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Abstract: This work provides the first continuous measurements of carbonaceous aerosol at the
Global Atmosphere Watch (GAW) Monte Curcio regional station, within the southern Mediterranean
basin. We specifically analyzed elemental carbon (EC) and organic carbon (OC) concentrations in
particulate matter (PM) samples, collected from April to December during the two years of 2016
and 2017. The purpose of the study is to understand the behavior of both PM and carbonaceous
species, in their fine and coarse size fraction, along with their seasonal variability. Based on 18 months
of observations, we obtained a dataset that resulted in a vast range of variability. We found the
maximum values in summer, mainly related to the enhanced formation of secondary pollutants
owing to intense solar radiation, also due to the high frequency of wildfires in the surrounding areas,
as well as to the reduced precipitation and aerosol-wet removal. We otherwise observed the lowest
levels during fall, coinciding with well-ventilated conditions, low photochemical activity, higher
precipitation amounts, and less frequency of Saharan dust episodes. We employed the HYSPLIT
model to identify long-range transport from Saharan desert. We found that the Saharan dust events
caused higher concentrations of PM and OC in the coarser size fraction whereas the wildfire events
likely influenced the highest PM, OC, and EC concentrations we recorded for the finer fraction.

Keywords: carbonaceous species; Mediterranean basin; wildfires; Saharan dust; seasonal variability

1. Introduction

Detailed knowledge of particulate matter (PM) physicochemical properties in the last few decades
has become increasingly important because size and composition characterization of atmospheric
particles is relevant to atmospheric process modeling [1] and for environmental control purposes [2].
Due to its wide implications, PM constitutes a growing challenge as it is a complex subject of study. The
understanding of its atmospheric evolution is indeed made difficult by the wide number of emission
sources and by the numerous physical and chemical processes that are correlated to local, mesoscale,
and synoptic meteorological conditions, which in turn influence the PM complex chemical composition.

Among various elements, the carbonaceous fraction is an important component of particulate
matter (PM), generally ranging between 20 and 50% of PM mass [3,4]. Due to both climate and human
health implications, there is growing scientific interest in understanding and developing processes
involving atmospheric carbon [5].
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Carbonaceous material is usually divided in two fractions: (1) Elemental carbon (EC)—sometimes
referred to as black carbon (BC) or graphitic carbon, and (2) organic carbon (OC). The terminology of
EC and BC has originated from their measurement technique. The BC refers to the light-absorbing
part of the carbonaceous aerosols and is determined using an optical method. In contrast, the EC is
a refractory constituent of the aerosols and is determined using a thermo-optical technique under
oxidizing condition [6]. EC is a primary pollutant formed in combustion processes whereas OC is a
complex mixture of many groups of compounds originating from primary sources and secondary
formation processes [7]. The OC is mainly composed of primary organic carbon (POC) and secondary
organic carbon (SOC), which is produced by photochemical reactions from pollutants. The components
of OC are very complex and rich in toxic substances, and have the potential to cause great harm to
human health [8,9] In spite of the importance of the carbonaceous species, detailed studies on their
characterization and variability are still scarce [10]. Most of the studies performed in the Mediterranean
area are based on samplings carried out at coastal sites, with strong influences from the continental
meteorology and from anthropogenic sources; thus, regional background and remote sites are essential
for the study of natural sources and to obtain information on the Mediterranean basin [11–14]. Recent
results of a European project [15] further evidence that the spatial variability and the sources of PM2.5 in
southern Europe are less known with respect to PM10 because the fine fraction is not widely measured.
Therefore, there is also limited information on spatial and temporal variability of coarse fraction
(PM2.5–10), often linked to local and natural sources [16]. Therefore, further research efforts are needed
to investigate long-term trends of sources of fine and coarse PM fractions in this area for air quality
applications, for management of health risks, and for analysis of PM impact on climate change in the
Mediterranean basin.

In this context, we conducted an intensive measurement campaign at the Monte Curcio (MCU)
Environmental-Climate Observatory, recently built in Southern Italy (in Calabria), and managed by
the Institute of Atmospheric Pollution of the National Research Council (IIA CNR). We collected
daily simultaneous samples of PM2.5 and PM10 for almost two years (2016–2017), and then analyzed
the sampled filters, via a thermo–optical method, to characterize their carbonaceous component.
Carbonaceous species were determined separating EC, mainly of primary origin from combustion
sources, and OC, having a primary and secondary component. We explored the seasonal variability of
both aerosols and carbonaceous species in respect to changes in meteorological conditions and source
influences. We also examined the different behavior of fine and coarse size fractions for both PM, EC,
and OC species. This work thus responds precisely to the need of providing, for the first time to our
knowledge, more information on EC and OC concentration measurements at a rural background site
in the southern Mediterranean basin.

