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Abstract: Glutamine synthetase (GS) plays a key role in nitrogen metabolism. Here, two types of
tobacco transformants, overexpressing Triticum aestivum GS1 (TaGS1) or GS2 (TaGS2), were analysed.
Four independent transformed lines, GS1-TR1, GS1-TR2, GS2-TR1 and GS2-TR2, were used for
the nitrogen treatment. Under nitrogen-sufficient conditions, the leaves of GS2-TR showed high
accumulation of the TaGS2 transcript, while those of GS1-TR showed a low TaGS1 transcript levels.
However, compared with nitrogen-sufficient conditions, the TaGS1 transcript level increased in the
leaves under nitrogen starvation, but the TaGS2 transcript level decreased. In addition, the TaGS1 and
TaGS2 transcript levels were highest in the middle leaves under nitrogen-sufficient and starvation
conditions. These results show that nitrogen supply and leaf age regulate TaGS expression, even when
they are driven by a super-promoter. Additionally, in regard to nitrogen metabolism level, the lower
leaves of the GS1-TR exhibited lower NH4

+ and higher amino acid contents, while the upper leaves
exhibited higher amino acid, soluble protein and chlorophyll contents. The leaves of the GS2-TR
exhibited lower NH4

+ but higher amino acid, soluble protein and chlorophyll contents. Given the
role that GS isoforms play in nitrogen metabolism, these data suggest that TaGS1 overexpression may
improve nitrogen transport, and that TaGS2 overexpression may improve nitrogen assimilation under
nitrogen stress.

Keywords: tobacco; overexpression; glutamine synthetase 1; glutamine synthetase 2; expression
regulation; nitrogen metabolism

1. Introduction

Nitrogen is an important macronutrient that is a limiting factor in the production and yield of
crops [1]. Nitrogen is an important limiting factor for the yield and quality of wheat and requires large
quantities of nitrogenous fertilisers to attain maximal growth and productivity [2]. To increase crop
production in line with human population growth, nitrogen fertilisers are being applied excessively,
leading to severe nitrogen pollution globally [3,4]. Therefore, there is a need to improve nitrogen use
efficiency (NUE) to make agriculture more sustainable [5].
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Glutamine synthetase (GS; EC 6.3.1.2) catalyses the conversion of NH4
+ into glutamine,

which serves, together with glutamate, as a nitrogen donor for the biosynthesis of all other amino acids
and then other nitrogenous compounds, such as protein, chlorophyll, and nucleotides [6]. For this
reason, GS plays a key role in nitrogen assimilation in higher plants [2,7,8].

GS is expressed in the form of two isoforms with different subcellular localisation: the cytosolic
isoform (GS1) and the chloroplastic isoform (GS2) [9]. GS1 (38–40 kDa) is encoded by 3–5 nuclear
genes, whereas GS2 (42–45 kDa) is encoded by one nuclear gene (Bernard et al., 2008) [10]. GS2 is
the predominant isozyme in leaf mesophyll cells, it plays a role in assimilating NH4

+ derived from
photorespiration and nitrate reduction [11]. GS1 has multiple metabolic functions, such as assimilating
ammonia into glutamine for transport and distribution throughout the plant, reassimilation of the NH4

+

generated from various catabolic processes during leaf senescence, and assimilation of ammonium
derived from uptake from soil and nitrate reduction in roots [12–17]. Roots are central to the acquisition
of water and mineral nutrients, including nitrogen, and the GS1 in roots plays an important role in
nitrogen absorption and assimilation, which affects the NUE of plants [18,19].

Since GS have important functions in nitrogen assimilation, the GS has been investigated in many
cases with the goal of improving crop NUE [2,17,20,21]. Quantitative trait locus analyses performed in
several cereal species have suggested that genotypic differences in NUE can partly be explained by GS
loci [5]. Kichey, Heumez, Pocholle, Pageau, Vanacker, Dubois, Le Gouis and Hirel [2] found that there
was a strong relationship among total N, chlorophyll, soluble protein, ammonium, amino acids and
GS activity in wheat. In previous study, we found that the regulation of GS isozymes may promote
flow strength and enhance NUE by a complex carbon-nitrogen metabolic mechanism [22]. Therefore,
one potential way to improve NUE is to enhance GS enzyme activity in plants. However, previous
research showed that the overexpression of GS may have different effects on the observable phenotype
and nitrogen metabolism [5,23].

Many studies have reported increased GS activity following overexpression of GS1 genes [24–27].
However, the phenotypes of the transgenic plants were not completely consistent, and negative
effects on plant productivity have even been recorded. For example, tobacco overexpressing the GS1
gene from pea exhibited higher vegetative biomass under conditions of nitrogen starvation and high
nitrogen [27], but tobacco expressing the GS1 gene from alfalfa showed better growth only under
nitrogen starvation [25]. Transgenic wheat lines overexpressing the GS1 showed significantly higher
grain yield and grain nitrogen content [24]. However, Thomsen, Eriksson, Møller and Schjoerring [5]
have not been able to reproduce these results in their laboratory using the same wheat lines. In rice,
overexpression of the Oryza sativa GS1 (OsGS1) gene led to improvement of spikelet yield in plants
grown in the growth chamber under non-limiting conditions [28] and resulted in increases in soluble
protein and nitrogen content when plants were grown in a controlled environment [29]; however,
the grain yield significantly decreased when the transgenic lines were grown in greenhouse or under
field conditions [28,29]. In GS2-overexpressing plants, the total amino acid content was improved
in transgenic non-heading Chinese cabbage overexpressing the Brassica campestris GS2 (BcGS2) [30].
In addition, overexpression of the Nicotiana tabacum GS2 (NtGS2) driven by the rbcS promoter enhanced
the growth of tobacco seedlings [31]. However, growth and vegetative biomass were all significantly
reduced in transgenic tobacco overexpressing the GS2 gene from pea [27]. Among the factors causing
differential responses were the transformation plant, the specific donor gene, nitrogen supply and
growth conditions.

