

Original precipitation (Figure 4a) shows a negative CCS affecting the WDF, with median relative
CCS ~−0.2 (i.e., −20%). The other two statistics considered (50th and 99th percentiles) show different
CCS. The CCS of the 50th percentile is small and is close to zero when considering the median of the
boxplot. A positive CCS results for the extreme events (99th percentile) with a median CCS at about
15%. On a seasonal basis, the summer season is the most affected by a larger decrease of the WDF.

CCS produced by the bias-corrected simulations shows a slight alteration with respect to the
original. Among the three statistics, the WDF and the 50th percentile CCS are generally preserved.
A small amplification of the original CCS occurred in correspondence of the 99th percentile, mainly on
an annual basis.

Results from climate simulations forced by a lower emission scenario RCP 4.5 are shown in the
supplementary materials (Figure S2a). For the original simulated precipitation, we can generally
observe a reduction of both a negative signal involving the WDF and the positive signal related to the
99th percentile on an annual basis. Concerning the impact of a bias correction, the RCP 4.5 CCS is
generally preserved after the application of QM, where a coherently smaller impact over a smaller CCS
magnitude can be observed if compared to the RCP 8.5.
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Figure 4. Original (ORG, blue box plots) and bias corrected (BC, red box plots) climate change signals
(CCSs) for precipitation (a) and temperature (b). CCSs are reported on an annual (upper panels), winter
season (central panels), and summer season (bottom panels). For each variable, CCS is defined over
three statistics. For the precipitation, wet-day frequency (WDF), 50th and 99th percentiles. For the
temperature, over 5th, 50th, and 95th percentiles. Box plots represent the statistical distribution built on
the CCSs produced by the five RCMs over the 17 reference sites (5 RCMs * 17 reference sites = 85 values).
On each box, quartiles (central mark and box edges), values within the 1.5 interquartile range from the
box edges (whiskers), and outliers (plus signs) are shown. Results are shown for the RCP 8.5.

Concerning the original temperature CCS (Figure 4b), the summer season shows a larger increase
up to 5.5 ◦C over the 95th percentile. On an annual basis (Figure 4b, central upper panel), the original
CCS of the 50th percentile reaches 4 ◦C when considering the median of the box plot. In this case, QM
produces a slight impact on the original CCS, which is generally lower than 0.5 ◦C when considering
the other statistics. However, it is noteworthy that the case of the winter season (Figure 4b, central
line panels), where the original simulations show a large CCS over the 5th percentile (median CCS
of 5.5 ◦C) characterized by a large spread between the CCS of the different RCMs and sites, up to
+10 ◦C. Such a large CCS involves the winter temperature distribution left tail, over mountain sites (not
shown). In this context, feedback triggered by the future lack of snow cover could induce very high
and differentiated CCS. QM consistently reduces the winter’s 5th percentile CCS from 5.5 to 3.5 ◦C
(considering the median of the box plot), which leads back the 5th percentile CCS close to the CCS
affecting the other two statistics (50th and 99th percentiles). According to the RCP 4.5 (supplementary
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materials, Figure S2b), CCS patterns similar to what was produced by the RCP 8.5 can be observed.
However, the magnitude of the CCS, over the different temporal basis (annual or seasonal) and over
the different statistics, is roughly halved with respect to the RCP 8.5. In addition, for this emission
scenario, the application of the QM preserves the CCS, except for the previously mentioned case of the
winter season’s 5th percentile CCS where a similar QM impact is obtained.

