

Article Implicit Definition of Flow Patterns in Street Canyons—Recirculation Zone—Using Exploratory Quantitative and Qualitative Methods

Arsenios E. Chatzimichailidis ¹, Christos D. Argyropoulos ^{2,3}, Marc J. Assael ¹ and Konstantinos E. Kakosimos ^{2,*}

- ¹ Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; archatzi@auth.gr (A.E.C.); assael@auth.gr (M.J.A.)
- ² Department of Chemical Engineering and Mary Kay O'Connor Process Safety Center, Texas A&M University at Qatar, Education City, Doha P.O. Box 23874, Qatar
- ³ System Reliability & Industrial Safety Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research Demokritos, Patriarchou Grigoriou & Neapoleos Str., 15310, Athens, Greece; chris.argyropoulos@ipta.demokritos.gr (C.D.A)
- * Correspondence: k.kakosimos@qatar.tamu.edu (K.E.K.)

Supplementary material

Basic flow and dispersion statistics for the street canyons U5AR067, U5AR050 and U5AR025 $U_{ref} = 5m \cdot s^{-1}$ and AR = 0.67, 0.50 and 0.25

Figure S1. Basic flow and dispersion statistics for the street canyons U5AR067, U5AR050 and U5AR025 (left to right): (**a**–**c**) the average dimensionless magnitude of velocity mag U_{mean}/U_{ref} ; (**d**–**f**) the $\lambda 2$ vortex identification criterion; (**g**–**i**) the normalised concentration C_{mean}/C_{max} ; (**j**–**l**) the dimensionless vertical velocity W_{mean}/U_{ref} ; the street canyon orientation is the same as Figure 1.

Results of the k-means clustering with four clusters, for U_{mean}/U_{ref} and W_{mean}/U_{ref} , for the street canyons U5AR067, U5AR050 and U5AR025

Figure S2. Results of the k-means clustering with four clusters, for $U_{\text{mean}}/U_{\text{ref}}$ and $W_{\text{mean}}/U_{\text{ref}}$, for the street canyons U5AR067, U5AR050 and U5AR025 (left to right): (**a**–**c**) scatter plots; (**d**–**f**) contour plots; the street canyon orientation is the same as Figure 1.

The best of the studied equations that were derived in the search for suitable relationships between cluster area and AR.

Table 1. Compilation of the regression analysis results, showing the equations with the highest R^2 explored.

Areas Covered by Each Region as a Function of AR
$REG3 + REG4 = 0.3346 \cdot AR + 0.183, R^2 = 0.8835$
$REG3/REG1 = 12.292 \cdot AR \cdot REG2 \cdot REG4 + 0.0221, R^2 = 0.9899$
$REG4/REG1 = 0.7505 \cdot AR \cdot REG4/REG2 + 0.2802, R^2 = 0.8805$
$REG3/REG1 = 0.687 \cdot AR - 0.0578, R^2 = 0.9842$
$REG2/REG3 = 0.7904 \cdot AR^{-0.901}, R^2 = 0.9908$
$REG1/REG3 = 12.321 \cdot \exp(-2.136 \cdot AR), R^2 = 0.9706$
$REG3/REG2 = 12.208 \cdot AR \cdot REG1 \cdot REG4 + 0.0618, R^2 = 0.9778$
$REG3/REG1 = 0.2275 \cdot AR \cdot REG4/REG2 + 0.0977, R^2 = 0.9501$
$REG1/REG3 = 1.6464 \cdot AR^{-1.133}, R^2 = 0.9682$
$REG2/REG3 = 3.8093 \cdot \exp(-1.644 \cdot AR), R^2 = 0.9309$
$REG1 \cdot REG2 = -0.9116 \cdot AR \cdot REG2 \cdot REG4 + 0.0969, R^2 = 0.9508$
$REG1 \cdot REG2 = -0.0428 \cdot AR \cdot REG4 / REG3 + 0.1242, R^2 = 0.9146$
$REG1 = -3.9942 \cdot AR \cdot REG3 \cdot REG4 + 0.5261, R^2 = 0.903$
$REG4/REG2 = 2.2004 \cdot AR \cdot REG3/REG1 + 0.9829, R^2 = 0.8913$
$REG3/REG2 = 0.6842 \cdot AR \cdot REG1 \cdot REG4 + 0.4111, R^2 = 0.8703$
$REG1/REG3 = -8.0787 \cdot AR + 8.9855, R^2 = 0.8665$
$REG1 = -0.3188 \cdot AR + 0.6093, R^2 = 0.8598$
$REG4 + REG1 = -0.1359 \cdot AR + 0.7565, R^2 = 0.836$
$REG2/REG3 = -2.6263 \cdot AR + 3.1755, R^2 = 0.7967$
$REG3 + REG4 = 0.3346 \cdot AR + 0.183, R^2 = 0.8835$
$REG3/REG1 = 12.292 \cdot AR \cdot REG2 \cdot REG4 + 0.0221, R^2 = 0.9899$
$REG4/REG1 = 0.7505 \cdot AR \cdot REG4/REG2 + 0.2802, R^2 = 0.8805$
$REG3/REG1 = 0.687 \cdot AR - 0.0578, R^2 = 0.9842$
$REG2/REG3 = 0.7904 \cdot AR^{-0.901}, R^2 = 0.9908$
$REG1/REG3 = 12.321 \cdot \exp(-2.136 \cdot AR), R^2 = 0.9706$
$REG3/REG2 = 12.208 \cdot AR \cdot REG1 \cdot REG4 + 0.0618, R^2 = 0.9778$
$REG3/REG1 = 0.2275 \cdot AR \cdot REG4/REG2 + 0.0977, R^2 = 0.9501$
$REG1/REG3 = 1.6464 \cdot AR^{-1.133}, R^2 = 0.9682$
$REG2/REG3 = 3.8093 \cdot \exp(-1.644 \cdot AR), R^2 = 0.9309$