

Aqueous Reactions of Sulfate Radical-Anions with Nitrophenols in Atmospheric Context

Supporting Information

Krzysztof J. Rudziński and Rafał Szmigielski

Contents

- 1. Generation of sulfate-radical-anions
 - a. Table S1. Chain mechanism of $S^{\mbox{\tiny IV}}$ autoxidation catalyzed by $Fe^{\mbox{\tiny III}}$
- 2. Experimental results for 2-NP, 3-NP, 2,4-DNP and 2,4,6-TNP
 - a. Figure S1. Concentration of oxygen recorded during autoxidation of NaHSO₃ solution in the presence of nitrophenols
 - b. Figure S2. Linear plots of reciprocal quasi-stationary rates for autoxidation of S(IV) in the presence of nitrophenols
- 3. Correction of the rate constants for diffusional limitations
 - a. Table S2. Properties of nitrophenols and sulfate radical anion
- 4. Atmospheric significance
 - a. Figure S3. The ratio of the gas-phase and the aqueous-phase conversions of 2-NP by OH and NO₃ radicals
- 5. References

1. Generation of sulfate radical-anions

Sulfate radical-anions were generation during autoxidation of sulfite anions catalyzed by Fe^{III} cations. The detailed mechanism of autoxidation was presented by Ziajka and Rudzinski [1]and is recalled here, in Table 0.

Table S1. Chain mechanism of S^{IV} autoxidation catalyzed by Fe^{III}.

Nr	Reaction	Rate constant, 25 °C	References
		M-1 s-1	
	Chain initiation		
1	$Fe^{III}OH + HSO_{3} \rightarrow Fe^{II} + SO_{3} + H_{2}O$	30	[2]
	Chain propagation		
2	$SO_3^{\bullet-} + O_2 \rightarrow SO_5^{\bullet-}$	1.5×10^{9}	[3]
3	$SO_5^{\bullet-} + HSO_3^- \rightarrow HSO_5^- + SO_3^{\bullet-}$	8.6×10 ³ , 2.5×10 ⁴	[4,5]
4	$SO_5^{\bullet-}$ + $HSO_3^- \rightarrow SO_4^{2-}$ + $SO_4^{\bullet-}$ + H^+	3.6×10 ² , 2.5×10 ⁴	[4,5]
5	$SO_4^{\bullet-}$ + $HSO_3^- \rightarrow SO_4^{2-}$ + $SO_3^{\bullet-}$ + H^+	3.1×10 ⁸ , 3.4×10 ⁸ , 2×10 ⁹	[4-6]
6	$SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow SO_4^{\bullet-} + SO_4^{\bullet-} + O_2$	5.2×10 ⁶ , 2.2×10 ⁸	[5,7,8]
	Formation of sulfate		
7	$HSO_{5^{-}} + HSO_{3^{-}} \rightarrow SO_{4^{2-}} + SO_{4^{2-}} + 2 H^{+}$	7.14×10^{6}	[9]
	Regeneration of the initiator		
8	$SO_5^{\bullet-}$ + $Fe^{II} \rightarrow SO_5^{2-}$ + Fe^{III}	4.6×10 ⁶ , 3.2×10 ⁶	[10,11]
9	$SO_5^{\bullet-}$ + $Fe^{II} \rightarrow SO_{4^{2-}}$ + Fe^{III} (+ OH^-)	3.6×10^4	[11]
10	$SO_4^{\bullet-}$ + $Fe^{II} \rightarrow SO_4^{2-}$ + Fe^{III}	3.5×10 ⁷	[2]
11	$HSO_{5^{-}} + Fe^{II} \rightarrow SO_4^{\bullet-} + Fe^{III} (OH)$	3.4×10^4	[10]
	Termination		
12	$SO_3^{\bullet-} + SO_3^{\bullet-} \rightarrow S_2O_6^{2-}$	1.6×10^{8}	[5]
13	$SO_4^{\bullet-} + SO_4^{\bullet-} \rightarrow S_2O_8^{2-}$	1.6×10 ⁸ , 4.6×10 ⁸	[7,8,12]
14	$SO_5^{\bullet-} + SO_5^{\bullet-} \rightarrow S_2O_8^{2-} + O_2$	1.3×10 ⁸ , 4.8×10 ⁷	[3,6,7]

2. Experimental results for 2-NP, 3-NP, 2,4-DNP and 2,4,6-TNP

Experimental runs with autoxidation of S(IV) in the presence of 2-nitrophenol (2-NP), 3-nitrophenol (3-NP), 2,4-dinitrophenol (2,4-DNP) and 2,4,6-trinitrophenol (2,4,6-TNP). Plots in Figure S1 show consumption of oxygen in reacting solutions.

Fig. S1. Concentration of oxygen recorded during autoxidation of NaHSO₃ solution in the presence of: (a) 2-NP; (b) 3-NP; (c) 2,4-DNP and (d) 2,4,6-TNP at various initial concentrations.

