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Abstract: The temporal distributions of meteorological drivers and air pollutants over Dibrugarh,
a location in the upper Brahmaputra basin, are studied using observations, models and reanalysis data.
The study aims to assess the performance of the Weather Research and Forecasting model coupled
with chemistry (WRF-Chem), the WRF coupled with Sulfur Transport dEposition Model (WRF-STEM),
and Copernicus Atmosphere Monitoring Service (CAMS) model over Dibrugarh for the first time.
The meteorological variables and air pollutants viz., black carbon(BC), carbon monoxide(CO),
sulphur dioxide(SO2), Ozone(O3), and oxides of Nitrogen(NOx) obtained from WRF-Chem,
WRF-STEM and CAMS are evaluated with observations. The source region tagged CO simulated by
WRF-STEM delineate the regional contribution of CO. The principal source region of anthropogenic
CO over Dibrugarh is North-Eastern India with a 59% contribution followed by that from China
(17%), Indo-Gangetic Plains (14%), Bangladesh (6%), other parts of India (3%) and other regions (1%).
Further, the BC-CO regression analysis is used to delineate the local emission sources. The BC-CO
correlations estimated from models (0.99 for WRF-Chem, 0.96 for WRF-STEM, 0.89 for CAMS),
and reanalysis (0.8 for Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA2) are maximum in pre-monsoon whereas surface observations show highest correlations
(0.81) in winter. In pre-monsoon season, 90% of the modeled CO is due to biomass burning
over Dibrugarh.
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1. Introduction

Rising population, rapid urbanization, transportation, and economic growth are reportedly the
major causes behind the serious issues of air pollution in South Asian countries like Bangladesh, India,
Nepal, Pakistan and Sri Lanka [1–4]. Over the last decade, emissions from the power plant sector,
petroleum refineries, oil sector, industrial and domestic sectors have increased considerably [5–8] over
south-Asia. The maximum emissions of SO2 in South Asia are from the industrial and power sectors,
which contribute approximately 87%. However, the sources of emission vary from country to country.
For example in Bangladesh, the main sources of SO2 are vehicles, brick kilns, and the pulp and paper
industry, etc. whereas in India the main sources are power plants, industries, etc. [9]. Among South
Asian countries, India has been reported to be the second highest contributor of CO (12,000 GgY−1),
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BC (83 GgY−1) and SO2 (74 GgY−1) from the biomass burning sectors [10] and the highest contributor
of CO from the domestic, industrial and road transport sectors [9]. According to Gurjar et al. [9],
in India, major emission sources of BC are biofuel burning, biomass burning, and fossil fuel burning.
Among Asian countries, India contributed 29% of the total emissions of BC [11]. NOx is emitted mainly
from vehicular emissions, industries, transport, agricultural residue burning and biomass burning [12].

A number of earlier studies in India have shown the impact of elevated CO, BC and SO2 on local
as well as regional air quality [5,13,14]. Apart from anthropogenic emissions, long-range transportation
also plays a significant role in raising the pollutant levels over a region [15–22]. The emission rates of
atmospheric trace gases like NO2 and SO2 occupy the highest levels after particulate matter in India,
due to fast growing industries, economy, etc. [23]. Pollutants like CO and BC provide useful insights
into understanding background air quality and also impact human health. BC, one of the primary
pollutants is considered hazardous to the lungs and general health [24]. Rising air pollution in the
Indian subcontinent is continuously degrading the ambient air quality [25–29] which is responsible for
constantly rising numbers of death cases and respiratory illness [6,30].

Climate change is usually discussed in global terms; nevertheless, its effects vary quite significantly
among different regions of the Earth [31]. Climate change has extensive effects on the sectors like
water resources, agriculture, food security and human health [32]. The impact of climate change is
more likely to have a bad effect on developing countries due to high dependency on climate-sensitive
livelihoods like agriculture, water, and forestry [33]. The economy of North-Eastern India depends on
agriculture, tea cultivation, etc., so the effect of air pollution may cause environmental degradation
such as lowering of agricultural crop yields. The region is of great importance in terms of resources
such as coal, oil/gas fields, oil refineries, tea industries, and brick kilns [34]. The pollutants emitted
from these sectors have considerable impacts on the air quality of the region [15,34]. Industries usually
rely on electricity for operations and maintenance; insufficient power availability often calls for the
use of diesel generators (using coal, diesel, and heavy fuel oil), which release pollutants like SO2,
BC and others into the atmosphere, causing air pollution [35,36]. Oil wells during fires/blowouts
release a large number of gases like CO, SO2, hydrogen sulphide (H2S), and hydrocarbons into the
atmosphere [34]. The city of Dibrugarh located in the upper Brahmaputra basin of North-Eastern India
is very rich in minerals and has large deposits of crude oil and coal [37,38]. The oil, brick kilns and
natural gas fields located within 50–100 km from Dibrugarh are the local emission sources [15,19].
During winter and pre-monsoon seasons the concentrations of O3, NOx, SO2, CO, PM2.5, PM10, and BC
are higher at Dibrugarh [15,19,34]. This is attributed to biomass burning, local scale meteorology,
planetary boundary layer height PBLH, transportation, etc. [38]. In previous studies, the National
Oceanic and Atmospheric Administration (NOAA) HYSPLIT model has been used to identify the
transport pathways of pollutants and their source regions over Dibrugarh. Bhuyan et al. [15] and
Pathak et al. [38] in their studies have used the HYSPLIT back-trajectory and concentration weighted
trajectory (CWT) analysis of trace gases such as NOx, O3 and CO to delineate the possible airmass
trajectory and identify the potential source region of gases and their contribution over Dibrugarh.

However, the use of HYSPLIT have some limitations, as the meteorological data used in HYSPLIT
model are available at relatively coarse temporal resolution (1–6 h), which can result in errors under
rapidly changing conditions like dispersion, involving sea-breezes and mountain-valley circulations [39].
Gogoi et al. [34] highlighted the effects of aerosols over North-Eastern India using WRF-Chem and
GOCART models. However, quantification of emission sources and regional contributions for this
region has not been attempted so far.

The present study aims at assessing the temporal variations of near-surface meteorological
drivers and air pollutants over Dibrugarh at daily timescales using multi-model (i.e., WRF-Chem,
WRF-STEM, CAMS and HYSPLIT) and MERRA2 reanalysis datasets. It is worth mentioning that
meteorology plays a significant role in the lifting/sinking of pollutants over a region via formation,
transport, and dispersion of air pollutants [15,40]. In addition, statistical quantities are computed and
intercompared with surface-based measurement data to enlighten the performance of the models,
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reanalysis data for the weather and climate study over the region in the future. This study uses
STEM CO tracers to identify as well as quantify the emission sources and regional contributions over
Dibrugarh. This study will further help in understanding air quality over a region where surface
measurement data are not available and difficult to setup.

2. Site Description: North-Eastern India

The Eastern Himalayas including North-Eastern India (22–30◦ N, 88–98◦ E) possesses a unique
topography (Figure 1a,b). The presence of hills, plateaus, and mountains around the north-east region
keeps the rain-bearing monsoon winds in the area and hence influence the climate of this region [34,37].
North-Eastern India is characterized by rich biodiversity, heavy precipitation, and high seismicity [41].

