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Abstract: An extratropical cyclone reported to have the largest wind speed in Newfoundland in more
than a decade landed on the island of Newfoundland on 11 March 2017. The oceanic responses in
Placentia Bay on the southeast coast of Newfoundland to the winter storm were examined using
observed data and the Finite-Volume Community Ocean Model (FVCOM). The peak non-tidal water
level increase, i.e., storm surge, reached 0.85 m at St. Lawrence and 0.77 m at Argentia on Placentia Bay.
Sea surface temperature slightly decreased after the storm passage according to buoy and satellite
measurements. Root mean square differences (RMSD) of the magnitude of storm surge between model
results and observations are 0.15 m. The model sea surface temperature showed a small decrease,
consistent with observations, with RMSDs from 0.19 to 0.64 ◦C at buoy stations. The simulated
surface current changes agree with buoy observations, with model-observation velocity difference
ratios (VDR) of 0.75–0.88. It was found that, at Argentia (St. Lawrence), the peak storm surge in
Placentia Bay was dominantly (moderately) associated with the inverse barometric effect, and the
subsequent negative surge was mainly due to the wind effect at both stations. The sea surface cooling
was associated with oceanic heat loss. In the momentum balance, the Coriolis, pressure gradient,
and advection terms were all important during the storm, while the first two terms were predominant
before and after the storm.

Keywords: storm surge; FVCOM; extratropical cyclone

1. Introduction

Tropical cyclones (such as hurricanes) and extratropical cyclones can generate strong winds and
high coastal storm surges. The combination of storm surge and wind waves can produce significant
inundation and cause severe damage in coastal zones [1,2].

Placentia Bay is located on the southeast coast of Newfoundland in the northwestern Atlantic
Ocean, bordered by the Avalon Peninsula to the east and the Burin Peninsula to the west (see
Figure 1). It supports essential fisheries such as Atlantic cod [3] and emerging aquaculture. It is also
an important marine transport route, especially for crude oil tankers. Therefore, it is important to
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improve the understanding of oceanic responses to passing tropical and extratropical cyclones in
Placentia Bay, for emergency response, fisheries management, aquaculture regulation and operation,
and environment protection.Atmosphere 2019, 10, x FOR PEER REVIEW 2 of 20 
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Placentia Bay; RI: Red Island Shoal; MP: Mouth of Placenta Bay; NB: Nickerson Banks). 
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Figure 1. (a) Map showing the study area. The black line is the track of the extratropical cyclone during
11~12 March 2017 and the background color shows the bathymetry of the region. The red box shows the
model domain. (b) Map of the model domain. Red squares are tide-gauge stations (SL, St. Lawrence;
AG, Argentia) and the blue triangles indicate locations of observation buoys (HP: Head of Placentia
Bay; RI: Red Island Shoal; MP: Mouth of Placenta Bay; NB: Nickerson Banks).

Occasionally, Atlantic tropical storms pass over Placentia Bay in summer and fall. Using observational
data and modeling results, Han et al. [4] and Ma et al. [5] studied storm surges and other oceanic responses
(temperature, currents) to Hurricane Igor on 21 September 2010 off Newfoundland. Han et al. [6] used
satellite thermal imagery and ocean color data to examine the impacts of Hurricane Igor on the sea surface
temperature (SST) and phytoplankton over the Grand Banks of Newfoundland. Ma et al. [7] investigated
the oceanic responses of Placentia Bay to Hurricanes Igor on 21 September 2010 and Leslie on 11 September
2012 using a coastal ocean model and in situ observations. In winter, the Newfoundland area is frequently
battered by extratropical cyclones. Extratropical cyclones are a dominant source of mid-latitude
weather, and their various formation and evolution mechanisms have been studied using a wide range
of observational, theoretical, and modeling approaches [8]. Extratropical cyclones are also the principal
cause of storm surge events [9]. Currently, many studies are focused on increasing the prediction
precision of extratropical cyclone tracks and assessing the links between the extratropical cyclones and
extreme events [10–13]. Using coupled air-sea model solutions, Nelson and He [14] found that air-sea
interactions during winter extratropical cyclone outbreaks enhanced ocean heat loss over the Gulf
Stream and supported rapid extratropical cyclone intensification. Nevertheless, studies on oceanic
responses of Newfoundland waters to extratropical cyclones are limited.

According to online news [15], an exatratropical cyclone passed over Newfoundland on 11 March
2017 (Figure 1), with peak wind speeds up to 44 m s−1 at St. John’s International Airport. Meteorologists
described this storm as the strongest in more than a decade because the peak wind speed broke the
record in some regions of Newfoundland. Three-quarters of Newfoundland was affected by the
extratropical cyclone, resulting in widespread power outage.