2. Methods and Measures

2.1. Sampling Station and Particulate Collection

The Environmental-Climate Observatory of Monte Curcio (MCU) (39.2◦ N 16.2◦ E; 1796 m a.s.l.)
was activated in the framework of the PON Project I-AMICA (Infrastructure of High Technology for
Integrated Climate and Environmental Monitoring, available online: http://www.i-amica.it/) and it has
been operating since 2015. It is a regional station of the Global Atmosphere Watch (GAW) program,
established by the World Meteorological Organization (WMO)—a United Nations agency—aimed to
systematic long-term monitoring of atmospheric chemical and physical parameters at global scale [17].
Figure 1 shows the coordinates of our sampling site. Located within the Sila National Park, within an
extended plateau of tens of km at a mean altitude of about 1200–1300 m, the station is not influenced
by local anthropogenic sources. However, as reported in [18], there are some important urban centers
(the cities of Cosenza and Rende) at tens of kilometers far from our MCU station. For this reason,
our monitoring site cannot be defined as a remote, but as a rural high-altitude monitoring station.
The strategic location of MCU site is due to a mixing of geographical locations, in the middle in the
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Mediterranean, and altitude, allowing the advantage to intercept long-range transported air masses.
Unfortunately, at the MCU station we did not have any specific instrumental data to characterize the
site in relation to the Planetary Boundary Layer (PBL). Moreover, the orographically complex region of
the Sila Massif would require a highly resolved model that captures the main topography [18], and
this did not allow us to reliably use data from reanalysis modelling to characterize the site. However,
since the height of the site had a relatively small height difference from surrounding plateau, following
the teaching of Coen et al. 2018 [19], we qualitatively concluded that the site is influenced by PBL air
masses. Despite this, especially during the night and the cold season, MCU is likely to intercept air
masses from above the PBL [19].

Figure 1. Context and geographical location of the Monte Curcio (MCU) Observatory. Pictures
are provided by (a) Valentino Mannarino, and (b) Images© OpenStreetMap contributors (https:
//www.openstreetmap.org/copyright).

Among various atmospheric monitoring instruments, the station is equipped with a dual channel
sequential sampler (SWAM 5a Dual Channel Monitor; FAI Instruments, Fonte Nuova, Rome–IT))
which is compliant with EU equivalence criteria for PM10 and PM2.5 measurements against the
reference methods [20]. The SWAM 5a Dual Channel sampler automatically provides simultaneous
sampling and PM mass measurement on two filter membranes by using the β-attenuation method.
We specifically used this instrument at a flow-operating rate of about 2.3 m3/h to simultaneously
collected PM10 and PM2.5 samples. We set the sampling start at midnight with a sampling duration
of 24h. As a substrate for PM10 and PM2.5 collection, we used 47-mm Whatman Q-grade quartz
microfiber filters because it is thermally stable and it is recommended in the scientific community for
the determination of EC/OC [21,22]. The principle of the ß-attenuation method is such: Each white
filter, before collecting PM, is placed between one radioactive source inside the instrument that emits
electrons (beta radiation) and a detector (Geiger–Muller counter) that measures the radiation passing
through the filter “clean” (white measure). Subsequently, a constant airflow for 24 h passes through
the filter where the suspended particulate is deposited; at the end of the period of sampling the filter is
repositioned under the radioactive source and the Geiger counter measures again the radiation that
passes through the sampled filter. Since the particulate has settled on surface of the filter, the intensity
of the beta radiation will result attenuated compared to the white measure. The difference between
the two measures is proportional to the PM10/PM2.5 mass concentrations in the ambient air for the
24 h of sampling. By using this method, in total, we gained daily samples for PM10 for PM2.5 in the
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period from April to December, for both the two years of observation: 2016 and 2017. From January
to March we did not carry out PM collection. During this winter period, we experienced the lowest
temperature of the year (see Figure 2), with some degrees below zero, causing some technical problems
in correct sampling.
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Figure 2. Time series of (a) relative humidity (%) and (b)air temperature (◦C) recorded at the
MCU Observatory.

The Observatory is further equipped with a meteorological station (Lastem LSI) by which
we recorded the local meteorological parameters such as relative humidity (with respect to liquid
water; RH), air temperature (T), atmospheric pressure (P), wind speed (WS), and wind direction
(WD). Time resolution for these meteorological parameters is set to 1 min. Unfortunately, our rain
gauge did not operate properly throughout our work experiment, therefore, we did not collect
precipitation accumulation data from our meteorological station. However, in order to discriminate
between dry and wet periods in our sampling area, we used rainfall data obtained from another
weather station located at Monte Curcio but managed by the Cosenza Meteo Association (http:
//www.cosenzameteo.it/report-noaa-camigliatello-silano/).