The wide variety of weather and climate and being one of the highest rainfall-receiving regions
on the planet makes it an important site from the meteorological perspective [34,41]. The study
location, Dibrugarh, is (27.47◦ N, 94.89◦ E; 111 m amsl) (Figure 1a) situated along the bank of the river
Brahmaputra and covered with dense vegetation. According to the 2011 census, the population density
of Dibrugarh is 393 people per square kilometer, which is far less than in most Indian metropolis
including Delhi (11,297 people per square kilometer) and Mumbai (19,652 people per square kilometer).
Dibrugarh is the gateway to the tea-producing areas of Assam and is very rich in minerals and has large
deposits of crude oil and coal [15]. Petroleum, petrochemicals products, and natural gas production
play an important role in the economy and industrial development of the district as well as the state.
The oil, natural gas fields, chemical and fertilizer industries, tea processing factories and coal mines
are scattered within a 50–80 km area, primarily in the north-east, south-east and south-west of the
monitoring site. There are many brick kilns in and around the observational site (Figure 1b). These are
the major sources that emit gases like SO2, CO, O3, NOx, etc. In addition, vehicular emissions and
seasonal biomass burning, forest fires and crop residue burning prevailing nearby the hilly areas are
possible sources of trace gases along with aerosols [38,42] around this location. More details on the
measurement site Dibrugarh is available elsewhere [34,38,42].
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Figure 1. (a) The white box highlights the North-Eastern India region, the star indicates the study
location of Dibrugarh (b) North-Eastern India map showing the emission sources (the background of
the map is taken from www.naturalearthdata.com).

3. Data and Methodology

3.1. Observation

3.1.1. Meteorological Data

Meteorological data over Dibrugarh were obtained from the Global Historical Climate Network
and provided by the NOAA National Climate Data Center (NCDC; http://www.ncdc.noaa.gov/).
The climate data center collect the data from a wide variety of sources, including weather satellites,
radar, automated airport weather stations, National Weather Service (NWS), aircraft, ships, radiosonde,
wind profilers, etc. The NOAA NCDC provides a historical perspective on climate/weather observations
over 100 of years which were vital to studies on global climate change, the greenhouse effect, and other
environmental issues.

3.1.2. Pollutant Data

CO, SO2, O3, and NOx concentrations are collected at intervals of 5 min using CO (T300), SO2 (T100),
O3 (T400) and NOx (T200) Teledyne API analyzers (A Teledyne Technologies Company, 16830 Chestnut
Street City of Industry, CA 91748, USA), respectively. The CO analyzer operates on the principle
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of infrared absorption at 4.7 µm, the vibrational rotation band of CO. This instrument has a lowest
detection limit of 0.04 ppm, a precision of 0.5% and a response time of 10s. The SO2 analyzer is based on
the principle of fluorescence that occurs when SO2 is excited by the ultraviolet light of wavelengths in
the range 190–230 nm. The instrument has a lowest detection limit of 0.4 ppb, a precision of 0.5% and a
response time of 20 s. The O3 Analyzer (T400) is based on the well-established technique of absorption
of ultraviolet light at 254 nm. The NOx analyzer works on the basis of the chemiluminescence effect
produced by the oxidation of NO by O3 molecules, which peaks at 630 nm. NO2 is measured by
converting it into NO using the thermal conversion method (molybdenum convertor). Once the NO2

in the sample gas has been converted to NO, it undergoes the chemiluminescence reaction, hence the
analyzer can measure the total NOx (NO + NO2). Finally, the NO2 concentration is not directly
measured but calculated by subtracting the known NO content of the sample gas from the known NOx

content. The lower detection limits for the O3 and NOx analyzers are 0.6 ppb and 0.4 ppb and both
have measurement precision of 0.5%, and their response times are 10 s and 20 s. Further details of
the instrument can be found in Bhuyan et al. [15] and references therein. These measurements are
available since 2011 over the measurement location, which is reported earlier by Bhuyan et al. [15],
Bharali et al. [37] and Pathak et al. [38] etc.

The BC data are obtained using an aethalometer, which measures attenuation of a light beam at
seven different wavelengths (370, 470, 520, 590, 660, 880 and 950 nm), transmitted through the aerosols
deposited continuously on a quartz fiber filter tape [43], at a temporal resolution of 5 min and flow
rate of 3 L/min. Observations at the 880 nm wavelength are considered standard for BC measurement
as it is the principal absorber of light at this wavelength, whereas other aerosol components have
negligible absorption. However, this kind of filter based absorption techniques suffer from various
errors. For example, the attenuation of light is enhanced by multiple scattering effects in the filter tape,
thereby increasing the optical path. This multiple scattering effect is corrected by the Weingartner
correction factor “C”. Moreover, the attenuation is gradually increased by light absorbing particles
accumulating on the filter tape reducing the path length. This is known as shadowing effects and is
corrected by Weingartner correction factor “R” [44,45]. For the measurements over Dibrugarh “C”
value is assumed to be equal to 2.14 and “R” is assumed to be 1 [42,45]. More details on BC evolution,
deposition, transportation, etc., over Dibrugarh are available elsewhere [34,42].

3.1.3. Fire Radiative Power (FRP) Data

Fire radiative power (FRP) data obtained from MODIS instruments onboard the Aqua and Terra
satellites are used in this study to elucidate the peak BB period (March 2013). It is a multi-spectral
sensor with 36 spectral bands from 0.4 to 14.2 µm. The two MODIS Sun-synchronous, polar-orbiting
satellites Terra and Aqua pass over the equator at approximately 10:30 a.m. (Terra) and 1:30 p.m. (Aqua)
with a revisit time of 1–2 days. The MODIS sensor onboard on Terra and Aqua satellite detects fire
pixels and estimates FRP, the rate of fire energy released per unit time, globally on a daily basis. FRP is
a suitable parameter for estimating the contribution of biomass burning to local and global carbon
budgets. The satellite detects fire pixels and estimates FRP, the rate of fire energy released per unit
time, globally on a daily basis. The daily values of fire count data over the study location are classified
into medium confidence (30–80%) and high-confidence (80–100%). The major fires (high FRP) are
indicated in both moderate- and high-confidence data. The details about the fire detection algorithm
and FRP data are described in Giglio et al. [46]. The gridded active fire count data are generated from
MODIS at 1◦ spatial resolution for the time period. The MODIS FRP data was used in a previous study
over the same study location [34,47].
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3.2. Models/Reanalysis Data

3.2.1. Weather Research and Forecasting Model Coupled with Chemistry (WRF-Chem) Model

In this study, we used the WRF-Chem (version 3.8.1) [48,49] model at a spatial resolution of 25 km
with 40 vertical levels to simulate the meteorological parameters and air pollutant over Dibrugarh.
The simulation domain is defined on the Mercator projection. The meteorological data are taken from
the National Centers for Environmental Prediction Final Analysis (NCEP FNL from GFS ds083.2)
(http://rda.ucar.edu/datasets/ds083.2/) with a spatial resolution of 1◦, available every 6 h, to provide
the initial and boundary conditions for the meteorological fields. Biogenic emissions of trace species
are calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN).
Anthropogenic emissions are taken from EDGAR-HTAPV2. Emissions from biomass burning are
provided to the model via the Fire Inventory from NCAR version-1(FINNv1) [50]. Parameterizations
used in this model study are provided in Table 1.