To understand the oceanic responses (such as storm surge, ocean temperature evolution,
and current change) in Placentia Bay to the strong extratropical cyclone, we analyze in situ observations
and remote sensing data, and apply a coastal ocean circulation model in Placentia Bay and adjacent
shelf waters. Furthermore, we aim to discuss the differences between the oceanic responses of Placentia
Bay to winter and summer storms, in reference to Ma et al. [7].
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This manuscript is arranged as follows: In Section 2, we describe the data used and the model
setup. Section 3 presents the oceanic responses to the extratropical cyclone using observations and
model results. Section 4 discusses the storm surge mechanisms and the momentum balance during the
storm. Finally, Section 5 gives the summary and conclusion.

2. Data and Model Description

2.1. Data

2.1.1. Remote Sensing Data

20-Hz Jason-3 along-track altimetry data are produced by CNES (National Center for Space
Studies, France) in the framework of the PEACHI project (Prototype for Expertise on AltiKa for Coastal,
Hydrology and Ice [16]) and downloaded from the French Archiving, Validation, and Interpretation
of Satellite Oceanographic data (AVISO, www.aviso.altimetry.fr). Each track repeats exactly every
9.9156 days. The 20-Hz data have an along-track spatial resolution of about 300 m. An ascending
track (Pass 039) of Jason-3 passed over the domain during the extratropical cyclone event. We make
corrections for Jason-3 altimetric range data in the Ku band, including ionospheric delay and sea
state bias provided by CNES, radiometer wet tropospheric delay provided by the Jet Propulsion
Laboratory (JPL), and dry tropospheric delay provided by the European Center for Medium-range
Weather Forecasting (ECMWF). We also correct the altimetry data for geocentric ocean tide using
Goddard Ocean Tide 4.8 (GOT4.8 [17]), solid earth tide [18], and pole tide [19]. Finally, we calculate
the temporal sea surface height anomalies relative to the sea level averaged from 18 February 2016 to
18 July 2017.

Multiscale Ultrahigh Resolution (MUR) Level 4 SST data [20,21] with spatial resolution of
0.01◦ × 0.01◦ are obtained from the Group for High Resolution Sea Surface Temperature (GHRSST,
https://www.ghrsst.org/). The data are produced at the JPL Physical Oceanography Data Distributed
Active Archive Center (PO.DAAC), based on in situ data, the Advanced Very High Resolution
Radiometer (AVHRR) data, and the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data.

2.1.2. In Situ Data

Tide-gauge data are obtained from the Canadian Hydrographic Service (http://tides.gc.ca/).
The data used in this study are hourly time series of water level at the tide-gauge stations St. Lawrence
(SL, 46.92◦ N, 55.39◦ W) and Argentia (AG, 47.30◦ N, 53.98◦ W) (red squares in Figure 1).

Buoy data, including SST, currents at 0.5 m below sea surface, and 10 m wind speed, are downloaded
from Environment Canada and SmartAtlantic (http://www.smartatlantic.ca/PlacentiaBay/). The data
used are hourly observations at Head of Placentia Bay (HP, 47.76◦ N, 54.07◦ W), Red Island Shoal
(RI, 47.32◦ N, 54.12◦ W), Mouth of Placentia Bay (MP, 46.98◦ N, 54.70◦ W), and Nickerson Bank (NB,
46.44◦ N, 53.39◦ W) (blue triangles in Figure 1).

Meteorological data are obtained from the Canadian Weather, Climate and Hazard Service (https:
//www.canada.ca/en/services/environment/weather.html). Hourly wind speed and wind direction at
SL were included in this study.

2.1.3. Numerical Model Data

This study makes use of a high-resolution global reanalysis dataset, which include hourly 10 m
wind, heat flux, mean sea level pressure and sea surface height from National Centers for Environmental
Prediction (NCEP) Climate Forecast System Version 2 (CFSv2, https://rda.ucar.edu/, [22]). The horizontal
resolution for wind, heat flux, and mean sea level pressure is 0.2◦, while that for sea surface height
is 0.5◦.

Hourly temperature and salinity data are obtained from the HYbrid Coordinate Ocean Model
(HYCOM [23]). Computations of HYCOM are carried out on a Mercator grid between 78◦ S and 76◦ N

www.aviso.altimetry.fr
https://www.ghrsst.org/
http://tides.gc.ca/
http://www.smartatlantic.ca/PlacentiaBay/
https://www.canada.ca/en/services/environment/weather.html
https://www.canada.ca/en/services/environment/weather.html
https://rda.ucar.edu/
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with horizontal resolution of 1/12◦ (about 7 km in our study area) and 32 vertical layers ranging from 0
to 5500 m.