3.2. Hydrological Simulations, Calibration Period, and Hydrological Change Signal According to the Original
and Bias-Corrected Climate Inputs

3.2.1. Calibration Period

Figure 5 is a comprehensive picture of the hydrological experiments performed in this study. The
annual hydrological cycle reproduced by each RCM for both reference (a) and future periods (b) and
percentage changes between these two periods (c) are shown.
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affect climate simulations for the time segment 2006–2016 only, since, prior to this 
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Figure 5. Monthly mean discharge for the reference period (a) and future period (b) and the percentage
difference between the two periods (c). In the left column hydrological simulations consider RCP 4.5
and in the right column RCP 8.5. In all the panels, dashed (solid) lines indicate CHyM simulations
forced by original (bias-corrected) climate simulations. Black thick lines represent the CHyM simulation
ensembles. In the upper panels, a red tick line represents the CHyM simulation driven by the reference
period observed for the precipitation and temperature. Hydrological simulations have been extracted
at the nearest grid node to the station of S. Teresa located in correspondence of the Pescara river mouth.
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Annual cycle of the monthly mean discharge refers to series obtained at the “Pescara S. Teresa”
station grid-point, which is the nearest station to the basin outlet.

It has to be reminded that, for the reference periods (a), the two different RCPs affect climate
simulations for the time segment 2006–2016 only, since, prior to this date (i.e., 31 December 2005), both
climate simulations consider observed greenhouse gasses concentration as established in the CORDEX
initiative convention.

During the reference period, the annual discharge cycle is well reproduced by the ensemble
mean of hydrological simulations (tick black lines), according to the original climate inputs. However,
considering individual CHyM runs, physical values are consistently biased. At the same time, the
overestimation is particularly high in spring and autumn discharge amounts, which peak at 100%
(Figure 5, upper right panels).

With bias-corrected climate inputs, a relevant dampening of discharge biases is obtained. In the
previously mentioned seasons, the bias-corrected driven hydrological simulation ensemble mean
shows the biases magnitude halved with respect to the original inputs. The summer base flow is well
reproduced in all cases when we consider the RCMs ensemble means, even if some variability within
the different models is found and an erroneous discharge maximum is simulated in July by some
of them.

The bias correction produces monthly discharge values closer to the observation-driven run in all
the hydrological simulations, except for the case of IPSL-CM5A-RCA4 RCM (Figure 5a, right panel).
In this case, a larger discharge bias is produced when CHyM is driven by the bias-corrected RCM
during winter months (January, February, and March). In this regard, a larger Wet Day Frequency
(WDF) bias was found in the bias-corrected simulation (Figure S1c).

Furthermore, the overestimation of discharge by CHyM is determined by the large negative bias
obtained in the original temperature simulations. This aspect would limit the evapotranspiration
component within the hydrological simulations, which concurs with the overestimation of the mean
discharge flow.

3.2.2. Hydrological Change Signal and Mean Discharge (MD-CS)

Pescara S. Teresa grid-node percentage Mean Discharge hydrological Change Signal (MD-CS) is
shown in Figure 5c. The maximum discharge reduction is obtained in the summer where the future
discharge flow is close to zero (Figure 5b). The ensemble mean changes for the RCP 8.5 (Figure 5,
black tick lines) draw a characteristic annual pattern with a signal close to zero (However, with the
opposite sign for January and February, +20% and −20%, respectively) during winter months and
down to ~−40% in July. However, it is noteworthy that the large spread among the different CHyM
runs, which characterizes the MD-CS except for the summer season (July and August) where all the
hydrological simulations converge toward a large negative signal. A large spread characterizes the
spring months, which ranges from ~−70% to ~+70% in May. In the same period, an alteration of the
MD-CS produced by applying the bias correction can also be observed, which produces a reduction
of the original negative MD-CS (from ~−40% to −20%). In this regard, it should be underlined that
the impact of QM on the MD-CS is not directly connected to a QM impact on the precipitation CCS,
which is mainly preserved, as shown in Figure 4a. At the same time, however, it can also be observed
that the annual cycle of MD-CS is not altered by applying the QM on the driving climate simulations.
Considering the MD-CS resulting from the RCP 4.5 (Figure 5c, left panel), slightly small changes in the
monthly mean discharge can be observed. Two secondary dry peaks are found in the spring and the
autumn, in addition to the primary one in the summer. For the RCP 4.5, the QM application, as we
consider the ensemble average, does not impact the original MD-CS, except for the negative signal in
June, which is dampened by the QM application.