Table 1. Parameters used in WRF-Chem model simulation. (WRF-Chem: Weather Research and
Forecasting model coupled with chemistry).

Parameterization Scheme Reference

Bulk microphysical parameterization Thompson scheme [51]

Convective parameterization Kain–Fritsch Scheme [52]

Planetary boundary layer (PBL) Yonsei University Scheme [53]

Shortwave radiation physics Dudhia Shortwave Scheme [54]

Longwave radiation physics RRTM Longwave Scheme [55]

Photolysis Madronich fast-Ultraviolet-Visible Model (F-TUV) [56]

3.2.2. WRF-STEM Model

Version 3.5.1 of the WRF model [49] generated the required meteorological variables. The simulation
domain is defined on the Mercator projection. The model domain is centered at 24.94◦ N and 82.55◦ E
and covered the South and East Asian region with a spatial resolution of 25 km with 40 vertical levels.
Similar to WRF-Chem, meteorological static input data are taken from the NCEP FNL with a spatial
resolution of 1◦, available every 6 h, to provide the initial and lateral boundary conditions for the
meteorological fields. The parameterization schemes used in Table 1 are the same for the WRF-STEM
model except for microphysics. The WSM3 microphysics scheme is used in this study.

The STEM has been used extensively in various field campaigns such as the Intercontinental
Chemical Transport Experiment–Phase B (INTEX-B) [57,58] and TRACE-P/ACE-ASIA over East
Asia [24]. The tracer version of the STEM model provides the mass concentration of sulfate,
BC (hydrophobic and hydrophilic), OC (hydrophobic and hydrophilic), dust (fine and coarse) and sea
salt (fine and coarse) aerosols. The tracer version of the STEM model employs simple decay rates for
most of the primary species with no chemical production or loss but includes wet scavenging and dry
deposition [59]. In addition, region-tagged CO tracers help to estimate the contributions from different
geographic areas.

3.2.3. Emission Inventories

The emissions data available from different sectors such as energy, industry, residential,
ground transport, ships, and agriculture are combined and then mapped on the WRF-STEM/Chem
grids. For both WRF-STEM and WRF-Chem models, anthropogenic emissions of CH4, CO, NOx,
SO2, NMVOCs, NH3, PM, BC, and OC are taken from the Emission Database for Global Atmospheric
Research(EDGAR)-Hemispheric Transport Air Pollution version 2 (HTAPv2) emission inventory

http://rda.ucar.edu/datasets/ds083.2/
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(http://edgar.jrc.ec.europa.eu/htap_v2) for the year 2010. Detailed information on the HTAP inventory
can be found in Janssens-Maenhout et al. [60].

Fire INventory from NCAR (FINN), version 1 emissions data [61] are based on Rapid Response
Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts (NASA FIRMS Active Fire Data)
developed specifically for modeling atmospheric chemistry and air quality. FINN provides global
daily estimates of trace gases, including greenhouse gases (GHGs), CO, NOx, VOCs, SO2 and NH3.
It also includes particle emissions from open burning of biomass (including wildfire, agricultural fires
and prescribed burning which does not include biofuel use and trash burning) at 1 km resolution for
use in regional and global chemical transport models [50]. Fire detections with low confidence (<20%)
are removed. Uncertainties in the emission estimates may possibly arise from the use of fire hotspots,
assumption of area burned, land cover maps, biomass consumption estimates, and emission factors.
FINN fire product is used in WRF-STEM/Chem simulation.

3.2.4. HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model:

The HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed by the
National Oceanic and Atmospheric Administration (NOAA) is used in the present study to depict
the motion of the air parcel. The HYSPLIT model’s cluster analysis algorithm groups trajectories by
minimizing the spatial variability between trajectories within some defined number of clusters [62].
In order to delineate the distinct mean pathways of the trajectories, the cluster analysis has been
carried out by using Ward’s hierarchical method [63] to form the clusters by combining the nearest
trajectories. In this study, we used three clusters which are formed by combining similar trajectories in
terms of air mass movement to identify the dominant transportation pathways [64]. The isentropic
back-trajectories are computed at 500 m above ground level (AGL) to identify the source regions.
The model calculations are based on the Global Data Assimilation System (GDAS) meteorological field
produced by NCEP Reanalysis data, with a horizontal resolution of 1◦ × 1◦.

3.2.5. Copernicus Atmosphere Monitoring Service (CAMS)

CAMS provides a recent global model and reanalysis data set of atmospheric composition.
It uses the four-dimensional variational (4D-VAR) data assimilation technique to combine satellite
observations with chemistry-aerosol modeling to obtain the mass mixing ratios of atmospheric trace
gases and aerosols [65]. The CAMS global model (Near-Real-Time) service provides daily analyses
and forecasts of reactive trace gases, GHGs, and aerosol concentrations. The analyses are available at
6-hourly intervals at different spatial resolutions. In our study, we used CAMS model meteorological
(temperature, relative humidity, wind speed, and wind direction) variables and air pollutants (CO, BC,
SO2, and O3) datasets at a horizontal resolution of 0.25◦ × 0.25◦ from December 2012 to November
2013 (https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/).

3.2.6. Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2)

MERRA2 is a global reanalysis dataset produced by NASA Global Modeling and Assimilation
Office (GMAO), using Goddard Earth Observing System Model, version 5 (GEOS-5) [66,67]. The GEOS-5
model coupled with the Goddard Chemistry Aerosol Radiation and Transport model (GOCART)
aerosol module and simulates five types of bulk aerosols [68,69]. The model spatial resolution is
0.5◦ latitude × 0.625◦ longitudes respectively, with 72 hybrid-eta layers from the surface through
0.01 hPa. This provides regularly-gridded, homogeneous documents of the global atmosphere that
integrates additional aspects of the climate system including trace gas constituents, land surface
image, and cryospheric processes. In this study, the daily surface O3 data over Dibrugarh are taken
from MERRA2 assimilated ozone data product, which is produced at NASA’s GMAO from 1980
to the present [70]. From January 1980 to September 2004 the retrieved partial column ozone is
assimilated from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments onboard
on NASA and NOAA satellites. After October 2004 MERRA2 assimilates O3 profiles retrieved from

http://edgar.jrc.ec.europa.eu/htap_v2
https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
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the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument
(OMI) on NASA’s EOS Aura satellite [70]. In addition MERRA2 variables such as OC, BC, Sea salt,
dust, sulfate, SO2 and CO are derived from Goddard Chemistry, Aerosol, Radiation, and Transport
model (GOCART) integrated into the Goddard Earth Observing System Model, Version 5 (GEOS-5)
data assimilation System [69]. The data are downloaded from (https://disc.gsfc.nasa.gov/datasets and
https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/ M2I3NVCHM.5.12.4/2013/11/ (last accessed
on September 2018).