2.2. EC/OC Measurements

After collection of simultaneous PM10 and PM2.5 samples, we used one quarter of each sampled
filter to obtain a punch size (1 cm2) for the determination of OC and EC concentrations via
the thermo-optical method (TOT). We used a Sunset Laboratory OC/EC analyzer [23] following
the EUSARII-2 protocol, which is recognized as the European standard thermal protocol for the
measurements of TC, OC, and EC in both PM10 and PM2.5 samples [24]. We performed the analysis
of Total Carbon (TC = OC + EC) on all filters, pre-fired for 2 h at 700 ◦C, in order to remove any
residual carbon contamination, and then implementing the EUSAAR-2 temperature protocol [25]. To
ensure the accuracy of the OC and EC results, we calibrated periodically the analyzer with an external
standard containing known amounts of carbon (e.g., sucrose). Therefore, we used standard sucrose
solutions covering the operating range of samples concentrations for the 3-point calibration of the
Sunset OC/EC analyzer instrument and ongoing quality control. In particular, we pipetted 2.5, 5,
10 µL from aqueous solutions of sucrose (Sunset Laboratory Sucrose Standard 2.198 mg C/mL) on
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1.0 cm2 prebaked quartz-fiber filters. We inserted the wet samples in the analyzer sample holder and
dried during 2 min at 70 ◦C, under a helium stream, before initiating the total carbon combustion
temperature program. This procedure allows us to update the calibration constant and perform a
full calibration curve on a regular basis. Following the same procedure of the exposed samples, we
also analyzed blank filters for correcting the measured concentrations. We obtained concentrations
of the different species after subtraction of the average level present in the blank samples. We found
negligible EC concentrations in blank filters; however, we observed contamination for OC with an
average correction that was about 7%. We analyzed OC and EC analytical uncertainties by calculations
recommended by the instrument manufacturer [23], finding out relative standard deviations less than
5%. In this study, we additionally quantified the Secondary Organic Carbon (SOC) concentration by
using the methodology proposed by Castro et al. [26] and already applied in other studies [27–32].
Following this approach, we estimated the concentration of SOC from the equation reported below:

SOC = OCtotal - (OC/EC)minimum × EC (1)

This commonly used method for the indirect evaluation of SOC in atmospheric particles, has the
advantage of simplicity and low cost, and is based on the minimum values of OC/EC ratios, considering
that those represented samples contain exclusively primary carbonaceous aerosol from fossil fuel
combustion [26,32,33].

2.3. Data Processing and Supporting Tools

For the PM collection, we checked the operational parameters of our sampler instrument such as
flow rates, temperatures, pressures, and humidity. We visually checked the raw data for plausibility
and then removed outliers resulting from malfunctioning from the data set. In total, we gained
384 samples (384 for PM10 and 384 for PM2.5) in the period from April to December for both the
years 2016 and 2017. Since in our work we are interested in understanding the different behavior
of fine and coarse particles fraction, we calculated PM2.5–10 (particulate matter with mass median
aerodynamic diameter > 2.5 µm to < 10 µm; coarse) concentrations by subtracting PM2.5 from PM10

concentrations. We followed the same procedure for carbonaceous species to obtain the EC2.5–10 and
OC2.5–10 size fractions. We considered as valid only EC and OC data passing the quality assurance
and quality control checks suggested by the instrument manufacturer [23] and following the guidance
of the European Standard [24] and used them for all the calculations and statistical analyses. We
studied temporal trends (monthly and seasonal) of both PM and carbonaceous species, in their fine and
coarse size fractions, using descriptive statistics by Excel 2013 Software. In particular, in this work we
showed the monthly trends by using the box-and-whiskers plot, in which each box includes the mean
(midline), 25th and 75th percentiles (box edges), 5th and 95th percentiles (whiskers). Regarding the
meteorological parameters, we converted all of the raw data into hourly averages, which we considered
valid, if at least 66% of the data were available. We then analyzed seasonal as well as hourly-averaged
values from our measured meteorological parameters by using, in this case, the R framework. To show
how wind speed and wind direction conditions varied at the MCU Observatory, we used a wind rose
representation, which is a useful way of summarizing this kind of meteorological data. We used our
WS and WD hourly data as input to the “windRose” function of the R package called “openair” [34].
The “windRose” function can plot wind roses in a variety of ways: Summarizing all available wind
speed and wind direction data, plotting individual wind roses by year, month or season. We considered
the latter to show how wind conditions varied by season at MCU station. To identify the occurrence at
MCU of some natural sources, such as wildfires and Saharan dust, we used the guidelines adopted
by the European Commission for evaluating exceedances attributable to natural sources under the
Directive 2008/50/EC on ambient air quality and cleaner air for Europe [35]. These European guidelines
identify satellite images and back-trajectories analysis as useful tools in determining the impact of these
kind of natural sources. A large number of previous studies used this methodology [36–40]. In our
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study, for each day of our sampling collection and with our monitoring site as the starting point, we
carried out a back-trajectory analysis. We established the trajectory arrival height at the elevation of the
MCU station, 1796 m above ground level. Then, we calculated four days’ back-trajectories, by means
of the Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT4) trajectory model [41], and
using meteorological data supplied by the US National Climatic Data Center. We used the Global Data
Assimilation (GDAS) set as meteorological input. We carried out a further investigation, by using,
as suggested by the same European guidelines [35], additional tools such as numerical models and
satellite images. In particular, the interpretation of the sort of aerosols was supported by the Navy
Aerosol Analysis and Prediction System (NAAPS) developed by the Naval Research Laboratory (NRL)
(http://www.nrlmry.navy.mil/aerosol). As reported elsewhere [37,42], the dust and smoke concentration
NAAPS-based maps were useful to confirm episodes of wildfire events or the transport from North
Africa, respectively. We also used MODIS true-color images (http://rapidfire.sci.gsfc.nasa.gov/) (not
shown here) to identify the origins and the extension of fire events. We also obtained specific locations
and daily total fire hotspots over the area surrounding our monitoring station from the Fire Information
for Resource Management System (FIRMS) (http://maps.geog.umd.edu/firms), which integrates remote
sensing and Geographical Information System (GIS) technologies to deliver global Moderate-resolution
Imaging Spectroradiometer (MODIS) hotspot/fire locations (not shown here).