In the following section, we present the spatial distribution of the MD-CS over the entire
Pescara-Aterno basin.
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In Figures 6 and 7, the impact on the discharge variation in the Aterno-Pescara river network is
shown in terms of percentage differences between a future 15-year period projection and a reference
period of hydrological simulations. Warm colors in the maps represent increasing discharge from
2081 to 2095, while negative values drawn in blue-shades indicates a decrease. In the same figures,
discharge changes obtained with original (ORG) and bias-adjusted (BC) climate simulations is reported
considering the annual and seasonal basis for the RCP 8.5 and RCP 4.5 (Figures 6 and 7, respectively).
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Figure 7. Same as in Figure 6, but according to the RCP 4.5.

According to the RCP 8.5 forcing (Figure 6), on an annual basis, a general discharge decrease
is projected to range from ~−10% to ~−20%. Bias corrected climate simulation causes an overall
smoothing of such variations, since the discharge decrease is lowered, especially in the small catchments
placed in the north-western quarter of the Abruzzo region.

Deepening the analysis on a seasonal basis, discharge changes highlight a large variability among
the different seasons. A general discharge increase is simulated in the winter, over the southern
tributaries. However, a geographical pattern is emphasized, which results in increasing runoff rates over
the Aterno sub-catchments and decreasing the contribution of the Pescara sub-catchment tributaries.
This effect can be explained since the two sub-catchments’ characteristics are very different. The Aterno
basin mainly lays over inter-mountain wide valleys and receives runoff contributions from the higher
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Apennines area. Therefore, a temperature increase causes an increment on the contribution of the
snowmelt over this area, which results in a local discharge increase.

As underlined in the previous analysis, the summer season is the most affected by a consistent
negative signal, down to −50% without highlighting spatial variability. Confirming point-scale results’
bias correction introduces a slightly wetter MD-CS. It means a reduction of the negative signal and an
increase of the (rare) positive MD-CS. However, bias correction impacts differently over the different
seasons and geographical portion of the basin. Considering the main river of the entire basin (Pescara
river), a slight alteration of the original MD-CS is observed. However, in other seasons, the QM impact
can be relevant.

In the winter season, especially in the north-western portion of the basin, a consistent increase of
the original MD-CS, shifting from ~0 to ~+15–20% is found. In the summer season, the original MD-CS
~−40% is dampened to ~−30% while considering bias-corrected driven CHyM simulations. However,
as observed in the point-scale analysis shown in Figure 5, the largest alteration of the original MD-CS
is found in the spring season. Considering the original climate inputs, a significant discharge decrease
is given over the whole drainage network, but this effect is heavily smoothed by the introduction of
the bias-correction, where a change of the MD-CS sign (from negative to positive) in the north-western
part of the basin occurred.

According to the RCP 4.5 (Figure 7), we observe a relevant dampening of the negative MD-CS in
the spring and summer season observed in the RCP 8.5. Especially in the latter season, the negative
signal ~−50% is halved in RCP 4.5 driven hydrological simulations. Additionally, in the RCP 4.5, QM
produces a slightly wetter MD-CS. However, the alteration is lower than what resulted for the RCP 8.5,
which is coherent with a lower MD-CS magnitude.

Lastly, the variability of the MD-CS produced by the individual hydrological run, corresponding
to the individual driving RCM, has been investigated, as well as the related impact given by the
application of the QM. In Figure 8, the annual MD-CS for the individual CHyM runs is reported,
according to the original and bias corrected climate inputs (which consider RCP 8.5). QM produces
wetter MD-CS in the individual CHyM run in all the ensemble members. However, the QM impact
results in a different magnitude among the different CHyM runs. We can also observe how, in the small
tributaries and river segments characterized by a torrential regime, MD-CS is the most impacted by
the QM application. On the other hand, if we consider the longest river of the basin (Pescara), the
impact of the QM is sensibly lower. These results highlight the importance of considering not only the
ensemble mean MD-CS alteration, but also what QM produces on the individual ensemble member.
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3.2.3. Hydrological Stress Change Signal (HS-CS)