3.3. Methodology

Two sets of numerical simulations are performed using WRF coupled with chemistry (WRF-Chem)
and Sulfur Transport and dEposition Model (WRF-STEM) at a horizontal resolution of 25 km covering
the South Asian domain. We have used two different versions of the WRF (3.5.1 and 3.8.1) model to
evaluate the intra-model variability in simulating the meteorological variables. The simulations are
performed from December 2012 to November 2013 because this period is free from natural phenomenon
like El Niño and La Niña, which play a significant role in the variations of global wind, temperature and
weather patterns. In addition, there are lesser data gaps in simultaneous measurements of various trace
gases of interest over Dibrugarh in this year. Further, CAMS model and MERRA2 reanalysis data are
used along with in-situ pollutants and meteorological variables to understand and evaluate WRF-Chem
and WRF-STEM model performance over Dibrugarh. In this study, we used WRF-STEM region-tagged
carbon monoxide (CO) to identify sources and regions [57]. The CO contribution from different sources
is calculated by breaking the CO emission inventory into the anthropogenic and biomass burning
components. Anthropogenic emission is further broken down into several geographic regions.

4. Results and Discussion

Surface measurements, models (WRF-Chem, WRF-STEM and CAMS) and reanalysis (MERRA2)
datasets are used to comprehend the meteorological condition and air quality scenario over Dibrugarh.
The WRF-Chem model is extensively used in weather/climate research by the global community.
Several versions of WRF model simulation have already been validated over the Indian/South Asian
domain [7,71–74]. As such, use of this different version of the WRF model over the less explored Eastern
Himalayan foothills region is beneficial for intra-model and inter-model evaluation of meteorological
drivers and air pollutants over the complex terrain. The WRF-STEM CO tracer and HYSPLIT model
classify different geographical regions affecting the air quality over Dibrugarh. The WRF-STEM model
used in the present study has already been validated over the complex terrain in Central and Western
Himalayan region [75,76]. In contrast to WRF-Chem and WRF-STEM, HYSPLIT is a computationally
inexpensive and easily accessible model for identification of concentration pathways. MERRA2 with
a rich database obtained using advanced data assimilation techniques is being used extensively by
researchers. CAMS gives the latest global atmospheric composition data at a finer resolution as
described in methodology section.

4.1. Evaluation of Surface Meteorology

North-Eastern India including Dibrugarh is subject to a humid subtropical climate characterized by
hot and humid summers, and cool winters [15]. The winter season (December–February) is associated
with fog and haze, while the pre-monsoon (March–May) is characterized by high wind-speed [37,77].
The monsoon season (June–September) exhibits mostly cloudy and rainy days, which abruptly decrease
in the post-monsoon (October–November) period.

The seasonal variability of surface measured pressure (P) is well captured by the models and
reanalysis data sets (Figure 2) except MERRA2 which underestimates P by ~10 hPa. Both observation
and models show higher values of P during winter and post-monsoon than in pre-monsoon and
monsoon seasons. The high P is associated with cold air, which is denser than warm air and has
the tendency to sink due to gravity. Whereas, low value of P is attributed to intense solar insolation,

https://disc.gsfc.nasa.gov/datasets
https://goldsmr5.gesdisc.eosdis.nasa.gov/data/MERRA2/
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as earth’s surface heats the air in contact with it, the warm air rises, there is less air near the surface, with a
consequent decrease in surface P. Atmospheric temperature exhibits an important role in atmospheric
chemistry as it controls the rate of chemical reactions and helps in gas-particles conversion [78].
In contrast to P, the surface temperature (T) is less in winter and post-monsoon compared to rest
of the seasons, monsoon being the hottest season over Dibrugarh. WRF-Chem, WRF-STEM and
MERRA2 show good performance relative to CAMS (overestimate by ~1–3 ◦C) in simulating daily
T during winter and post-monsoon seasons. While all models and reanalysis products capture the
seasonal variation of relative humidity (RH) relatively well, however the magnitude of actual measured
RH values are underestimated in all seasons except in monsoon. The surface measured RH ≥ 90%,
particularly in the monsoon are associated with saturation [79], which causes heavy rainfall over a
region [80]. Under low RH condition, the significant impact of regional transportation, local emissions,
and physicochemical formation jointly dominates the concentration of atmospheric particles [81].
Thus, an increase in the value of RH is favorable for the formation of particles from the liquid-phase,
heterogeneous reactions and the hygroscopic growth processes [75]. High T, low wind and RH play a
significant role in the enrichment of regional pollution.Atmosphere 2019, 10, x FOR PEER REVIEW 9 of 28 
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Figure 2. variation of daily averaged atmospheric pressure (P); temperature (T); relative humidity (RH);
wind speed (WS); wind direction (WD); planetary boundary layer height (PBLH) are presented using
observation (red), WRF-Chem (blue), STEM (green), CAMS (yellow) and MERRA2 (magenta) over
Dibrugarh from December 2012 to November 2013. (WRF-Chem: Weather Research and Forecasting
model coupled with chemistry, STEM: Sulfur Transport dEposition Model, CAMS: Copernicus
Atmosphere Monitoring Service, MERRA2: Modern-Era Retrospective Analysis for Research and
Applications, Version 2).
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Wind speed (WS) and wind direction (WD) control the horizontal transport and thereby the
spatial distribution of pollutants. WS is particularly an important parameter as it influences the
volume of air by means of dilution or dispersion, determines the transport time between sources and
receptor locations, and also controls the emission of pollutants. Both the WRF-Chem and WRF-STEM
models overestimate the WS in all seasons with the highest bias in winter (Table 2). Whereas CAMS
underestimates in all season except post-monsoon and MERRA2 underestimates in pre-monsoon and
monsoon seasons. The under and overestimation of measured WS by the models and reanalysis data is
attributed to the parameterization adopted in the model and temporal and spatial grids of the reanalysis
data, which are too coarse to identify some of the major events and stronger winds [82]. In pre-monsoon
season, the surface measured wind is predominantly blowing from the south-west (i.e., 180◦–210◦)
direction. In order to better understand the direction of the wind, NOAA NCEP HYSPLIT model back
trajectory analysis data will be presented in a subsequent section of this study. The simulated PBLH
for two sets of WRF simulations shows lower values in winter and post-monsoon compared to those
in pre-monsoon and monsoon. Estimating PBLH and RH values with less uncertainty is essential
for air quality assessment over a region [38,81]. The PBLH plays a crucial role in pollutant dilution
and dispersion and hence governs the surface level concentrations of atmospheric constituents by
virtue of vertical mixing [83]. The models and reanalysis RH underestimated the measured RH in all
seasons (with maximum bias ~26.13% for models in pre-monsoon season and ~32.21% for reanalysis in
post-monsoon season) (Table 2).

This underestimation of RH may affect the convective processes like PBLH. To reduce the
uncertainties in the model simulation, the quality of the input meteorological data like PBLH and RH
datasets reportedly needs further improvement [84].