Figure S2 shows the dependence of reciprocal rates of autoxidation on the initial concentrations of 2-NP, 3-NP, 2,4-DNP and 2,4,6-TNP. All dependencies are linear. The corresponding slopes of linear relations are given on the plots. The quasi-stationary rates of autoxidation were obtained from plots in Fig. S1.

Fig. S2. Linear plots of reciprocal quasi-stationary rates for autoxidation of S(IV) in the presence of: (a) 2-NP; (b) and (d) 2,4,6-TNP at various initial concentrations.

3. Correction of the rate constants for diffusional limitations

The observed second order rate constants were corrected for diffusional limitations using a simple resistance-in-series model:

$$k_{observed}^{-1} = k_{reaction}^{-1} + k_{diffusion}^{-1}$$
(S1)

$$k_{diffusion} = 4\pi (D_A + D_B)(r_A + r_B)N \times 10^3$$
(S2)

a.k.a 5)

a.k.a 4))

where all *k* are second order rate constants ($M^{-1} s^{-1}$), *D* are diffusion coefficients of reactants A and B ($m^2 s^{-1}$), *r* are reaction radii of reactant molecules A and B (m), and *N* is the Avogadro number.

Diffusion coefficients of nitrophenols in aqueous solutions were calculated using the method of Wilke and Chang [13]:

$$D = 7.4 \times 10^{-12} \frac{(\text{XM})^{0.5}\text{T}}{V_m^{0.6}\eta} \qquad \text{m}^2 \,\text{s}^{-1},$$
(S3)

where: X = 2.6 for water; M – molar mass of a diffusing compound, g mol⁻¹; T – temperature, K; $V_{\rm m}$ – molar volume of a diffusing compound, cm³ mole⁻¹; η – viscosity of the solvent, mPa s or 0.01 g cm⁻¹ s⁻¹ (0.8891 mPa s for water at 298 K).

Molar volumes of nitrophenols were calculated using the method of Tyn and Calus [14,15]:

$$V_m = 0.285 V_c^{1.048}, \text{ cm}^3 \text{ mole}^{-1}$$
 (S4)

where: *V*c is a critical volume, cm³ mole⁻¹, which can be estimated using the method of group contributions by Joback and Reid [16].

Molecular radii of nitrophenols were calculated using Equation (S5). The values of *Vc*, *Vm*, *D* and *r* are collected in Table S1.

$$r = \sqrt[3]{\frac{3V_m}{4\pi N}},\tag{S5}$$

		2-NP	3-NP	4-NP	2,4-DNP	2,4,6-TNP	SO4-
Vc	cm ³ mol ⁻¹	370.5	370.5	370.5	432.5	534.5	
Vm	cm ³ mol ⁻¹	140.3	140.3	140.3	165.0	205.9	
D	m ² s ⁻¹	2.429×10-9	2.429×10-9	2.429×10-9	2.536×10-9	2.476×10-9	1.06×10-9 A
r	m	3,817×10-10	3,817×10-10	3,817×10-10	4,029×10-10	4,339×10-10	3.8×10-10 в

Table S2. Properties of nitrophenols and sulfate radical anion

^A – the same as for $S_2O_{3^2}$ [17]; ^B – the same as for hydrated sulfate ion [18].

4. Atmospheric significance

Rate of conversion of a NP by a reactant X in the gas phase $(rx_{,g})$ was compared to the rate of conversion of this NP by sulfate radical anions in the aqueous phase contained within the gas phase $(r_{SO4,aq} \times \omega)$:

$$\frac{r_{X,g}}{r_{SO_4,aq\omega}} = \frac{k_{X,g}}{k_{SO_4,aqH_{d,X}H_{d,NP}\omega}} \cdot \frac{|X|_{aq}}{|SO_4^-|_{aq'}},$$
(S6 a.k.a 10)

where: $\omega \text{ m}^3 \text{ m}^{-3}$ is the atmospheric liquid water contents; $k_{X,g} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ is the rate constant for the reaction of X with NP in the gas phase; $k_{SO4,aq} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ is the rate constant for the reaction of SO₄•- with NP in the aqueous phase; H_d is the dimensionless Henry's constant for X or for NP defined by Equations (S7); [X]_{aq} and [SO4•-]_{aq} are the aqueous-phase concentrations of X and SO4•-.

$$H_d = HRT$$
, if H is in mol dm⁻³atm⁻¹ (S7a)

$$H_d = HRT\rho, \text{ if } H \text{ is in mol } kg^{-1} atm^{-1}, \tag{S7b}$$

where *R* is the gas constant, atm dm³ mol⁻¹ K⁻¹; ρ is the density of the solution, practically equal to the density of solvent.

Fig. S3. The ratio of the gas-phase and the aqueous-phase conversions of 2-NP by OH and NO₃ radicals (the gas-phase and aqueous-phase concentrations are bound by Henry's equilibria).

