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Appendix S1. Methods for Calculating Climate Variables 

Temperature (T) data were taken from the Climatic Research Unit (CRU) TS4.01 gridded 

monthly product series [1]. These data are based on meteorological station data, interpolated to a 0.5° 

x 0.5° global grid and available from 1901 to 2016 (Table 1). In addition, we used precipitation (P) 

from the Global Precipitation Climatology Centre (GPCC) V7 product, which is also based on station 

data and covers the period 1901–2013 [2].  

In addition to these ground-based climate products, remote-sensing and reanalysis datasets 

were used. Such datasets can offer useful climate insights in regions where station density is low, 

such as over remote regions of tropical forest. We used the Tropical Rainfall Measuring Mission 

(TRMM) 3B43 V7 precipitation product, which combines satellite and gauge data to estimate 

precipitation from 1998 to 2016 [3]. Reanalysis 2-m T data were retrieved from the ERA-Interim 

Monthly Means of Daily Means product, which spans 1979 to 2016 and assimilates observational and 

model data [4].  

Merging and Regridding 

Precipitation from TRMM and temperature from ERA-Interim data were regridded to 0.5° 

spatial resolution, and then combined with GPCC and CRU data respectively, to form merged 

datasets of P and T. Regridding is the process of transforming data from its native grid (i.e., the source 

grid) to a target grid using interpolation. We used the Python package Iris 

(scitools.org.uk/iris/docs/latest/index.html) to regrid the TRMM and ERA-Interim data. With Iris it is 

possible to assign another climate dataset as the target grid, and thus it is straightforward to convert 

data from one grid to the grid of another dataset. We applied an area-weighted regridding scheme, 

whereby the value of each target grid cell is calculated as the mean of the source grid cells, weighted 

by their land surface area. This approach was used to ensure that all source grid points contributed 

to the regridded field, while accounting for the fact that grid cells differ in size with distance from 

the Equator. 

To reduce computational time, data from GPCC, CRU, TRMM and ERA-Interim were clipped 

to the broadleaf tropical moist forest ecoregion [5] prior to merging the datasets. Linear relationships 

were calculated between GPCC and TRMM P, and between CRU and ERA-Interim T, using data from 

the periods of overlap (1998–2013 for P and 1979–2016 for T). The equations for the lines of best fit 

were used to linearly transform GPCC and CRU data to ensure consistency across the full range of 

the data, and to prevent artificial step changes at the point where datasets were merged.    

𝐶𝑅𝑈′ =  1.093𝐶𝑅𝑈 −  2.576 

𝐺𝑃𝐶𝐶′ =  0.9899𝐺𝑃𝐶𝐶 +  4.1360 

Thus P (GPCC’ and TRMM) and T (CRU’ and ERA-Interim) are continuous from 1901 to 2016. 

Cumulative Water Deficits 

We used MCWD as an indicator of water stress [6]. MCWD is the maximum accumulated water 

deficit (WD) in each hydrological year for each grid cell.  Monthly WD (mm month−1) is defined as 

monthly P minus monthly ET, which was approximated at 100 mm month-1 across all grid cells 

analysed [1]. For each grid cell the start of the hydrological cycle is defined as the mean wettest 

calendar month of the baseline period (1960 - 2016). If the wettest month of the year falls in the period 

January to May then the first hydrological cycle belongs to year y, if the wettest month falls in June 

or after then this hydrological year belongs to y+1 (i.e. the hydrological year is the year in which the 

dry season ends). This method allows us to account for shifts in the phase of the wet and dry seasons 

between the northern and southern hemispheres. For each hydrological year, cumulative water 

deficit is calculated by the following [6]:  

  

𝑖𝑓 𝑊𝐷𝑛−1(𝑖, 𝑗) −  𝐸𝑇𝑛(𝑖, 𝑗) +  𝑃𝑛(𝑖, 𝑗) < 0; 

𝑡ℎ𝑒𝑛 𝑊𝐷𝑛(𝑖, 𝑗) =  𝑊𝐷𝑛−1(𝑖, 𝑗) −  𝐸𝑇𝑛(𝑖, 𝑗) +  𝑃𝑛(𝑖, 𝑗) 

https://scitools.org.uk/iris/docs/latest/index.html


𝑒𝑙𝑠𝑒  𝑊𝐷𝑛(𝑖, 𝑗) = 0 

Calculating baselines and anomalies 

For each grid cell across the tropical forest domain, the merged climate datasets were used to 

calculate baseline mean T and MCWD. Baselines, i.e. long-term averages, were calculated using data 

from 1960–2016 only, due to a decline in the number of meteorological stations prior to 1960.  