To quantify uncertainties in simulated meteorological variables, we perform statistical analyses
such as model/reanalysis mean, observation mean, bias, root mean square error (RMSE), mean
absolute error (MAE) and correlation coefficient (R) between observation and Models/Reanalysis
data (Table 2). The RMSE and MAE are standard statistical parameters used to evaluate models
performance for meteorology, as well as in air quality studies [85]. The correlation coefficient R is used
to measure the strength of the linear relationship between observed and model-simulated variables.
The seasonal and annual biases and correlation coefficient values presented in Table 2 are obtained by
subtracting the model-simulated data set from the observation [86]. The data which are not available
for particular measurement methods are not included in the table. The correlation between models
and MERRA2 reanalysis for P is good. However, in the case of T the WRF-STEM, CAMS and MERRA2
overestimate the measured T by ~1–2 ◦C. WRF-Chem, WRF-STEM and MERRA2 overestimate and
CAMS underestimates surface WS by ~0.4 m/s and 0.2 m/s, respectively. In addition, the simulated and
reanalysis RH is underestimated by several magnitudes with mean biases of ~1.24–32.21% (Table 2).
Both models and reanalysis data show small biases, MAE and RMSE for P and T values relative to
RH and WS, indicate that the errors in simulated P and T are small [71,87], which is very important
in air quality studies. The existing uncertainties in models and measurements are due to factors
like assimilation method used in the reanalysis and model physical parameterizations which are
responsible for both underestimation and overestimation of reanalysis pressure and temperature
data [88]. On the other hand coarse spatial resolutions of a grid cell data used in the reanalysis database
cause underestimation of meteorological variables like WS, RH, and T.
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Table 2. Statistics between observed and models/reanalysis meteorological parameters. (WRF-Chem: Weather Research and Forecasting model coupled with chemistry,
WRF-STEM: WRF coupled with Sulfur Transport dEposition Model, CAMS: Copernicus Atmosphere Monitoring Service, MERRA2: Modern-Era Retrospective
Analysis for Research and Applications, Version 2).

Temporal Scale
Statistics Pressure (hPa) Temperature (◦C) RH (%) WS (m/s)

Observation vs Models/Reanalysis WRF-Chem WRF-STEM MERRA2 WRF-Chem WRF-STEM CAMS MERRA2 WRF-Chem WRF-STEM CAMS MERRA2 WRF-Chem WRF-STEM CAMS MERRA2

Annual

Mean_obs 1008.61 1008.55 1008.61 23.86 23.9 23.85 23.86 81.17 81.16 80.76 80.79 1.35 1.35 1.36 1.35
Mean_Model/Reanalysis 994.77 997.14 986.08 23.07 24.08 26.31 24.9 63.72 57.98 64.06 62.97 1.84 1.81 1.08 1.38

Bias 13.84 11.42 22.52 0.79 −0.18 −2.47 −1.04 17.46 23.18 16.69 17.82 −0.48 −0.45 0.27 −0.03
Normalized mean bias 0.01 0.01 0.02 0.03 −0.01 −0.1 −0.04 −1.24 −0.95 −1.62 −1.17 −0.36 −0.34 0.2 −0.02

MAE 13.84 11.42 22.52 1.45 1.29 2.75 1.58 17.68 23.18 17.46 19.23 0.85 0.81 0.85 0.71
RMSE 13.89 11.48 22.55 1.81 1.71 3.36 2.1 25.68 29.7 25.26 26.84 1.01 0.97 1.03 0.86

Correlation Coefficient 0.98 0.98 0.98 0.94 0.93 0.89 0.92 0.4 0.4 0.46 0.23 0.37 0.45 0.29 0.39

Winter

Mean bias

14.25 11.14 23.47 1.14 0.33 −0.15 −1.25 21.74 26.03 1.24 17.62 −1.21 −1.03 0.02 −0.62
Pre-monsoon 13.65 12.27 22.88 0.66 −1.47 −2.66 −2.46 16.62 26.13 16.55 5.66 −0.15 −0.18 0.71 0.38

Monsoon 13.99 11.53 22.10 0.32 0.16 −0.27 −0.49 12.29 17.29 8.76 20.09 −0.10 −0.10 0.80 0.33
Post-monsoon 13.46 10.54 21.83 1.44 0.89 −3.51 0.31 20.80 24.59 19.40 32.21 −0.70 −0.70 −0.07 −0.52

Winter

Correlation coefficient

0.64 0.93 0.65 0.87 0.88 −0.20 0.88 0.50 0.71 0.05 0.59 0.06 0.35 0.82 0.12
Pre-monsoon 0.96 0.95 0.98 0.71 0.75 0.73 0.66 0.78 0.74 0.82 0.56 0.42 0.44 0.21 0.44

Monsoon 0.94 0.92 0.94 0.59 0.55 0.66 0.57 0.29 0.22 0.26 0.08 0.47 0.47 0.28 0.49
Post-monsoon 0.97 0.97 0.98 0.92 0.92 0.74 0.92 0.17 0.10 0.18 -0.05 0.39 0.39 −0.16 0.09
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4.2. Evaluation of Surface Air Pollutants

The measured near-surface BC and CO concentrations are highest during winter whereas the
model (WRF-Chem, WRF-STEM, CAMS) and reanalysis (MERRA2) data show highest values only in
the pre-monsoon season (Figure 3). A similar result of high BC and CO concentrations in winter has
been reported earlier over Dibrugarh by Pathak et al. [89]. The underestimation of models and MERRA2
BC and CO during wintertime is associated with biases in simulated surface winds over Dibrugarh.
Figure 2 shows stagnation condition of observed WS during winter, while models show WS ~ 1–2 m/s.
Further PBLH play a significant role in varying the concentration of pollutants over Dibrugarh during
winter month. Likewise, local anthropogenic emissions, less precipitation/wet removal in winter
leads to accumulation of pollutants resulting in higher concentration levels [38,42,89]. In addition,
emission activities like trash/wood/biomass burning taking place at local scale mostly in the winter and
pre-monsoon season are undetectable by the satellites and also are not incorporated properly in the
emission inventory [74]. For example, the different inventories adopt different criteria for compiling
data and have diverse resolutions and spatial disaggregation methods, etc. Emission inventories collect
the activity data at the regional or national level and then spatially interpolated to generate data at local
scale [90], which may lose some information about local scale emission. Similarly, several studies in
South-Asia also found the limitation of the models in predicting the wintertime measured BC [81,91–94].
The possible causes of underestimation are boundary layer parameterization, coarse spatial resolution of
the models and the emissions inventory used for the simulations [95,96]. RH also plays a significant role
in varying the chemical composition of the atmosphere. Zhang et al. [97] reported that the concentrations
of particulate matter, CO, SO2, and NO2 show positively correlated with RH in all seasons, especially in
winter. Bharali et al. [73] have shown that change in aerosols is significantly associated with change in
RH during wintertime. Furthermore, small to large-scale biomass burning (BB) activities, practices of
shifting cultivation in the hills of North-Eastern states from November to March also contribute to
higher BC as well as CO levels. An abrupt rise in BC and CO concentrations is identified in the
pre-monsoon season from all models, reanalysis and measured data. The measured SO2 does not show
systematic temporal variation during the study period. CAMS SO2 overestimates all other evaluations
during all the seasons. During pre-monsoon season, surface observation, models and reanalysis data
show a high concentration of O3, due to abundant solar insolation available for photo-chemistry.
However, the absolute magnitudes of the surface measured O3 are overestimated by WRF-Chem,
CAMS, and MERRA2 throughout the analysis period. The overestimation of modeled O3 is attributed
to the biases in simulated T, which may affect the gas phase chemistry by under/overestimating
photochemical ozone production and affect the dry deposition of pollutants by reducing the strength of
mixing within the boundary layer. The uncertainties in model simulated ozone precursors such as NOx