3. Results

3.1. Meteorological Variability at the MCU Station

At the MCU station, we measured meteorological parameters, including RH T, WS, WD, and P,
with the accuracy reported in Table S1. We summarized the main descriptive statistics (min, mean and
max) of each of the above-mentioned meteorological parameters in Table S2 where results are split
by seasonal periods of our observations. However, to better analyze the meteorological conditions at
MCU, we reported in Figure 2 the hourly time series, over 2016 and 2017, of RH and T. This plot shows
for RH minimum monthly values (below 50%) in August 2017, and maximum monthly values (up to
80%) in January, February, November, and December, for both the year 2016 and 2017. In average terms
RH showed a higher level (76.8%) in fall, while in spring and summer it was around 61% By looking at
Figure 2, we can also observe that T exhibited an opposite trend, in respect to RH, with the highest
values (over than 10 ◦C) recorded from July until September, and peaking around July and August.
Summer 2017 was exceptionally hot, having the hourly temperatures reached values above than 30 ◦C.
The colder temperatures were recorded from January to March, and then from October to December,
with the minimum (under −10 ◦C) recorded in January. For T, we found a seasonal trend showing the
highest averaged values in summer (15.7 ◦C), followed by spring (9.6 ◦C) and then by fall (5.1 ◦C).
Regarding WS and WD data, we used them as input to compute the seasonal wind roses reported in
Figure 3. We obtained them by using the “windRose” function of the R package, useful to plot wind
speed/direction frequencies. In Figure 3, wind speeds are split into four intervals, shown by the scale
in each panel. The grey circles show the % frequencies. Wind direction indicates from where the wind
is blowing. We found that at MCU station the prevailing wind direction was westerly. Wind rose
for spring and summer show similar prevailing wind direction from west (W) and south-west (SW),
even if during summer the frequency associated with the latter direction showed a larger frequency
associated with the highest WS values. We can deduce that these wind conditions favored, with larger
intensity during spring the advection, of PM from sources located at SW in respect to MCU location.
During fall the wind conditions at MCU did not show any prevailing direction. The wind rose in
Figure 3c reports higher wind direction frequencies for both southernly (S) westerly (W) and easterly (E)
also associated with more intense winds. Therefore, during fall season the meteorological conditions
were more unstable, thus favoring dispersion and dilution of aerosol particles and preventing local
accumulations [43–45].
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Figure 3. Seasonal wind roses for: (a) spring; (b) summer; and (c) fall period over the two years
(2016–2017) of our measurements. Wind speeds are split into the intervals shown by the scale in each
panel. The grey circles show the % frequencies.

3.2. PM Levels and Size Distribution

During our sampling campaign at MCU station, the PM collection was carried out from April
to December, for both 2016 and 2017. In total we obtained the same number (n = 384) of sampled
filters for both PM2.5 and PM10 aerosol size fractions. The average concentrations were 8.8 ± 6.5 µg
m−3 for PM2.5, and 16.7 ± 19.0 µg m−3 for PM10. These values are similar to those recorded in other
high mountain sites and to those available at rural background stations across the Mediterranean
basin (see Table S3 for station names, coordinates, and references). The daily PM10 concentration was
found 16 times (4% over the sampling period) above the EU limit value for the protection of human
health, which is equal to 50 µg m−3, as set in the European Directive on ambient air quality (Directive
2008/50/EC) [46].

However, our observations highlight a large variability, with mass concentrations ranging from
0.5 to 55.3 µg m−3 for PM2.5 and from 1.1 to 210.9 µg m−3 for PM10, thus denoting the influence of
different dynamics. In order to appreciate the different behavior of finer and coarser particles, as
described in the Methods section, we obtained the concentration of PM2.5–10 as the difference between
the recorded PM10 and PM2.5 levels. Over the whole period, and in average terms, we detected a
prevalence of the fine mode (57%) with respect to the coarse one. We also provided the monthly trends
of both PM2.5 (fine) and PM2.5–10 (coarse) size fraction by means the box-and-wisher plots reported
in Figure 4. These graphs in Figure 4 show that the average monthly values, for fine and coarse size
fractions, approximately ranged in the same interval of values, going from 2.9 µg m−3 (in December
2017) to 19.6 µg m−3 (in August 2017 for the finer mode, and from 1.7 µg m−3 (in December 2017) to
18.7 µg m−3 (in April 2017) for the coarser one. The trend of each PM size fraction over the months of our
observations was instead dissimilar. The fine fraction showed a clear feature with higher levels over the
warmer months (April–August) in respect to those recorded in the colder ones (September–December).
Differently, the coarser mode exhibited an indefinite trend with a peak value in April 2017.
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3.3. EC/OC Levels and SOC Content