2.2. Model

2.2.1. FVCOM (3.2) Ocean Circulation Model

With the combined advantages of horizontal grid flexibility and computational efficiency,
the FVCOM model [24] is suitable for simulations in area with complex coast lines. FVCOM has
been widely used in simulating geophysical dynamic processes in coastal waters [5,7,25,26]. For the
present application, we run the model with the three-dimensional setup and in the prognostic mode.
A barometric pressure term is added in the momentum equations to account for the effect of atmospheric
pressure change on sea level. The k-ε turbulence model from the General Ocean Turbulence Model
(GOTM, http://www.gotm.net/, [27]) is used to calculate the vertical mixing.

2.2.2. Model Domain and Grid

The model domain includes Placentia Bay and adjacent shelf waters (see Figure 1b). The geometry
of the domain includes several banks and channels.

The triangular grid (Figure 2) is designed using the Surface Water Model System (SMS, www.
aquaveo.com/software/sms-learning). The grid resolution is lowest along the open boundary over the
continental shelf (3–5 km) and highest along the coastlines in the inner bay (50 m). The domain grid
consists of 31 unequally spaced sigma levels in the vertical, as well as 25,414 nodes and 47,629 elements
in the horizontal. The model bathymetry is derived from General Bathymetric Chart of the Oceans
(GEBCO, http://www.gebco.net/), which is in a one arc-minute grid and updated in 2008. To minimize
pressure gradient errors [28], the bathymetry is smoothed using the same method as in Ma et al. [29].
The integration time step is set as 0.6 s for the external mode and 6 s for the internal mode.
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2.2.3. Model Forcing, Open Boundary Conditions and Initial Conditions

The model is forced by spatially and temporally varying winds, air pressure and heat fluxes at the
sea surface. Tidal and non-tidal sea levels, temperature and salinity are specified at the open boundary.
Hourly, 0.2◦ wind speeds at 10 m above sea surface and barometric pressure field at the sea surface
obtained from CFSv2 are interpolated onto the elements and nodes, respectively. Eight dominant tidal
constituents (semi-diurnal: M2, S2, N2 and K2; and diurnal: K1, O1, P1 and Q1) are obtained from
OTIS (OSU Tidal Inversion Software [30]) and specified along the open boundaries. Non-tidal sea level
elevations along the open boundaries are extracted from CFSv2. A difference between non-tidal sea
level elevations from CFSv2 and tide-gauge data at stations AG and SL is noted while processing the
data. The difference of 0.58 cm averaged for the two stations and over the model period is added to
every open boundary node. River runoff is not considered since it is very low in winter. Initial sea
level and velocity of the model are set to zero. The temperature and salinity conditions are initialized
from the HYCOM monthly mean output of February 2017.

The model is run from 14 February to 31 March in 2017. The model reaches an approximate
dynamic equilibrium after running for 15 days. Hourly results from March 1 to March 31 are analyzed
to examine the influence of the extratropical cyclone on sea level, temperature, salinity, and currents in
Placentia Bay.

2.2.4. Model Validation Metrics

The model results are compared with observational data and evaluated qualitatively and
quantitatively by examining their correlation coefficient (cor) and the root mean square differences
(RMSD) [7,31]:

RMSD =
1
N

√∑
(Am −Ao)

2, (1)

where Am and Ao are the model output and observational data, respectively. In addition, the velocity
difference ratio (VDR) and the speed difference ratio (SDR) are included to validate the currents. VDR is
defined as the ratio of the sum of the squared magnitudes of the vector velocity differences to the sum
of the squared magnitudes of the observed velocities, that is:

VDR =

∑
|Vm −Vo|

2∑
|Vo|

2 , (2)

where Vm and Vo are the model velocities and the observational velocities, respectively. VDR = 0
means exact agreement. VDR < 1 means some agreement; the closer to 0 the better the agreement.
VDR ≥ 1 means little or no agreement. Similarly, SDR is defined as the ratio of the sum of squared
speed differences to the sum of the squared magnitudes of the observations, that is:

SDR =

∑
(|Vm| − |Vo|)

2∑
|Vo|

2 . (3)

VDR is usually larger than SDR, since the former considers not only speed but also direction.