and CO also play significant role in altering the concentration of O3. Besides these, underestimation
of simulated and reanalysis RH may affect the concentrations of simulated pollutants. For example,
a dry bias in the model will underestimate the concentrations of hydroxyl radicals, which will affect
the concentrations of many VOCs and O3. Furthermore, emission inventories used in the models
simulation (EDGAR-HTAPv2 emission data for WRF-Chem/STEM and in CAMS, anthropogenic
emissions are taken from MACCity (combined MACC and CityZEN projects) [98] also contribute
uncertainties in the pollutants levels. A number of studies using different emissions inventories as
model input found differences in surface O3 concentrations levels [99,100]. For example the presence
of NOx and non-methane volatile organic compounds (NMVOCs) in the emission inventories is one of
the factors for the uncertainties [101]. The NO2 photolysis is an important source of tropospheric O3,
so any change in the amount of NOx leads directly to the change in O3 concentration. Likewise, O3 is
also produced as a result of a complex set of reactions involving VOC. Thus, increase or decrease of O3

concentration depends on the ratio of NOx and VOC over that region.
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Bhuyan et al. [15] have carried out extensive work on surface O3 over Dibrugarh based on
surface observation data. They have shown that there exist a negative correlation between O3 and
NOx, signifying that O3 formation comes under VOC-limited (NOx-saturated) regime over Dibrugarh.
In the NOx-saturated regime, with abundant NOx, the rate of the OH + NO2 termination reaction
increases as NOx increases, removing both HOx and NOx from the system, limiting OH–HO2 cycling,
thus decreasing the rate of O3 formation [102].

In addition, chemical mechanism (MOZCART/tracer bulk aerosol scheme with parameterized
sulfur chemistry) introduced in the models (WRF-Chem) also play significant role in simulating
the actual magnitude of pollutants concentration. Sharma et al. [74] reported that over South Asia,
WRF-Chem simulated daily average O3 with MOZART chemical mechanism are higher compared to
RADM2 chemical mechanism. For example, WRF-Chem simulated O3 with the MOZART chemical
mechanism shows greater value at Dibrugarh compared to RADM2 mechanism [90]. The differences
in chemical mechanisms are mainly attributed to the additional chemical species and reactions in the
model. The validation of NOx with surface observation is difficult because of the short lifetime and
large variability in the sources. WRF-Chem model has large uncertainties in simulating NO2 due to
uncertainties in emissions from biomass burning and anthropogenic NOx emissions [71].

Similar to Table 2, the pollutants statistics are presented in Table 3. The under-estimation of
models/reanalysis CO, BC, SO2, NOx, and overestimation of O3 is associated with the coarse spatial
resolution of the models and satellite assimilation techniques as well as emission inventories used,
which may not adequately capture the local scale emissions (trashing/wood burning to keep warm
from chilled winter). Further, the uncertainties in the model simulation are associated with biases in
simulating meteorological variables like T, RH, and WS, which affect the reaction rates, formation and
loss processes as well as transportation, etc. For example, the moisture content in the atmosphere and
the wind play a significant role in dispersion and dilution of the species, thereby changing the mixing
ratios in the air over a region.
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Table 3. Statistical evaluation between observed and models /reanalysis CO, BC, SO2, O3, and NOx.

Statistics CO (ppb) BC (ug/m3) SO2 (ppb) O3 (ppb) NOx (ppb)

Observation vs
Models/Reanalysis WRF-Chem WRF-STEM CAMS MERRA2 WRF-Chem WRF-STEM CAMS MERRA2 WRF-Chem WRF-STEM CAMS MERRA2 WRF-Chem CAMS MERRA2 WRF-Chem

Mean_observation 423.61 423.61 423.61 423.61 4.24 4.24 4.24 4.24 3.42 3.42 3.42 3.42 22.08 22.08 22.08 5.67

Mean_Model/Reanalysis 370.43 237.8 273.34 116.31 2.31 1.56 1.45 1.3 0.97 1.9 6.06 1.63 61.2 46.7 70.54 4.63

Bias 53.17 185.81 150.27 307.3 1.93 2.68 2.79 2.94 2.45 1.52 −2.64 1.79 −39.12 −24.61 −48.46 1.04
Normalized mean bias 0.13 0.44 0.36 0.73 0.46 0.63 0.66 0.69 0.72 0.45 −0.77 0.52 −1.77 −1.12 −2.19 0.22

MAE 325.03 293.2 274.12 338.21 2.87 3 3.11 3.2 2.53 1.96 3.49 2.08 39.13 27.69 48.46 3.96
RMSE 451.43 394.23 342.82 431.81 4.21 4.36 4.53 4.56 3.14 2.52 4.68 2.65 45.73 37.86 50.6 6.13
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4.3. Delineation of Source Regions

4.3.1. Local Sources

Species–species correlation analyses are useful for examining the relationship between species and
hence to delineate the common spatio-temporal emission sources. Therefore, in this study, we illustrate
the seasonal BC and CO correlation over Dibrugarh using surface observations, multiple models,
and satellite assimilated data (Figure 4). In order to ascertain the atmospheric pollution picture over
Dibrugarh, the measured BC and CO data available in 5 min intervals are used for calculating the
correlation between them [38,84]. In doing so we get a better correlation between BC and CO than the
daily average observed values. The difference in 5 min and daily BC-CO correlation are provided in
the Table 4. The observed correlation degrade significantly particularly in monsoon season, when the
5-min observations are averaged over a day. One of the possible reasons behind underestimation of
BC-CO correlation in monsoon is wet-removal processes. The variation in correlation in other seasons
are attributed to heterogeneous emission sources, as the surface measuring instruments cannot exactly
mirror the emission sources in the area and dilution/dispersion of pollutants over time.

Table 4. Seasonal observed BC-CO correlation for 5-min and daily data.

Seasons
Observed BC-CO Correlation (R)

5-Minutee Daily

Winter 0.81 0.7
Pre-Monsoon 0.77 0.5

Monsoon 0.58 0.17
Post-Monsoon 0.73 0.54

While for the models and reanalysis data analysis, daily averaged data are considered due to
constraints in the temporal resolution of the models and reanalysis data sets. During winter, measured
(R ~ 0.81) and model simulated BC-CO correlations are better (R ~ 0.99 for WRF-Chem and R ~ 0.94
for WRF-STEM) than MERRA2 (R ~ 0.68) and CAMS (R ~ 0.67) correlations. The high measured
BC and CO correlation in winter are followed by that in pre-monsoon with R ~ 0.77, when all the
simulated (R ~ 0.99 for WRF-Chem, R ~ 0.96 for WRF-STEM, and R ~ 0.89 for CAMS) and reanalysis
data (R ~ 0.8 for MERRA2) also exhibit good correlations. This can be attributed to the small to large
scale biomass burning including slash, trash and agricultural burnings during those seasons with peak
in pre-monsoon (Pathak et al. [42], Gogoi et al. [34], etc) as discussed in successive section, which is a
common source for both BC and CO. Unlike in winter and pre-monsoon, absence of biomass burning
activities in monsoon and post-monsoon leads to lower BC-CO correlations. In the monsoon season,
the observation (R ~ 0.58), CAMS (R ~ 0.21) and MERRA2 (R ~ 0.33) show lower BC-CO correlations than
WRF-Chem (R ~ 0.77) and WRF-STEM (R ~ 0.7). On the other hand, BC-CO correlations obtained from
WRF-STEM (R ~ 0.25), CAMS (R ~ 0.13) and MERRA2 (R ~ 0.12) are lesser than observation (R ~ 0.73)
and WRF-Chem (R ~ 0.76) model in the post-monsoon season. The poor BC and CO correlations for
CAMS and MERRA2 compared to observation and WRF-Chem in the monsoon and post-monsoon
seasons are attributed to wet removal processes, uncertainties in the estimation of biomass burning
emission by different inventories (Global Fire Emissions Database & Global Fire Assimilation System
(GFED & GFAS) for CAMS, Quick Fire Emissions Dataset (QFED) for MERRA2, FINNv1 for both
WRF-Chem & WRF-STEM model) and heterogeneous sources of pollutants. Furthermore, the biases
WS, RH and T also influence the pollution levels via transportation, wet-scavenging and chemical
reactions. To quantify the accurate reason behind the poor post-monsoon correlation, we need
further investigation.