In this section, the analysis on the expected Hydrologic Stress conditions Change Signal (HS-CS)
is presented (Figure 9) for the RCP 8.5. Hydrological stress events are represented as the number of
hours where the BDD index exceeds an empirically-derived threshold, as described in Section 2.3. The
HS-CS is evaluated as the difference of the mean number of events characterizing the future period
and the reference period.
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Figure 9. Spatial distribution of the BDD index changes, on an annual and seasonal basis, defined as
the difference between the number of events characterizing the future period and the reference period.
Results considering the RCP 8.5 are shown. Original (ORG) and bias corrected (BC) climate inputs
are considered.

Considering the CHyM runs’ ensemble mean, a slight HS-CS can be generally observed, which
is different from the mean discharge that showed a larger change signal. A slight increase of the
projected number of events can be observed (Figure 9) on an annual basis (~3) in the Aterno river,
which results from the wetter signal observed for the mean discharge QM. Figure 9’s upper-right panel



Atmosphere 2019, 10, 799 18 of 25

shows an increased HS-CS of approximately six events for the bias-corrected driven hydrological
simulation in the future period over the two main rivers of the basin (Aterno river, in the western
portion of the basin and Pescara river, which is perpendicular to the coast line). Similar to the mean
discharge, the spring and autumn shows a large impact of the QM application on the original signal at a
seasonal level. A similar HS-CS is obtained for RCP 4.5 (supplementary material Figure S3). However,
the amplification of the HS-CS after QM application observed in the RCP 8.5 appears consistently
smoothed in the RCP4.5. This different effect of the QM in the two different RCPs has been observed in
the mean discharge change signal, mostly in the spring season.

In what follows, the HS-CS and related effects of the QM for each individual member of the
hydrological simulations’ ensemble (Figure 10) are presented. This analysis is carried out in order
to underline the inter-model variability of the hydrological stress signal, which provides a basic idea
about the uncertainty related to the signal changes.
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This aspect is particularly important, since HS-CS is mainly connected to severe-to-extreme
precipitation. The ability to simulate severe-to-extreme precipitation is a function of the physical
schemes and parameterization used by each driving climate simulation deeply affecting the
representation of such events [76]. For the HS-CS, a consistent variability among the different
driving RCMs is observed.

Considering original climate inputs, the inter-model HS-CS ranges from ~+15 events in the future
period considering the CHyM CNRM-CM5-RCA4 driven, down to a negative HS-CS ~−10 of the
CHyM MPI-ESM-LR-RCA4 driven. Considering the other driving RCMs, a slightly positive HS-CS in
the Pescara river portion was obtained, considering the ICHEC-EC-EARTH_SMHI-RCA4 (~+6 events),
as well as a low HS-CS (between 0 and +3 events) when considering the other two driving RCMs
(IPSL-CM5A-MR-RCA4 and MOHC-HadGEM2-ES-RCA4).

Concerning CHyM simulations driven by the bias-corrected climate inputs, which is similar to
the MD-CS, we obtained a slightly wetter ensemble mean signal (an increase of the positive signals)
and a reduction of the negative signals, on an annual base. We can generally observe an increase of
about three events in the HS-CS considering the bias-corrected RCM simulations.

However, focusing on the individual ensemble member, it is noteworthy that the strong
amplification is obtained in the HS-CS of the CHyM MPI-ESM-LR-RCA4 driven in the Aterno
river (north-western section of the Aterno-Pescra basin), where a HS-CS of ~+3 events is modified to
~+15 events when bias corrected climate input is considered.
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4. Conclusions

In this study, we analyzed the response of the hydrology of a small catchment in Central Italy for
the projected climate change at the end of the 21st century. Results from the original and statistically
adjusted RCM simulations have been compared, according to a widely used bias correction technique
(quantile mapping).