Over the whole period of our observations, we recorded EC mean values of 0.14 ± 0.12 µg m−3

and 0.03 ± 0.03 µg m−3, in the fine and coarse PM size fractions, and OC mean values of 1.2 ± 1.6 µg
m−3, in the finer mode, and 0.5 ± 0.5 µg m−3, in the coarser one. These values result slight lower than
those available and recorded at the two high altitude remote sites in North Italy: Alpe San Colombano
(46.27◦ N 10.19◦ E; 2225 m a.s.l.) and Monte Cimone (44.19◦ N 10.70◦ E; 2165 m a.s.l.) [10,47,48]. The
EC contributed with 0.5–2.4% (fine) and 0.02–2.4% (coarse) while the OC contribution was 3.7–28.8%
(fine) and 3.8–22.8% (coarse). In Figure 5, we summarized, on monthly basis and by box-and-whiskers
plots, values recorded during the 2016 and 2017 sampling campaign, for EC and OC carbonaceous
components, in both fine and coarse fractions. Results show a considerable variation of average values
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among the observed months. EC monthly averaged values specifically ranged from 0.02 to 0.47 µg
m−3 (fine) and from 0.02 to 0.06 µg m−3 (coarse) while the OC ones spaced from 0.2 to 5.6 µg m−3 (fine)
and from 0.1 to 1.1 µg m−3 (coarse). For both OC and EC cases, similarly to PM mass concentration,
the trend of the fine mode exhibited a maximum in August 2017 and was also featured by higher
levels during the warmer period compared to lower ones observed from September till December.
The coarse fraction, instead, showed a variable behavior over the months; however, the maximum
values observed mainly during the warmer months were likely to have been influenced by a number
of factors including: (1) A more stable planetary boundary layer over the summer [12,49]; (2) an
enhanced formation of secondary pollutants owing to intense solar radiation; (3) the high frequency
of wildfires in Mediterranean and surrounding areas; (4) increased anthropogenic pressure since the
Sila National Park is a common tourist destination; and (5) reduced precipitation and aerosol wet
removal. Otherwise we observed the lowest concentrations during the colder months, coinciding
with well-ventilated conditions, low photochemical activity, and higher precipitation amounts. The
OC/EC ratio is strongly source dependent, and may provide a valuable tool to obtain information on
the emission sources and the transformations of the carbonaceous aerosol [27]. Therefore, we reported
also the OC/EC ratio on monthly basis and by box-and-whiskers plots (see Figure S1 in Supplementary
Material). In general, the OC/EC ratio shows a large variability depending on the sources influencing
specific sites, ranging from low values (about 1) in polluted environments to high values (up to 15)
in rural/remote locations [50]. As expected, in our case the OC/EC ratio assumed very high levels,
particularly in the coarse mode, whose value in average was equal to 28.1 ± 40.4. The OC/EC ratio
assumed lower values in the fine mode, equal to 8.6 ± 5.2, as average over the whole period, but
ranging anywhere from 1.3 to 52.8. These high OC/EC ratios can be attributed to low EC levels found
in our rural environment [51] and also to the presence of source emissions of carbonaceous aerosols
containing a higher OC/EC ratio, for example, wood combustion [52–54].
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We additionally estimated the secondary organic carbon (SOC) concentrations by using the OC/EC
minimum ratio method, as described in the Methods Section. Statistics regarding concentrations of
SOC and its percentage contribution to the ambient OC, are summarized in Table S4, together with
related PM, EC, and OC concentrations, for each of the three particulate size fractions (PM10, PM2.5

(fine), and PM2.5–10 (coarse)). As summarized in Table S4, SOC was mainly present in the coarser
fraction representing on average the 97% of total OC in the coarse mode and the 80% of total OC in the
finer one. These percentages reveal a large contribution from SOC in part explained by the fact that
our station is far from primary emission source. To understand how particulate and carbonaceous (EC
and OC) matter varied by season and by source we integrated the general overview herein presented
with the analysis and discussion argued in the following paragraphs.