Atmosphere 2019, 10, 703 16 of 28
Atmosphere 2019, 10, x FOR PEER REVIEW 2 of 28 

 

 
(a) 

 
(b) 
 

Figure 4. Cont.



Atmosphere 2019, 10, 703 17 of 28
Atmosphere 2019, 10, x FOR PEER REVIEW 3 of 28 

 

 
(c) 

 
(d) 

Figure 4. BC–CO correlation plots from surface observation, WRF-Chem, WRF-STEM, CAMS and 
MERRA2 over Dibrugarh are presented (a) Winter, (b) Pre-monsoon, (c) Monsoon and (d) 
Post-Monsoon. 

Figure 4. BC–CO correlation plots from surface observation, WRF-Chem, WRF-STEM, CAMS and
MERRA2 over Dibrugarh are presented (a) Winter, (b) Pre-monsoon, (c) Monsoon and (d) Post-Monsoon.



Atmosphere 2019, 10, 703 18 of 28

4.3.2. Regional Sources

CO is considered to be an excellent tracer [21] for delineating the motion of the atmosphere and
the pathways of the emitted species as well as estimating the budget for other chemical constituents.
Thus, in order to identify the contributions from anthropogenic and open biomass burning sources
over Dibrugarh, WRF-STEM simulated CO tracer is used to tag the sectors and regions. Use of
a region-tagged CO tracer is a common methodology employed in air quality models such as in
GEOS-Chem to delineate the source regions [103,104]. The contributions from various sources and
regions are expressed in terms of % contribution [57].

The STEM model CO tracer simulation reveals that the North-Eastern Indian states contribute to
the anthropogenic CO level significantly in all seasons throughout the year, whereas the contribution
from other regions’ varies seasonally (Figure 5a,b).
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monsoon and post-monsoon seasons are attributed to wet removal processes, uncertainties in the 
estimation of biomass burning emission by different inventories (Global Fire Emissions Database & 
Global Fire Assimilation System (GFED & GFAS) for CAMS, Quick Fire Emissions Dataset (QFED) 
for MERRA2, FINNv1 for both WRF-Chem & WRF-STEM model) and heterogeneous sources of 
pollutants. Furthermore, the biases WS, RH and T also influence the pollution levels via 
transportation, wet-scavenging and chemical reactions. To quantify the accurate reason behind the 
poor post-monsoon correlation, we need further investigation. 

4.3.2. Regional Sources 

CO is considered to be an excellent tracer [21] for delineating the motion of the atmosphere and 
the pathways of the emitted species as well as estimating the budget for other chemical constituents. 
Thus, in order to identify the contributions from anthropogenic and open biomass burning sources 
over Dibrugarh, WRF-STEM simulated CO tracer is used to tag the sectors and regions. Use of a 
region-tagged CO tracer is a common methodology employed in air quality models such as in 
GEOS-Chem to delineate the source regions [103,104]. The contributions from various sources and 
regions are expressed in terms of % contribution [57]. 

The STEM model CO tracer simulation reveals that the North-Eastern Indian states contribute 
to the anthropogenic CO level significantly in all seasons throughout the year, whereas the 
contribution from other regions’ varies seasonally (Figure 5a,b).  
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The contributions from the IGP and Bangladesh are high during the winter and pre-monsoon
seasons, while during the post-monsoon season China is the dominant source region. On an annual
basis, the major contribution of anthropogenic CO is from local sources, i.e., from the North-Eastern
India (59%), followed by China (17%), IGP (14%), Bangladesh (6%), the other regions of India
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(3%), and beyond (1%). However, these number could change significantly especially during the
pre-monsoon season when contribution from open biomass CO is taken into account.

The five-day isentropic back-trajectories have been done for all seasons indicating all possible
pathways during the study period using NOAA HYSPLIT model. The trajectories performed in this
work are the clusters of 5-day back trajectories (i.e., the mean trajectories for the entire months of the
season) (Figure 6). In the winter and post-monsoon seasons, the dominant air masses (70.8% and 55.8%)
come from the south-east and do not travel far indicating that pollutant concentrations during this
period are more locally influenced than during pre-monsoon and monsoon seasons. In pre-monsoon
season, the dominant air masses coming from the western region (traversing IGP) and Bay of Bengal
(BoB) (via Bangladesh) established the IGP and Bangladesh as the dominant source region. In the
monsoon season trajectories arising from BoB carry fewer pollutants to the study site. The air masses
from the north (China mainly), south-west and south-east direction shows the major contribution
of pollutants to Dibrugarh during the post-monsoon season. Transport pathways and regional
contribution to pollutants over Dibrugarh have been previously reported by Bhuyan et al. [15] and
Pathak et al. [38] through concentration weighted trajectory (CWT) analysis. In their studies they have
also shown North-Eastern India, IGP and Bangladesh as the major potential source regions contributing
to observe NOx, O3 and CO. The percentage of trajectories from each source region along with mean
concentrations of O3, NOx and CO varied from season to season with occasional contributions from
different source regions such as Tibet and Central Asia.
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Pathak et al. [38] show ~17%–55% of trajectories originating over IGP during different seasons for
CO transported into Dibrugarh. Similarly Bhuyan et al. [15] show ~11–38% of trajectories originating
from IGP during different seasons as potential source region for observed O3 and NOx over Dibrugarh.
Both studies show significant contribution (>75% trajectories) from North-Eastern India during the
winter season for O3, NOX and CO. In our study, North-Eastern India also contributes to ~65% of
the anthropogenic CO loading. In summary, both trajectories analysis and our study illustrate local
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sources (North-Eastern India) contributing to observed elevated CO concentration during winter
over Dibrugarh. Further all studies agree to additional contribution originating from IGP during
the pre-monsoon season. In post-monsoon, pollutants from China are seen to be contributing over
Dibrugarh based on the present study and Bhuyan et al. [15].