Anomalies were calculated separately for El Niño 1982, El Niño 1997 and El Niño 2015. The start 

and end dates of each El Niño were identified using sea surface temperature (SST) anomalies over 

the Niño 3.4 region, with the El Niño period defined as the 12 months with the highest SST anomalies 

(May–April for all three El Niños). These 12 months were used to calculate either the mean-based 

(mean T from 1960–2016) or trend-based (mean T from 10-year period prior to the start of each El 

Niño) T anomalies for each El Niño. MCWD anomalies were calculated by taking the maximum 

accumulated water deficit of the 2 hydrological years beginning at the wettest month preceding the 

start of each El Niño period and subtracting either the mean-based (mean MCWD of the 1960-2016 

hydrological years) or trend-based (mean MCWD of the 10 hydrological years prior to the start of 

each El Nino) baseline. The MCWD anomaly during the two-year window was used to describe the 

strongest moisture-stress suffered by each forest accounting for any temporal variation of the El Niño 

impact across the tropics. 

Table S1. Climate products used to calculate the climate component of the risk score. 

Variable Product Time span 
Temporal 

resolution 

Spatial 

resolution 

Reference 

Precipitation 

Global 

Precipitation 

Climatology 

Centre (GPCC) 

1901–2016 Monthly 0.5° × 0.5° 

Schneider 

et al., 2016 

[2] 

Tropical Rainfall 

Measuring Mission 

(TRMM) 3B43 V7 

1997–2016 Monthly 0.25° × 0.25° 
Huffman et 

al., 2007 [3] 

Temperature 

Climatic Research 

Unit (CRU) 
1901–2016 Monthly 0.5° × 0.5° 

Harris et 

al., 2014 [1] 

ERA-Interim 

Reanalysis 
1979–2016 Monthly 0.25° × 0.25° 

Dee et al., 

2011 [4] 

  



Appendix S2. Methods for calculating forest ignition potential 

Extent of Forest Cover 

We defined our area of interest based on the boundaries of the broadleaf tropical moist forest 

ecoregion [5]. To determine forest extent within the broadleaf tropical moist forest ecoregion, we used 

the 30-m resolution Global Forest Change (GFC) dataset [7], version 1.4 spanning 2000 to 2016 

[earthenginepartners.appspot.com/science-2013-global-forest/download_v1.4.html]. Based on GFC 

tree cover dataset, we assessed the extent of forests in the years 2000 and 2014. For 2000, all pixels 

with tree cover above 30% were considered as forest. The extent of forest for 2014 was generated by 

subtracting forest losses and adding forest gains for 2000-2014 from the baseline 2000 forest extent. 

Tree cover in the GFC dataset was defined as canopy closure for all vegetation taller than 5m in 

height. Forest loss was defined as a stand-replacement disturbance or a change from forest to non-

forest state, while forest gain was the inverse of the loss or a change from non-forest to forest. All 

processing was conducted in Google Earth Engine [code.earthengine.google.com].  

Analysis of Forest Ignition Potential  

To ensure compatibility with climate data, all calculations were performed within a 0.5 degree 

grid. We used forest edge as a proxy for forest ignition potential (I). Here, ignition potential was 

calculated as the percentage of forest within 1km from forest edge normalized by the total forest area 

within grid cell. There is no global ignition potential data readily available for El Niño 1982 and El 

Niño 1997. Thus, data from 2000, the first year available in the Global Forest Change dataset, was 

used to calculate fragmentation for El Niño 1982 and El Niño 1997, while fragmentation data from 

2014 was used for El Niño 2015. The two forest cover maps from 2000 and 2014 were used in the 

ignition potential analysis. 