3.4. Seasonal Variability

Atmospheric aerosol concentrations are controlled by emission, transport, and deposition. Among
meteorological variables, precipitation play a crucial role in their dispersion and diffusion. Based
on a study of a historical set of meteorological data collected in the Calabria region (Southern Italy)
the May–August period is reported as the average dry period, and the September–April period
as the average wet period [55]. We also examined the rain data, recorded at a meteorological
station located near our MCU station, and made available by the Cosenza Meteo Association (http:
//www.cosenzameteo.it/report-noaa-camigliatello-silano/). We analyzed the rain data available for
the last 10 years (from 2008–2018), with particular attention to years of our observations (2016–2017),
getting confirmation of the period of wet (September–April) and dry (May–August) conditions for our
area of investigations. We used these wet and dry periods as reference to discriminate measurements
in our dataset and then evaluate the influence of precipitation on PM and carbonaceous levels recorded
at MCU station (see Figure 6). As result, we obtained that aerosol particles, both PM and carbonaceous
species, are removed by precipitation, decreasing in their concentration in correspondence of the wet
season. The precipitation scavenging is, in fact, one of the most efficient cleaning mechanisms of the
atmosphere [56]. This process is influenced by rain droplet size distribution, rain intensity and collision
efficiency between particles and rain droplets [6,57]. We also observed that deposition increased with
the decrease of the particle diameter [57]. There are different studies [58–62] where precipitation
scavenging coefficients have been calculated showing that there is a linear relationship established
between scavenging coefficient and rain intensity for different aerosol types.
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Figure 6. This figure shows mean levels (dots), 5th and 95th percentiles (whiskers) for: The whole
dataset (black dots), for that containing only days being part of the wet season (blue dots), and
that with days being part of the dry season (brown dots). We also distinguished between fine and
coarse concentrations that are herein reported for (a) PM mass concentration; (b) OC; and (c) EC
carbonaceous content.
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To further investigate the influence of local meteorology on the aerosol and carbon
concentrations, we differentiated the main variables and parameters so far examined within three
sub-groups, specifically referring to the period of: (1) Spring (April–May–June), (2) summer
(July–August–September), and (3) fall (October–November–December). Measurements falling in
the above-mentioned seasons were re-arranged accordingly and computation redone. We obtained
descriptive statistics (min, mean, max, SD), for particulate and carbonaceous species levels in PM10, fine,
and coarse size fractions, along with the OC/EC ratio, SOC calculation, and the percentage of SOC in
OC for each of our three reference seasons (see Table S5). Comparing the results, it can be inferred that
the largest values of both PM and carbonaceous species in the finer mode were measured in summer.
Levels of PM10 and PMcoarse concentrations, as well as OCcoarse and SOCcoarse were instead found to
be highest in spring. For the other variables, we in general found intermediate values in spring and the
lowest values in fall. This seasonal trend is similar to that observed at the Monte Cimone high-elevated
station where higher concentrations are typical of the summer period, while wintertime concentrations
are extremely low (see Table S3 for station coordinates and references). This behavior may be considered
dependent on the seasonality both of potential sources and of the dynamic properties of the PBL,
which determine dilution or accumulation with mainly free tropospheric conditions characterizing
the site during winter [63,64]. The (OC/EC)min ratios were determined separately for each available
seasonal period. The ratios for PM10 were 1.6 (fall), 1.8 (spring), and 3.1 (summer). For the finer fraction
the ratios were 1.3 (fall), 2.3 (spring), and 2.5 (summer), while for the coarser one, we obtained the
following values: 0.1 (fall), 0.9 (spring), and 2.6 (summer). For this parameter, we can still recognize a
seasonal variability with a minimum in fall and a maximum in summer. At our site, a higher summer
contribution of OC may be expected considering the enhanced emission of VOCs from the vegetation
and the increased photochemical activity promoting SOC formation. Even if we detected the major
concentrations both of OC and SOC in the summer period, the percentage of SOC over OC resulted to
be greater in fall, for which we had a contribution equal to 87% and 97% for fine and coarse fractions,
respectively. In spring and summer, the percentage (% SOC/OC) was around 66% and 75% in the fine
particulate matter, and around 89% and 85% in the coarser fraction one. This fact may be due to low
temperatures that favor a more effective formation of SOC via gas-to-particle conversion of oxidized
products of volatile organic compounds present in the atmosphere [65].

3.5. Influence of Wildfire Emissions and North African Mineral Dust

As the MCU station is located in a rural area, a special attention was given to discriminate the
influence of two of the main natural sources affecting the atmosphere of the Mediterranean basin:
Wildfires emissions (WF), and Saharan dust coming from North Africa (NAF) [66]. As described in the
methodology paragraph, the day-by-day identification was carried out by interpreting satellite maps,
like those provided by both NAAPS, MODIS, and FIRMS tools, coupled with the analysis of air masses
performed by the HYSPLIT modeling, which specifically allows visualizing the long-range transport
of air masses and tracking the spatial sources. Days without any evidence of the above-mentioned
sources were marked as background conditions (BKG). Table 1 reports the frequency by season of
occurrence of the events above indicated. Results show a clear clustering of the three events (BKG, WF,
NAF) among the seasons we observed at the MCU stations. During fall, both NAF and WF occurrences
were rare, and almost 80% of the days of this period were marked as BKG. Otherwise, we found that
WF events prevalently happened in summer with a percentage of occurrence equal to 70%. NAF
intrusions showed a quite larger presence (24%) in the spring period even if BKG conditions were the
majority with the 60%. Over the whole period of our observations, we found a total number of 55 days
affected by Saharan dust outbreaks, in line with other work done on this issue [67–69].

Figure 7 reports the HYSPLIT modelling results together with the NAAPS-based maps obtained
for three distinct days we considered as representative for each of the three kind of events we are herein
considering and analyzing. Specifically, Figure 7 refers to (a) 12 May 2016 for NAF dust intrusions
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(Episode I); (b) 7 August 2017 for WF occurrences (Episode II); and (c) 14 November 2016 for the BKG
conditions (Episode III).

Table 1. Frequency occurrences of background (BKG) conditions, wildfire (WF) events; and North
African Saharan dust (NAF) intrusions, by seasons observed at the MCU observatory.

Spring Summer Fall

BKG 60% 29% 80%
WF 16% 70% 14%

NAF 24% 1% 6%
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Figure 7. Upper panels report 4-days of backward trajectories provided by the Hysplit model for (a)
12 May 2016 for the North African Saharan dust (NAF) intrusions; (b) 7 August 2017 as representative
of wildfire (WF) events; and (c) 14 November 2016, in representation of background (BKG) conditions.
Lower panels report NAAPS-based maps showing, for the same days listed above: (a) dust surface
concentrations; (b) smoke surface concentrations; and (c) total optical depth.