4.4. Biomass Burning/Anthropogenic Contributions

In North-Eastern India, biomass burning (BB) has been identified as one of the major sources
of emission of BC and trace gases [15,34,42,101]. Kumar et al. [71] reported maximum production
of CO from the BB sectors in the pre-monsoon season. During this season, in North-Eastern India,
paddy fields are cleared by burning the slashes as part of jhum cultivation [89] that emits large amounts
of CO and BC. The WRF-STEM model simulated BB generated CO (COBB) versus total CO (COTOT)
is used to quantify the dominant sources of BC over Dibrugarh (Figure 7). The result reveals that
approximately 90% of the CO is emitted from the BB sector in pre-monsoon season and 30–50% in the
late post-monsoon and winter seasons over the study location.
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Figure 7. Temporal distribution of biomass burning CO (BIOMCO) over Dibrugarh.

4.5. Case Study: 6 March 2013

To further investigate the cause behind the peak BBCO level during the pre-monsoon season,
we have analyzed the day-to-day variation of CO for the month of March (Figure 8a). For this, we have
used the MODIS-retrieved FRP data to identify the fire events and region. The high sensitivity of
the MODIS active fire product to small-scale burning within each pixel makes it potentially useful
for quantifying the spatial and temporal distribution of small-scale fires in a region [34]. FRP is used
to calculate the contribution of biomass burning. The FRP around the region has been divided into
two categories: medium (30–80%) and high confidence (80–100%) for both Aqua and Terra FRP
data products.
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4.5. Case Study: 6 March 2013 

To further investigate the cause behind the peak BBCO level during the pre-monsoon season, we 
have analyzed the day-to-day variation of CO for the month of March (Figure 8a). For this, we have 
used the MODIS-retrieved FRP data to identify the fire events and region. The high sensitivity of the 
MODIS active fire product to small-scale burning within each pixel makes it potentially useful for 
quantifying the spatial and temporal distribution of small-scale fires in a region [34]. FRP is used to 
calculate the contribution of biomass burning. The FRP around the region has been divided into two 
categories: medium (30–80%) and high confidence (80–100%) for both Aqua and Terra FRP data 
products. 

The high confidence FRP values estimated on 5, 6 and 7 March 2013 are 36.9, 155.25 and 65.8 
MW, respectively. Because of the highest values of FRP as well as COBB, 6 March is considered as the 
event day. The medium and high confidence FRP values indicate that there are fire events taking 
place within 50–80 km of the monitoring site (Figure 8a), (bottom panel). The fire events are also 
evident from the red dots on the MODIS fire count maps (Figure 8b) on the event day (6 March) and 
one day before (5 March) and after (7 March) the event. 

The number of fire counts enclosed by the rectangular box is more on 6 March compared to 5 
and 7 March, over Dibrugarh (Figure 8b). The wind rose plot (Figure 8c) helps to understand the role 
of wind on the event day over the study location.  
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Figure 8. (a) Model-simulated biomass burning generated CO during the month of March 2013,
and MODIS-retrieved FRP for the same period; (b) Fire count map showing the fire events on 5, 6 and
7 March 2013; (c) A wind rose plots to shows the wind profile on the event days.

The high confidence FRP values estimated on 5, 6 and 7 March 2013 are 36.9, 155.25 and 65.8 MW,
respectively. Because of the highest values of FRP as well as COBB, 6 March is considered as the event
day. The medium and high confidence FRP values indicate that there are fire events taking place within
50–80 km of the monitoring site (Figure 8a), (bottom panel). The fire events are also evident from the
red dots on the MODIS fire count maps (Figure 8b) on the event day (6 March) and one day before
(5 March) and after (7 March) the event.

The number of fire counts enclosed by the rectangular box is more on 6 March compared to 5 and
7 March, over Dibrugarh (Figure 8b). The wind rose plot (Figure 8c) helps to understand the role of
wind on the event day over the study location.

Both observed and model-simulated winds are blowing from the eastward direction towards
Dibrugarh with different magnitudes (1.5–2 m/s for model and 0.5–1 m/s for observation),
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thereby carrying the pollutants emitted by fire (Figure 8b) activities. Moreover, BBCO present on
the rest of the days attributed to long-range transport.

4.6. Uncertainties in Model Simulations and Reanalysis Data

There exist uncertainties among models simulations and reanalysis data as mentioned in previous
Sections 4.1, 4.2 and 4.3.1. The differences in biases, MAE and correlation (Tables 2 and 3, Figure 4)
are due to multiple reasons. The uncertainties exist in simulating the pollutants, even when the same
anthropogenic emissions data are used in the models. These may be due to each models treatment
of atmospheric processes such as removal, transport, and deposition of pollutants, cloud-convection,
and chemistry, etc. [81]. For example, the wet and dry deposition may affect one species but not
others in the atmosphere [105]. Similarly, the dynamics i.e., the moisture content and the wind
play a significant role in dispersion and dilution of the species, thereby changing the mixing ratios.
In addition, the parameterizations schemes used in the models are also responsible for differences in
the model simulation. In Dibrugarh, pollutants are emitted from numerous sources like automobiles
and domestic stoves, oil and natural gas sectors, biomass burning, industrial sector, transportation, etc.
Besides this, the concentration of pollutants varies seasonally and spatially due to as removal, transport,
and deposition of pollutants, cloud-convection, and chemistry, etc. In particular, topography also plays
a strong role in the temporal/spatial variation of meteorological variables, such as air temperature,
precipitation [106,107] and air pollutants. Biases in models simulated terrain height will significantly
affect the meteorology and air quality study. Since North-Eastern India is a complex topographic
region, it is essential to do topographic correction in the models/reanalysis datasets. Similar to models,
in reanalysis data, biases are associated with different numbers/types assimilation technique applied in
each reanalysis. Furthermore comparison of coarser grid cell values with point measurements may
also introduce errors in the calculation due to heterogeneity in elevation and land-use changes [88].

5. Conclusions

The temporal variation of meteorological variables and pollutants like CO, BC, SO2, O3,

and NOx over Dibrugarh located in the upper Brahmaputra basin of North-Eastern India has been
investigated using surface measurements, WRF-Chem, WRF-STEM, MERRA2, and CAMS model
datasets. Both model and reanalysis data captured the seasonality of meteorological variables and
pollutants well but with some variability in magnitudes. The difference in magnitudes is attributed to
the spatial resolution selected for the model run, underestimation of RH and overestimation of T and
WS, emission inventories and model’s parameterization. The statistical quantities are computed and
intercompared with surface-based measurement data to enlighten the performance of the models and
reanalysis data over the study location.

The STEM tracer CO and HYSPLIT back trajectories analysis quantify the local and regional
contributions of pollutants over the observation site. The transport of pollutants from various source
regions and their contribution over the selected location Dibrugarh are identified North-Eastern
India (59%), China (17%), IGP (14%), Bangladesh (6%), other regions of India (3%) and other regions
(1% respectively). The models well captured the local/regional scale fire activities and influence of
biomass burning in increasing the CO level over Dibrugarh. It is observed that 90% of the modeled
simulated CO during the pre-monsoon season is due to biomass burning. The existing uncertainties
in models simulation and measurements/reanalysis datasets are discussed in this study for further
improvement of the datasets for future study. Overall, the air-quality models are in better agreement
with observations in the pre-monsoon season especially for BC and CO. The possible reason is due
to daily varying emissions from open biomass burning which is the dominant source in this period.
Even the models show highest BC and CO correlation in pre-monsoon season.
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