It follows a summary of the findings of the present study concerning both the climate and
hydrological simulation results.

1- Original simulations largely overestimate wet-day frequency and underestimate 99th percentile
precipitation (i.e., extreme precipitation) during the calibration period. The CCS, original simulations
showed a negative signal for the wet-day frequency (down to –30% in the summer) and an increase
of the 99th percentile precipitation (~15% on an annual base). Median precipitation CCS is generally
small, in the range ± 5%. In this context, QM mainly preserved the original changes over the different
statistics considered.

2- For the temperature, the original simulations showed an annual CCS from the median ~3.5–4 ◦C.
During the summer season, CCS peaked up to 6 ◦C with a small inter-model spread. The temperature
CCS is only slightly altered by QM with modifications generally in the range ± 0.5 ◦C considering the
CCS of the median. A relevant exception is represented by the 5th percentile of the winter temperature
(cold extremes), where a consistent reduction of the original CCS occurred (from 5.5 to 3.5, considering
the median of the ensemble members distribution). Similarly, for the mountain sector of the study area,
a considerable negative bias is found during the calibration period (up to –9 ◦C). These results have
been obtained with regard to the RCP 8.5. According to the RCP 4.5, the CCS is generally halved due
to the impact of the QM application.

Combining the resulting precipitation and temperature biases during the calibration period,
particular care is suggested when original simulations are used for driving climate-impact modeling
studies. In fact, climate simulation biases could implicitly (and not linearly) propagate into impact
model results.

3- Regarding the hydrological simulations, the original climate input driven CHyM consistently
overestimated (in the spring months) monthly mean discharge of the reference period, up to almost 100%
considering the CHyM ensemble mean. However, very different results were obtained considering the
different driving RCMs. As expected, QM, which consistently reduced these large biases during the
spring months.

4- Original climate inputs driven by CHyM simulations produce a consistent drying of the mean
discharge (down to −50% in the summer), according to the RCP 8.5. The winter season is the least
affected season by drier conditions, which shows a positive MD-CS in the westernmost portion of the
basin. Regarding what was observed for the temperature projected changes, the negative signal of
the summer season is roughly halved when the RCP 4.5 is considered. On the other hand, events
involving HS-CS indicated a very small change signal considering both the RCPs (+3 events in the
future period on an annual basis, according to the RCP 8.5).

5- Concerning the impact of the climate inputs’ statistical adjustment, we obtained a slightly
wetter signal (namely a decrease/increase of the negative/positive MD-CS) with bias-corrected climate
inputs. This feature resulted in the MD-CS and HS-CS produced considering the ensemble mean and
the individual CHyM runs. Spatially, the impact of the QM is found generally more remarkable in the
western mountain portion of the domain, where rivers are characterized by a torrential regime than
in the other areas. Concerning the spread among the individual CHyM runs, bias-corrected climate
inputs do not increase, nor reduce, the variability of hydrological changes obtained with original
climate inputs for both MD-CS and HS-CS.

Even if a hydrological change signal derived from bias-corrected climate inputs could be more
trustworthy from an end-user’s perspective, many side considerations should be added to the
provision of the climate/hydrological information. The variation generated on the original CCS and its
propagation in the HCS should be carefully considered.
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In this regard, in recent years, a considerable and sometimes controversial scientific debate has
risen up over the plausibility of CCS alteration produced in the post-processing phase. Specifically, for
the QM, the rationale behind modifying the original CCS relies on the assumption of climate model
biases being time independent (time-stationary biases). Several authors have demonstrated that biases
may be climate-state-dependent, which is different in a future climate [33,36,77]. In this context, QM
impact is considered the result of mathematical artifacts and should be avoided. This occurs especially
when QM is used for bias correcting and implicitly downscaling climate projections to finer-scale
observations. In this regard, different studies used a QM configuration explicitly preserving original
long-term trends of the climate variables [30,66,78]. However, in this latter case, an assumption is made
and it regards the temporal non-stationary of the model biases, which can be physically questionable.
Furthermore, to increase the complexity of the issue, raw model CCS can be, in turn, questionable when
original simulations (as we observed in our study) are affected by large biases. In principle, they may
originate implausible CCS (e.g., biases affecting the 5th percentile of the winter season temperature in
our study case).