Episode I refers to 12 May 2016 and it is representative of dust intrusions coming from North
Africa (NAF). Air masses reported in Figure 7a (upper side), show the typical path followed by air
masses in conjunction with the presence of an anti-cyclone over the North Africa and characterized by
winds blowing from south-west (SW) and able to transport Saharan dust over distance and inject them
into the Mediterranean atmosphere. Regional studies carried out in the Mediterranean basin have
shown that most of the dust-carrying winds have a westerly (87%) or southwesterly (61%) component
(i.e., from North Africa). The intrusion of the air masses loaded with dust is evident in Figure 7a (lower
side), where, as estimated by the NAAPS model, dust concentrations at ground level over our area
corresponds to levels above 50 µg m−3. By the sampler in use at our MCU station, in correspondence
of this Episode I, we recorded the largest value observed for PM10 (211.0 µg m−3). We also found a
level particularly high and equal to 5.9 µg m−3 for OC in the PM10 fraction (see Figures S2a and S3a).
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Episode II is indicative for an extended forest wildfire (WF) spread over a large area around the
location of our MCU station. This forest fire lasted for almost one month, August 2017, and coincided
with particularly high records of the mass concentration of PM2.5 (about 47.0 µg m−3) and with the
highest values recorded in the finer fraction for both the carbonaceous species: OC (22.3 µg m−3) and
EC (0.7 µg m−3) (see Figures S2, S3, and S4, in the Supplementary Materials). The backward trajectories
corresponding to 7 August 2017 (Figure 7b (upper side)) illustrates the influence of westerly air masses.
Apart from the air masses arriving from the west (W; with characteristically higher height), an air mass
from a south-western (SW) direction with a lower elevation of origin reflects shorter-range transport.
An NAAPS-based map, corresponding to this day and reported in Figure 7b (lower side), shows that,
at ground levels, and in correspondence of the area where MCU station is located, the model estimates
a smoke concentration higher than 126 µg m−3.

The third quadrant in Figure 7 exemplifies Episode III, representative of BKG conditions, and
refers to 14 November 2016, when we recorded for both PM and carbonaceous species concentrations,
the lowest concentrations at the MCU station. The backward trajectories reported in Figure 7c (upper
side) shows the influence of clean oceanic air masses coming from the north-north-west (NNW). Such
event was primarily related to air masses coming from the free troposphere (backward-trajectories
starting from 3000 to 6000 m a.s.l) and is likely to have resulted from a long-range transport. In addition,
the map reported in Figure 7c (lower side), denotes the complete absence of both dust and smoke
concentrations over the whole European territory.

Over the whole period of our observations, we marked as a BKG, WF, or NAF event each day
showing similar characteristics to one of the above-described three episodes. We then separated the
whole dataset in three sub-sets whose main descriptive statistics are summarized in Table S6.

Figure 8 specifically reports the average concentrations, along with the 5th and 95th percentiles,
obtained separately over the whole dataset (TOT) and over the three sub-sets each including
measurements done during the identified BKG, WF, or NAF events. In correspondence of BKG,
as also highlighted in Table S6, all the parameters showed the lowest values. As summarized in
Table 1, the BKG conditions prevailed during the fall season, coinciding with well-ventilated conditions,
low photochemical activity, higher precipitation amounts, and less frequency of Saharan dust as
well as wildfires episodes. Plots in Figure 8 show the PM levels and the OC and EC carbonaceous
concentrations, distinguished for both fine and coarse mode. The figure highlights the influence of
both wildfire emissions and Saharan dust over our measurements. It is in fact evident that the WF
episodes affected mainly the finer fraction of the carbonaceous species with the highest averaged values
recorded for OCfine (2.2 µg m−3) and for ECfine (0.2 µg m−3). Previous studies suggested that forest
fires produce mainly fine-mode particle [70,71]. There is a large number of literature-based studies
showing the increasing contribution of pyrogenic particles to fine carbonaceous aerosol [72–74].

The NAF episodes were indeed more impactful on the coarser mode, mainly for the OC species
(OCNAFcoarse = 1.3 µg m−3) and with particular emphasis on the mass concentration (PMNAFcoarse =

35.6 µg m−3). This value of PM concentration was five times higher than the corresponding averaged
value obtained over WF influence (PMWFcoarse = 7.3 µg m−3), and even almost ten-fold larger than
that recorded in BKG conditions (PMBKGcoarse = 3.9 µg m−3). Very few data exist on measurements
of OC and EC during Saharan dust episodes, or more generally on mineral aerosol. In the same
way, laboratory studies on the topic are still scant [75]. For example, Goss and Eisenreich [76] and
Li et al. [77] presented some evidence of adsorption of organic vapors on mineral dust. As OC is a
mixture of hundreds of individual compounds spanning a wide range of chemical and thermodynamic
properties, interaction between mineral dust and organic compounds depends on the amount and
properties of each compound [78].
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Figure 8. This figure shows mean levels (dots), 5th and 95th percentiles (whiskers) for: The whole dataset
(TOT—black colour), for that containing only days identified as background (BKG—grey) conditions,
that with days affected by wildfire (WF—yellow) events, and finally that for the North African Saharan
dust (NAF—red) occurrences. We also distinguished between fine and coarse concentrations that are
herein reported for (a) PM mass concentration; (b) OC; and (c) EC carbonaceous content.