3. Results

3.1. Extratropical Storm Detection

Extratropical storms are identified from CFSv2, using an automated storm detection and tracking
methodology [32,33]. Storms are detected according to the minima of air pressure at sea level.
We consider a storm for further study based on the following criteria: (i) there is a closed low pressure
contour with central air pressure less than 1005 hPa, which is generated in the extratropical region
from 25◦ N to 55◦ N; (ii) the low-pressure system lasts for at least 24 h; and (iii) the storm track is from
southwest to northeast.
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As shown in Figure 3, a low-pressure system formed over the northwest Atlantic on 10 March 2017,
moving northeastward and gradually intensifying. In the morning of 11 March 2017, the extratropical
cyclone arrived on the southwestern Newfoundland Shelf and headed north toward Placentia Bay.
It made landfall at about 13:30 (UTC, similarly hereinafter) and crossed over Newfoundland in the
afternoon. By the evening of 11 March, the storm center was located on the northeastern Newfoundland
Shelf. It stayed in the area for about two days, gradually weakening and eventually dissipating.Atmosphere 2019, 10, x FOR PEER REVIEW 6 of 20 
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Figure 3. Wind fields (vectors) and sea level pressure (shadows) from CFSv2.

3.2. Wind

The predominant wind over the study domain during the winter is eastward [34]. When the
extratropical cyclone approached Newfoundland, the dominant wind was southwestward over
Placentia Bay (Figure 4). As the storm center moved over Placentia Bay, the observed wind shifted
northwestward. The wind direction finally turned northeastward after the storm center left the bay.
The maximum hourly wind speed was recorded at 26.6 m s−1 over Placentia Bay during the period of
10–16 March 2017. Figure 5 shows the comparison between CFSv2 and observed 10-m winds at four
locations in the model domain.
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Figure 5. Comparison between buoy (red) and CFSv2 (blue) zonal winds (left panels) and meridional
winds (right panels) (m s−1) at HP, RI, MP, and NB. The horizontal black dashed lines denote U = 0 m
s−1 and V = 0 m s−1. The vertical black dashed lines denote the time of landfall.
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3.3. Storm Surge

When the storm reaches the bay in the morning of 11 March 2017, the water level increases.
Peak surges of 0.85 m and 0.77 m are reached at SL (Figure 6a) and AG (Figure 6b), respectively, a few
hours after the storm makes landfall. Afterwards a sharp decrease in sea level is seen at SL and AG.
Negative surges with magnitudes similar to the preceding positive surges occur in the evening. There
is indication of high-frequency oscillations, which may be associated with seiches [7].
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Figure 6. Time series of hourly non-tidal sea level anomalies (m) from tide-gauge observations (red)
and model results (blue) at AG (a) and SL (b). The horizontal black dashed lines denote non-tide SLA
= 0 m. The vertical black dashed lines denote the time of landfall.

We compare the non-tidal sea level anomalies (defined as non-tidal sea levels minus their mean
over the period from 1 to 31 March 2017) from the model solutions with the tide-gauge observations at
AG and SL. Tide-gauge data are first detided by using the T-Tide toolbox [35]. Eight tidal constituents
(M2, S2, N2, K2, K1, O1, P1, and Q1) are removed from the model results by using the harmonic
analysis. The temporal evolutions of hourly non-tidal sea level anomalies from 10 to 16 March 2017 are
shown in Figure 6. Correlation coefficients of the model solutions of non-tidal sea level anomalies and
observations at AG and SL tide-gauge stations are 0.74 and 0.81, respectively (Figure 6). The peak of
sea level anomalies at AG is observed at 15:00 on 11 March, while the model peak occurs at 14:00 (a
phase discrepancy of one hour), with a magnitude about 0.1 m lower than the peak of 0.77 m from
observations. At SL, water levels reach 0.85 m at 14:00 on 11 March, but the peak of about 0.47 m from
the model solutions occurs four hours earlier. After peaking, sea level starts to decrease rapidly at both
stations. The averaged model-observation RMSD for water level is 0.15 m from 10 March to 16 March,
substantially smaller than the peak surge values.

The Jason-3 altimeter passes over Placentia Bay (Figure 7a) during the extratropical cyclone.
We calculate along-track sea surface height anomalies based on the altimetry product (Figure 7b).
The storm surge is about 0.5 m near RI (Figure 7b) at 15:07 on 11 March, consistent with the model
result but much lower than the tide-gauge value of 0.75 m at nearby AG. The model underestimation
is mainly due to the one-hour phase error as indicated in the comparison with the tide-gauge data
(Figure 6a). While the causes for the phase error at this magnitude is complicated and difficult to
identify, likely major factors are wind forcing and non-tidal sea levels specified at the open boundary.
The Jason-3 underestimation may be due to errors in altimetric measurements and environmental
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and geophysical corrections [36]. The sea surface height anomalies decrease offshore (Figure 7b).
The RMSD of sea surface height anomalies between model and low-pass filtered altimeter observations
is 0.12 m.
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Figure 7. (a) Ground track of Pass 039 from Jason-3 satellite (blue line). The black line denotes the track
of the extratropical cyclone. The red squares represent the tide-gauge stations at SL and AG. (b) Jason-3
along-track sea level anomalies with model results along Pass 039 on 11 March 2017. The blue line
denotes along-track sea level anomalies, the yellow line denotes low-pass filtered along-track sea level
anomalies, the red line denotes FVCOM model results and the black triangle denotes from tide-gauge
observations at AG.