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

References

- 1. Ziajka, J.; Rudzinski, K. Autoxidation of S-IV inhibited by chlorophenols reacting with sulfate radicals. *Environ. Chem.* **2007**, *4*, 355-363, doi:10.1071/EN07045.
- 2. Ziajka, J.; Beer, F.; Warneck, P. Iron-catalysed oxidation of bisulphite aqueous solution: Evidence for a free radical chain mechanism. *Atmos. Environ.* **1994**, *28*, 2549-2552, doi:<u>http://dx.doi.org/10.1016/1352-2310(94)90405-7</u>.
- 3. Huie, R.E.; Neta, P. Chemical behavior of sulfur trioxide(1-) (SO3-) and sulfur pentoxide(1-) (SO5-) radicals in aqueous solutions. *J. Phys. Chem.* **1984**, 88, 5665-5669, doi:10.1021/j150667a042.
- 4. Huie, R.E.; Neta, P. Rate constants for some oxidations of S(IV) by radicals in aqueous solutions. *Atmospheric Environment* (1967) **1967**, 21, 1743-1747, doi:https://doi.org/10.1016/0004-6981(87)90113-2.
- 5. Buxton, G.V.; McGowan, S.; Salmon, G.A.; Williams, J.E.; Wood, N.D. A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(IV): A pulse and γ -radiolysis study. *Atmos. Environ.* **1996**, *30*, 2483-2493, doi:http://dx.doi.org/10.1016/1352-2310(95)00473-4.
- 6. Ervens, B.; George, C.; Williams, J.E.; Buxton, G.V.; Salmon, G.A.; Bydder, M.; Wilkinson, F.; Dentener, F.; Mirabel, P.; Wolke, R., et al. CAPRAM 2.4 (MODAC

mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application. J. Geophys. Res. Atmos. 2003, 108, doi:10.1029/2002jd002202.

- 7. Herrmann, H.; Reese, A.; Zellner, R. Spectroscopy of SO_x^- (x = 3, 4, 5) radical anions and their kinetics in the conversion of S(IV) in aqueous solution. In *Transport and Transformation of Pollutants in the Troposphere, Proc. EUROTRAC Symp.'94*, Borrell, P.M., Borrell, P., Cvitas, T., Seiler, W., Eds. SPB Academic Publishing BV: The Hague, the Netherlands, 1994; pp. 1017–1020.
- Herrmann, H.; Reese, A.; Zellner, R. Time-resolved UV/VIS diode array absorption spectroscopy of SOx-(x=3, 4, 5) radical anions in aqueous solution. *Journal of Molecular Structure* 1995, 348, 183-186, doi:<u>https://doi.org/10.1016/0022-2860(95)08619-7</u>.
- 9. Betterton, E.A.; Hoffmann, M.R. Oxidation of aqueous sulfur dioxide by peroxymonosulfate. *J. Phys. Chem.* **1988**, *92*, 5962-5965, doi:10.1021/j100332a025.
- 10. Herrmann, H.; Jacobi, H.-W.; Raabe, G.; Reese, A.; Zellner, R. Laser-spectroscopic laboratory studies of atmospheric aqueous phase free radical chemistry. *Fresenius' Journal of Analytical Chemistry* **1996**, *355*, 343-344, doi:10.1007/s0021663550343.
- Barlow, S.; Buxton, G.V.; Salmon, G.A.; Williams, J. Kinetics and mechanism of acid generation in clouds and precipitation, . In *HALIPP. Annual Report 1993* Warneck, P., Ed. EUROTRAC ISS:: Garmisch-Partenkirchen, 1994; pp. 48-53.
- 12. McElroy, W.J.; Waygood, S.J. Kinetics of the reactions of the SO radical with SO, S2O, H2O and Fe2+. *J. Chem. Soc. Faraday T.* **1990**, *86*, 2557-2564, doi:10.1039/FT9908602557.
- 13. Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. *AIChE Journal* **1955**, *1*, 264-270, doi:10.1002/aic.690010222.
- 14. Tyn, M.T.; Calus, W.F. Estimating liquid molal volume. *Processing (Sutton, England)* **1975**, *21*, 19-17.
- 15. Perry, R.H.; Green, D.W.; Maloney, J.O. *Perry's Chemical Engineers' Handbook*, Sixth Ed. ed.; McGraw-Hill: New York, 1984.
- 16. Joback, K.G.; Reid, R.C. Estimation of pure-component properties from groupcontributions. *Chem. Eng. Commun.* **1987**, *57*, 233-243, doi:10.1080/00986448708960487.
- 17. Elliot, A.J.; McCracken, D.R.; Buxton, G.V.; Wood, N.D. Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. *J. Chem. Soc. Faraday T.* **1990**, *86*, 1539-1547, doi:10.1039/FT9908601539.
- 18. Nightingale, E.R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. *J. Phys. Chem.* **1959**, *63*, 1381-1387, doi:10.1021/j150579a011.

 \odot 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).