Concerning the discussed temporal stationarity of climate model biases, relatively temporal-stable
biases have been found in several studies through pseudo-reality experiments [37,38,51,79]. Other
studies, e.g., References [23,24,31], suggest that model biases are in good approximation when
they are only dependent on the magnitude of simulated values, which indicates this feature as
intensity-dependent biases. In this regard, References [31,34] provide an analytic description of how
CCS modification produced by QM in the context of time-independent and intensity-dependent biases
is a desirable effect of removing biases rather than consisting of mathematical artifacts.

Even if not addressed in this study, another important aspect to consider is the impact
of QM on the original inter-dependencies between temperature and precipitation. There is a
possibility for degradation of inter-variables’ physical relationships caused by a bias correction
applied on an individual variable marginal distribution. Several studies address this issue by
highlighting that traditional uni-variate QM does not degrade original simulated physical inter-variable
dependencies [73,75,80]. However, a bi-variate QM configuration can positively affect hydrological
simulations’ performance in complex-orography snow-dominated domains [81].

All these plausible arguments entrap bias correction into a dilemma. However, some general and
useful considerations can be drawn regardless.

Original model simulations present substantial biases, which can non-linearly propagate into
the impact model results. At least in the calibration period, bias-corrected simulations are physically
much closer to the observed values, which allows a more representative simulation produced by the
impact model (in our case, by the CHyM hydrological model). A heavily-biased climate simulation
could potentially impact model results by generating a biased signal (both climate and hydrological).
However, bias correction application is far from representing the solution for providing reliable
information to end-users. The impact of QM must be carefully considered all over the methodological
chain, from the calibration period to the modification produced in the impact model results going
through the modification produced only on the signal of climate variables. Furthermore, where the
size of the observed products is sufficient, a cross-validation should be performed to test the capability
of the QM of improving climate and impact model simulations over an independent time segment
(i.e., not used for the calibration of the QM correction functions). However, in this regard, serious
concern about the plausibility and suitability of the current procedures used for evaluating the added
value of bias correction techniques have been recently raised [82]. In any context, statistical bias
correction approaches rely on the quality of the original RCM simulations which, in turn, represent a
dynamic downscaling of GCM, dependent on the quality of the large-scale forcing of the GCM [83].
Hence, for a reliable climate input in impact studies, it is essential that the RCMs correctly captures
a regional-scale response to the driving large-scale processes and realistically represents the relative
long-term changes.
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Climate science has the ethical task of providing information to which real actions undertaken
in the different fields impacted by climate change will correspond. Given that, climate scenarios’
communication should rely on the availability of both original and statistically adjusted climate
projections and related impacts joined with a clear description of concerns, strengths, and weakness
regarding both the products.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/12/799/s1.
Figure S1: (a,b) as in Figure 3 (a,b) but for all the other RCMs considered in this study (Table 2). (c) Precipitation
original and bias corrected simulations PDFs for the IPSL-CM5A-RCA4 RCM during the calibration period
compared to the observations. Figure S2 (a,b) as in Figure 4 (a,b) but for all the RCP 4.5. Figure S3 as for Figure 9
but according to the RCP 4.5.
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Appendix A

GCM Global Climate Model

RCM Regional Climate Model

QM Quantile Mapping

CHyM CETEMPS Hydrological Model

CCS Climate Change Signal

HCS Hydrological Change Signal

MD-CS Mean Discharge Change Signal

HS-CS Hydrological Stress Change Signal

BDD Best Discharge-based Drainage
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