3.4. Temperature

Comparisons of time series of SST based on buoy measurements and model solutions at HP, RI,
MP and NB are shown in Figure 8. SST from buoy observations and model results both decrease slightly,
with correlation coefficients from 0.67 to 0.81 at the four buoys. The averaged SST at the four buoy
stations from model results drop by 0.45 ◦C from 17:00 on 10 March to 11:00 on 13 March, while the
averaged SST from buoy observations decrease by 0.33 ◦C during the same period. The RMSDs
are mostly less than 0.5 ◦C at the buoy stations. Therefore, there is an overall good agreement
between the observations and the model. Previous studies off the Canadian Atlantic coast reported
model-observation SST differences of 1 ◦C during Hurricane Juan [37] and 1 to 1.5 ◦C during Hurricanes
Igor and Leslie [7].



Atmosphere 2019, 10, 724 10 of 20
Atmosphere 2019, 10, x FOR PEER REVIEW 10 of 20 

 

 

Figure 8. Comparison between buoys (red) and modeled (blue) sea surface SST at HP (a), RI (b), MP 

(c), and NB (d). The horizontal black dashed lines denote SST = 0 °C. The vertical black dashed lines 

denote the time of landfall. 

Next, we examine satellite observations. A slight drop of SST appears in satellite data in 

Placentia Bay and surrounding waters after the passage of the extratropical cyclone (Figure 9a,b). The 

biggest drop in the spatially averaged SST for Placentia Bay is 0.89 °C from March 10 to March 14 

(Figure 9f). The discrepancies in the SST changes between satellite and buoy data may be ascribed to 

the different measurement depths used: the sea surface for the former and 0.5 m below it for the latter. 

The sea surface cooling from satellite observations (Figure 9a,b) is more prominent in the inner and 

middle bay than in the outer bay, since the outer bay can be strongly influenced by relatively warm 

shelf water through advection and lateral mixing. The distribution of SST from the FVCOM solutions 

(Figure 9c,d) presents a similar pattern overall. Nevertheless, there are some notable spatial 

differences between observed and model SST changes, for which we are unable to pinpoint exact 

causes. The maximum SST drop from March 10 to March 13 is 0.54 °C (Figure 9f). 

Figure 8. Comparison between buoys (red) and modeled (blue) sea surface SST at HP (a), RI (b), MP (c),
and NB (d). The horizontal black dashed lines denote SST = 0 ◦C. The vertical black dashed lines
denote the time of landfall.

Next, we examine satellite observations. A slight drop of SST appears in satellite data in Placentia
Bay and surrounding waters after the passage of the extratropical cyclone (Figure 9a,b). The biggest
drop in the spatially averaged SST for Placentia Bay is 0.89 ◦C from 10 March to 14 March (Figure 9f).
The discrepancies in the SST changes between satellite and buoy data may be ascribed to the different
measurement depths used: the sea surface for the former and 0.5 m below it for the latter. The sea
surface cooling from satellite observations (Figure 9a,b) is more prominent in the inner and middle bay
than in the outer bay, since the outer bay can be strongly influenced by relatively warm shelf water
through advection and lateral mixing. The distribution of SST from the FVCOM solutions (Figure 9c,d)
presents a similar pattern overall. Nevertheless, there are some notable spatial differences between
observed and model SST changes, for which we are unable to pinpoint exact causes. The maximum
SST drop from 10 March to 13 March is 0.54 ◦C (Figure 9f).

The SST averaged for the three buoy stations drops by 0.42 ◦C from 10 March to 13 March, which
represents the maximal SST change during the storm (Figure 9f). Figure 9e shows the time series of
daily air temperatures observed from buoys at RI and NB and from weather station at SL. The air
temperature is about 0 ◦C before the storm, and drops about 7 ◦C during the storm (from 9 March to
12 March).
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Figure 9. (a,b) Five-day averaged sea surface temperatures observed from satellites before (06–10
March) and after (11–16 March) the passage of the extratropical cyclone. The red squares denote the
region in which the spatially averaged sea surface temperatures are calculated. (c,d) same as (a,b)
except for the sea surface temperatures from FVCOM solutions. (e) Time series of daily averaged air
temperature from buoys at RI and NB and from the weather station at AG. (f) Time series of daily
spatially averaged sea surface temperature from satellite observations (red), buoy measurements (blue)
and FVCOM solutions (green) with standard deviations shown as the shadows.