4. Conclusions

In the present work, we presented simultaneous PM2.5 and PM10 measurements collected at the
Monte Curcio station, within the Sila National Park, in southern Italy. We also reported the OC and
EC content, analyzed over each sampled filter by the thermos-optical analysis. We investigated our
results differentiating the fine particulate fraction from the coarser one. The fine and coarse mode OC
and EC values reported in this work are the first long-term data published for the central-southern
Mediterranean basin. We studied the local and long-term atmospheric patterns, with their influences,
by using the Hysplit model coupled with satellite maps, like those provided by both NAAPS and
FIRMS tools. Results evidenced the relevant impact of wildfire events and Saharan dust intrusion
with respect to background conditions, during which the concentrations were found to be the lowest
one for PM (coarse: 3.9 ± 4.4 µg m−3; fine: 6.3 ± 3.5 µg m−3), OC (coarse: 0.4 ± 0.4 µg m−3; fine:
0.7 ± 0.5 µg m−3), and EC (fine: 0.03 ± 0.02 µg m−3; coarse: 0.09 ± 0.07 µg m−3).

Due to the wide availability of vegetation and biomass in our area of investigation, and facilitated
by the increase in temperatures, we found that wildfires in the summer period are a relevant source
of PM, with particular impacting emphasis over the finer fraction. Levels recorded over the WF
conditions raised in fact the following values for PM (coarse: 7.3 ± 7.0 µg m−3; fine: 11.7 ± 7.0 µg m−3),
for OC (coarse: 0.6 ± 0.3 µg m−3; fine: 2.2 ± 2.4 µg m−3), and for EC (fine: 0.04 ± 0.03 µg m−3; coarse:
0.2 ± 0.1 µgm−3).

Based on our observations, we found that the Saharan dust intrusions (NAF) occurred more
often in the spring period, being associated with synoptic pattern characterized by an anticyclonic
ridge extending from northern Africa to the southern Italian Peninsula. The NAF influence revealed a
strong impact over the coarse mode, for the concentrations of PM (coarse: 35.6 ± 31.7 µg m−3; fine:
15.0 ± 10.4 µg m−3), and OC (coarse: 1.3 ± 1.1 µg m−3; fine: 0.8 ± 0.4 µg m−3). Because it is expected the
Mediterranean basin will probably experience more frequent and severe droughts in the near future,
as well as significant increasing in fire activity, such events might gain further importance as sources of
atmospheric compounds are able to exert an influence on the regional climate and on the tropospheric
composition over the Mediterranean basin.

Therefore, further research efforts are needed to investigate long-term trends of sources of fine and
coarse PM fraction in the Southern Mediterranean area for air quality applications, for management of
health risks, and for analysis of carbonaceous species impact to climate change in Mediterranean basin.
A more in-depth investigation of the entire data set detected to date at the GAW regional Monte Curcio
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observatory, together with further efforts in atmospheric and climatic monitoring, will provide in the
short term a useful and unique window in the central-southern Mediterranean region, recognized as
one of the most reactive to air pollution and climate change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/10/592/s1,
Table S1: Accuracy proved during the test report at the MCU (Monte Curcio) station for the sensors of: WS (wind
speed), WD (wind direction), P (pressure), T (air temperature), and RH (relative humidity), Table S2: Descriptive
statistics (min, mean, max) for each meteorological variable (RH, T, WD, WS, and P) recorded at MCU during
2016 and 2017 station and split by seasons of our PM measurements: Spring (April, May, June); Summer (July,
August, September); Fall (October, November, December), Table S3: Name, Code, Coordinates, Altitude, Type,
and References for those stations in the Mediterranean basin for which there are studies and data on air quality,
Table S4: Descriptive statistics (min, mean, max, SD)computed over the complete observing period, and referring
to Particulate Matter (PM), Organic Carbon (OC), Elemental Carbone (EC), ratio OC/EC, Secondary Organic
Carbon (SOC), and percentage of SOC over OC, all determined for PM10, PMfine and PMcoarse size fractions, Table
S5: Descriptive statistics (min, mean, Max, SD)referring to the same parameters and for the same PM size fractions
cited in Table S4 and herein discriminated by seasons: Spring, Summer, and Fall, Table S6: Descriptive statistics
(min, mean, max, SD)referring to the same parameters and for the same PM size fractions cited in Table S4 and
herein discriminated by the events: North African Saharan Dust (NAF), Wildfire (WF), and Background (BKG)
conditions, Figure S1: Monthly trend of (a) OC/EC2.5 ratio for the fine fraction, and (b) OC/EC2.5–10 ratio for the
coarse fraction recorded at the MCU Observatory since April to December 2016 and from April to December 2017.
Each box includes the mean (midline), 25th and 75th percentiles (box edges), 5th and 95th percentiles (whiskers),
Figure S2: Time-series recorded at the MCU station (a) PM10 and (b) PM2.5 observed over the whole sampling
period and discriminated by the influencing events: Background (BKG–grey), Wildfire (WF–yellow), and North
African Saharan Dust (NAF–red), Figure S3: Time-series recorded at the MCU station (a) OC10 and (b) OC2.5
observed over the whole sampling period and discriminated by the influencing events: Background (BKG–grey),
Wildfire (WF–yellow), and North African Saharan Dust (NAF–red), Figure S4: Time-series recorded at the MCU
station (a) EC10 and (b) EC2.5 observed over the whole sampling period and discriminated by the influencing
events: Background (BKG–grey), Wildfire (WF–yellow), and North African Saharan Dust (NAF–red).
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