 

Figure S1. Expected impacts of El Niño events on ecological and physiological processes leading to alterations 

to the tropical forest carbon cycle. El Niño events are known to increase (+) temperature (T) and decrease (-) 

precipitation (P) within the tropical forest realm. These changes in climate have potential effects on a series of 

processes within the forest (red arrows). Greater T will increase soil and plant respiration, and photosynthetic 

rates may exceed their T threshold above which carbon assimilation decreases. The decrease in P combined with 

higher T will increase vapor pressure deficit (VPD) leading to closure of the stomata and reduction of 

photosynthesis. Lower P may decrease soil water, which in combination with higher VPD can lead to hydraulic 

failure of trees and potentially tree death [8]. Under drier and hotter conditions, the forest becomes more 

https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.4.html
https://code.earthengine.google.com/


flammable. The odds of fire are strongly related to forest fragmentation. Fragmented areas are more accessible 

by people, increasing the chance of human-driven ignition [9]. In addition, edge effects lead to a hotter and more 

arid microclimate, accentuating any El Niño-driven increases in T and decreases in P, also increasing the chances 

of fire. Combined, these processes are expected to lead to greater carbon emissions and reduced carbon uptake 

by tropical forest trees during El Niño years.  

 

Figure S2. Occurrence of greatest risk in each grid cell across the three El Niños. Black indicates the El Niño in 

which grid cells had their highest risk score. Note: a grid cell can only be black in one El Niño.   



 

Figure S3. El Niño risk calculated from global susceptibility and mean-based severity. Top panel -  El 

Niño1982 and El Niño1997 susceptibility using forest edge data from the year 2000. Second panel -  El Niño 

2015 susceptibility using forest edge data from 2014. Lower three panels - severity scores for El Niño 1982, El 

Niño 1997 and El Niño 2015. The x-axes represent longitude and y-axes latitude. 

 



Figure S4. Proportion of risk score due to severity and susceptibility in each El Niño. Maps show 

severity or susceptibility scores divided by risk scores. Note that contributions are often small as the 

risk score was calculated by multiplying severity and susceptibility. 

 

Figure S5. Proportion of severity score in each El Niño attributable to temperature. Red represents a greater 

proportion of the severity metric attributed to temperature. At the top of each graph we present the mean 

value across every cell for each El Niño.  Remaining variation is due to MCWD. 

  



Figure S6. Contribution of temperature (T), ignition potential and water deficit (MCWD) to susceptibility 

scores. (a) Relative contribution of these three variables in RGB colour space (upper panel for susceptibility 

using 2000 forest cover). (b) Proportional contribution of each variable to the susceptibility score.  

 

Figure S7. Box plots of the susceptibility, severity and risk scores for the El Niño 2015 between grid-cells in the 

Amazon basin with positive (Fire+) and negative or neutral (Fire-) fire frequency anomalies in 2015. Fire 

anomalies were weakly but positively correlated with susceptibility (Kendall’s rank correlation, τ = 0.06, P = 

0.001), severity (Kendall’s rank correlation, τ = 0.09, P < 0.001) and risk scores (Kendall’s rank correlation, τ = 

0.09, P < 0.001). Fire + and fire - grid cells show statistically significant different susceptibility, severity and risk 



score using Mann-Whitney tests (P ≤ 0.005).  The 2015 fire anomaly data for the Amazon basin was resampled 

to the resolution of our risk maps, then for each grid-cell in the Amazon Basin we extracted the fire anomaly 

and the susceptibility, severity and risk scores. This gave a data frame where each row has the fire anomaly, 

susceptibility score, severity score and risk score of a grid-cell. Relationships between fire anomaly and these 

scores were assessed using Kendall's rank correlation. We also converted the fire anomalies to binary variables 

indicating whether or not fire anomalies were greater than zero, and then tested if the susceptibility and other 

scores differed between binary fire categories. 
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