3.5. Sea Surface Current

Modeled surface currents are compared with measurements taken at buoys HP, RI, and MP
(Figure 10). The buoy measurements show that the storm-induced surface current changes are mainly
associated with the zonal component, which is consistent with the dominant wind changes in the zonal
direction (Figure 5). As the storm approaching, surface currents at HP (Figure 10a,b) change gradually
from eastward to westward and then drastically from westward back to eastward soon after landfall.
The surface currents at RI are relatively weak even during the extratropical cyclone (Figure 10c,d) due
to its location. At MP, the surface currents turn westward before the extratropical cyclone moves over
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the region (Figure 10e,f). After the storm center passes, the surface currents at MP become eastward
under the wind forcing.
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Figure 10. Time series of buoy-measured sea surface currents (red) compared to model results (blue) at
HP (a,b), RI (c,d) and MP (e,f). The horizontal black dashed lines denote U = 0 m s−1 and V = 0 m s−1.
The vertical black dashed lines denote the time of landfall.

Statistics calculated between observed and model currents show that the correlation coefficients
are greater than 0.5 for the zonal component, which undergoes much larger changes than the meridional
component during the storm. The SDR values of the currents during the storm event (from 00:00 on
11 March to 12:00 on 12 March) are small varying from 0.23 to 0.34 at the three buoys, indicating the
magnitudes of the model results agree with the observations. On the other hand, the VDR values are
larger, varying from 0.75 to 0.88, indicating fair agreement between model solutions and observed data.

There is no indication of near-inertial oscillation in neither observed nor modeled currents, since
the ocean had little stratification in the vertical. Previous studies [7] showed strong inertial oscillation
after the passage of hurricanes at MP in summer when the ocean was well stratified in the vertical.
Vertical stratification favors the generation of the near-inertial oscillation during a storm [7].

4. Discussion

4.1. Storm Surge Mechanisms

There are several processes generating storm surge, including winds, atmospheric pressure,
tide-surge interaction [38]. Ma et al. [7] investigated the storm surges in Placentia Bay during
Hurricanes Igor on 21 September 2010 and Leslie on 11 September 2012. They found the peak storm
surge is significantly influenced by local wind-driven and inverse barometric effects during Leslie at
Argentia and St. Lawrence, but predominately due to remote forcing during Igor, depending on the
storm track location.

To identify the dominant processes for the storm surge during this winter storm, we carried out a
series of model experiments with three different forcing configurations, namely, atmospheric forcing
only, tide forcing only, and atmospheric and tide forcing combined. The corresponding non-tidal sea
levels are denoted as ηNT, ηTO, and ηAT, respectively. Then the tide-surge interaction ηTSI for the storm
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follows ηTSI = ηAT − ηTO − ηNT. The inverse barometric response is defined as the sea surface height
variation caused by an atmospheric pressure fluctuation patm:

η = −
patm

ρ0g
, (4)

where η is the sea surface height variation, g is the gravitational acceleration, and ρ0 is the reference
water density. The wind effect can then be determined by subtracting η from ηNT.

The barometric pressure declines by 54 hPa from 00:00 to 15:00 on 11 March, when the extratropical
cyclone moves toward Placentia Bay. The lowest barometric pressure is 954 hPa at AG, inducing
a sea surface height increase of 0.58 m that accounts for 75% of the observed storm surge (0.77 m)
(Figure 11a). At SL, the sea surface height increase caused by the inverse barometric effect reached
0.46 m, about 56 percent of the observed storm surge (Figure 11b). Therefore, the peak storm surge is
mainly associated with the inverse barometric response at AG, and to a lesser degree at SL.
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Figure 11. Time series of the non-tidal sea level anomalies (m) from observations (red) and model
results (blue), the inverse barometric effect (purple), the tide-surge interaction (green), and the wind
effect (black) at AG (a) and SL (b).

It is well known that Ekman transport induced by winds plays an important role in generating
coastal storm surge. In this extratropical cyclone event, the wind effect is much weaker than the
inverse barometric effect for the peak surge at AG (Figure 11a), due to quite low atmospheric pressure
and relatively weak winds before and during landfall. Strong eastward wind with speed more than
15 m s−1 (Figure 12a) lasts for several days after landfall. The eastward wind induces Ekman transport
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which pushes water out of the bay, causing the water level in the bay to drop by about 1.3 m from 14:00
to 21:00 on 11 March. Therefore, the large negative surge is mainly due to the wind effect.
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Figure 12. Hourly wind vectors (m s−1) from CFSv2 (blue) and weather station observations (red) at
AG (a) and SL (b) from 10 to 14 March 2017.

Mecking et al. [39] used a barotropic shallow-water model to simulate coastal sea level change
around the southeastern Newfoundland in response to Tropical Storm Helene (2000) passing over the
Grand Banks. It was found that a combination of wind stress and atmospheric pressure forcing caused
a meteorological tsunami. The dynamic response to the wind forcing and atmospheric pressure forcing
resulted in sea level increase and decrease at Argentia, respectively. Note that the dynamic pressure
response here is different from the inverse barometric effect.

At SL, the observed wind speed and directions are quite different from those of CFSv2 from 12:00
to 13:00 on 11 March (Figure 12b). The northwestward winds would induce northeastward Ekman
transport, causing the water level to increase. However, the southeastward winds from CFSv2 would
induce offshore Ekman transport, causing the water level to decrease in the model results. As a result,
the model would underestimate the contribution of winds to the peak storm surge at SL. Following
Ma et al. [7], we reconstruct wind fields by blending wind observations at the weather stations and
buoys with CFSv2 and use the reconstructed wind fields to force the model. As shown in Figure 13,
the model results forced by the reconstructed winds are similar to those forced by the CFSv2 winds,
though the reconstructed winds agree well with the observed winds in both magnitude and direction.
Therefore, the underestimation of the peak storm surge may be related to something else. While we
are not able to pinpoint exact problems, the quality of the open boundary condition may be one of
them, since SL is close to the western open boundary.
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where x, y, and z are the zonal, meridional, and vertical coordinates, respectively; u, v and w are 

the x, y, and z velocity components, respectively; f is the Coriolis parameter; g is the gravitational 

acceleration; ρ0 is the reference water density; p is the pressure; Km is the vertical eddy viscosity; 
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Figure 13. (a) Hourly wind vectors (m s−1) from weather station observations (red) and reconstruction
(blue) at SL from 10 to 16 March 2017. (b) Time series of the non-tidal sea level anomalies (m) from
observations (red) and model results forced by the reconstructed wind fields (blue) at SL. The horizontal
black dashed lines denote non-tide SLA = 0 m. The vertical black dashed lines denote the time
of landfall.

4.2. Momentum Balance

The momentum balance is analyzed at MP. The momentum equations and the continuity equation
used in FVCOM [40] are:
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︸                        ︷︷                        ︸

horizontal di f f usion

, (6)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (7)

where x, y, and z are the zonal, meridional, and vertical coordinates, respectively; u, v and w are
the x, y, and z velocity components, respectively; f is the Coriolis parameter; g is the gravitational
acceleration; ρ0 is the reference water density; p is the pressure; Km is the vertical eddy viscosity; and
A is the horizontal eddy viscosity.

Based on the model results, four dominant terms are considered: Coriolis, pressure gradient,
advection, and horizontal diffusion terms. The other terms are smaller by a few orders of magnitude.
Figure 14 shows the anomalies of the main terms in the x- and y-directions at 5 m below the surface at
MP. The anomalies are relative to the means over the period from 8 March to 14 March. Before the
extratropical cyclone, the variations of the Coriolis term and pressure gradient term were large and
thus played dominant roles in the momentum balance in both directions, while those of the advection
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term and horizontal diffusion term were relatively small. As the storm was approaching, magnitudes
of the pressure gradient term and the Coriolis term changed from less than 1 × 10−5 m s−2 to more
than 2 × 10−5 m s−2. The variability of the advection term increased by about 1 × 10−5 m s−2 as well.
After the storm, the Coriolis term and the pressure gradient term became dominant again.
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The root mean square (RMS) values of the Coriolis and pressure gradient terms are about four
times of other terms in the x and y directions during the pre- and post-storm periods (Table 1),
suggesting that the momentum balance is predominated by the Coriolis and pressure gradient terms.
During the storm event (from 12:00 on 10 March to 12:00 on 12 March), the RMS values of all terms
increased. The Coriolis and pressure gradient terms were about one to two times greater than the
other terms.



Atmosphere 2019, 10, 724 17 of 20

Table 1. Root mean square values of the terms in the momentum balance at MP. (units: 10−6 m s−2).

c 5 m

During Storm 1 Before and After Storm 2

Coriolis
x 8.74 5.64
y 14.85 7.50

pressure gradient x 8.17 6.84
y 12.21 8.31

advection
x 6.42 2.08
y 6.13 2.06

horizontal diffusion
x 4.42 1.98
y 2.52 0.85

1 During the storm refers to the period from 12:00 on 10 March to 11:00 on 12 March; 2 before and after storm refers to
the period from 00:00 on 09 March to 11:00 on 10 March and the period from 12:00 on 12 March to 00:00 on 14 March.

4.3. Differences in Responses to Winter and Summer Storms

Using satellite observations, Han et al. [6] found that Hurricane Igor in September 2010 made
SST decrease by about 6 ◦C for the area shallower than 200 m southeast of Newfoundland. The SST
cooling in Placentia Bay during Hurricane Igor was about 3 ◦C and that during Hurricane Leslie was
about 2 ◦C [7]. During these tropical storms, colder subsurface water was brought upward to the near
surface layer through vertical mixing, leading to sea surface cooling.

In contrast, the present study reveals a different mechanism of sea surface cooling in response to a
winter storm. Figure 15 shows the temporal evolution of temperature at MP during 9–13 March 2017.
The temperature is nearly uniform in the vertical before the storm. The storm brings much colder
air (Figure 9e) and enhances oceanic heat loss at sea surface. As a result, the ocean temperature in
the upper 100 m decreases by about 0.3 ◦C. Note that the vertical distribution of modelled oceanic
temperature needs to be validated against observations which however are unavailable at the present.
Using a regional coupled air–sea model, Nelson and He [14] also found that a winter extratropical
cyclone enhanced ocean heat loss over the Gulf Stream.
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In terms of ocean currents, Ma et al. [7] showed strong inertial oscillation after the passage of
hurricanes at MP in summer when the ocean was well stratified in the vertical. Vertical stratification
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favors the generation of the near-inertial oscillation during a storm [7]. In contrast, there is no indication
of near-inertial oscillation in neither observed nor modeled currents in response to the winter storm
(Figure 10), since the ocean had little vertical stratification.

5. Summary and Conclusions

Using satellite measurements, in situ data and model results, we investigate the response of
Placentia Bay to the extratropical cyclone of 11 March 2017, which is reported to have the largest
wind speed in Newfoundland in more than a decade. The peak wind speed observed by the buoys in
Placentia Bay reaches 26.6 m s−1 during the extratropical cyclone event. The storm surge induced by
the extratropical cyclone is detected by tide-gauge stations and the Jason-3 altimeter. The maximum
storm surges at St. Lawrence (SL) and Argentia (AG) were 0.85 m and 0.77 m, respectively, during the
storm. Both buoy and satellite observations show a slight SST drop, 0.42 ◦C from the former and
0.65 ◦C from the latter.

The Finite-Volume Community Ocean Model (FVCOM) is employed to examine the oceanic
response to the storm in Placentia Bay. The magnitude of storm surge from the model generally agrees
with observations, with RMSDs of about 0.15 m. However, the model is noted to underestimate the
peak surges at SL. The model captures the slight SST drop during the storm. The root-mean-square
differences (RMSDs) of SST between the model and buoy observations are less than 0.7 ◦C. The model
surface current changes agree fairly with observations, with SDRs of 0.23–0.34 and VDRs of 0.75–0.88 ◦C.

The model storm surge results indicate that the inverse barometric response plays an important
role in generating the peak surge at AG and SL due to quite low air pressure and relatively weak winds
before and during landfall. The subsequent negative surge is mainly due to the wind effect associated
with relatively strong eastward winds at both stations.

The model ocean temperature change reveals that the sea surface cooling is associated with the
oceanic heat loss during the storm that brings much colder air. There is no indication of near-inertial
oscillation in response to the winter storm, due to little oceanic stratification in the vertical.

The variations of major terms in the governing equation at the 5 m depth at MP indicate that the
storm perturbs the pre-storm momentum balance which is dominated by the Coriolis term and the
pressure gradient term. As a result, the advection term and horizontal diffusion term become important
as well during the storm. The Coriolis term and the pressure gradient term become dominant again
after the storm passes.

In future work, we plan to improve the open boundary conditions by using a regional ocean model
output, which may help improve the storm surge simulation. Including precipitation and evaporation
in the atmospheric forcing can be another aspect for enhancement. Furthermore, the FVCOM
model can be coupled with an atmospheric model and a surface wave model to better simulate
atmosphere-ocean-wave interactions during winter storms. In addition, more observations, such as
vertical profiles data, should be collected and applied to validate the model results.
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