In cells, the inorganic nitrogen assimilation process that GS participates in consumes a substantial
amount of energy [5,32]; therefore, GS must be tightly regulated at the gene, transcript and protein
levels. In wheat, nitrogen starvation improved GS1 expression but led to a reduction in GS2 expression
in leaf of 15-day-old plants [33]. After heading stage, the expression level of GS1 in leaf was great
higher in low nitrogen treatment than that in high nitrogen treatment [34]. During leaf senescence,
nitrogenous compounds are used as nutrient sources for the building of new organs and for grain-filling
in cereals [20]. In leaf, the main source of nitrogen for remobilisation is chloroplasts, so the expression of
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chloroplastic isoform, GS2, decreases with leaf ageing, while the cytosolic isoform, GS1, is responsible
for the re-assimilation of ammonium in old leaves, the expression of GS1 increased in the mesophyll
of senescing leaves [10,34–36]. Based on the above reports, we hypothesised that Triticum aestivum
Glutamine synthetase (TaGS) expression may follow the same rule in GS transgenic plants as it
does in wild type (WT) plants, depending on the specific GS gene, plant developmental stage and
environmental conditions, which can affect nitrogen metabolism and result in different phenotypes.
A better insight into these mechanisms is necessary if attempts to use overexpressing TaGS to improve
wheat NUE are to be successful.

Highly active constitutive promoters have been widely used in many studies; in most cases,
the gene, driven by a constitutive promoter, is expressed constitutively. However, the GS1 transcript,
driven by the cauliflower mosaic virus (CaMV) 35S promoter, decreased significantly when transgenic
alfalfa was grown under high-nitrogen conditions [37]. Maybe the driven efficiency of CaMV 35S
promoter is not sufficient under high-nitrogen conditions. The super-promoter is a synthetic promoter
consisting of a trimer of the octopine synthase transcriptional activating element linked to the
mannopine synthase 2’ (mas2’) activator-promoter region [38]. In tobacco leaves, the super-promoter is
approximately 156-fold stronger than the CaMV 35S promoter [39]. The super-promoter has routinely
and effectively been used to drive both transient and stable transgene expression in tobacco and other
plants [39–42]. Therefore, we chose the super-promoter to drive the TaGS1 and TaGS2, ensuring that
the efficiency is sufficient.

In this study, we initially investigated the expression patterns of TaGS1 and TaGS2 driven by the
super-promoter in the leaf of different rank and roots of tobacco growing under nitrogen sufficiency
and nitrogen-starvation conditions. Based on the transcript levels, polypeptide abundances and
activities of TaGS1 and TaGS2 transformants, we examined the effect of TaGS1 or TaGS2 overexpression
on nitrogen metabolism and plant growth to determine whether GS overexpression can improve
nitrogen use efficiency.

2. Materials and Methods

2.1. Plasmid Construction

The cDNA of TaGS1 and TaGS2 were obtained from wheat (T. aestivum L.) cultivar Yumai 49 in our
laboratory previously [43]. Modified pCAMBIA 1300 [40] was kindly provided by Dr. Hairong Zhang
(China Agriculture University, Beijing, China). The CDS (Coding Sequence) of TaGS1 and TaGS2 were
amplified using specific primers (Sangon Biotech Co., Ltd., Shanghai, China) (Table S1). The PCR
was performed on a T100 Thermal cycler (Bio-Rad, Hercules, CA, USA), and the conditions were as
follows: initial denaturation at 94 ◦C for 2 min, 30 cycles at 94 ◦C for 45 s, 70 ◦C for 1 min and 72 ◦C for
70 s, with a final elongation at 72 ◦C for 10 min. The PCR products were respectively cloned into the
modified pCAMBIA 1300 plasmid. The recombinant vectors were constructed using ClonExpress One
Step Cloning Kit (Vazyme Biotech Co., Ltd., Nanjing, China). The TaGS1 or TaGS2 CDS was cloned as
a SpeI-XbaI fragment downstream of the super-promoter [38] in the modified pCAMBIA 1300 binary
vector (Figure S1). The recombinant plasmid was introduced into Agrobacterium tumefaciens strain
GV3101 (provided by Dr. Hairong Zhang), which was used to transform tobacco.

2.2. Plant Transformation and Growth Conditions

Tobacco (Nicotiana tabacum cv. K326) obtained from our laboratory, was transformed via an
Agrobacterium-mediated method using a leaf disc [44]. The shoots were formed in differentiation
Murashige and Skoog (MS) medium with 0.5 mg/L indole-3-acetic acid, 2.0 mg/L 6-benzyladenine,
100 mg/L cefotaxim, 200 mg/L timentin and 25 mg/L hygromycin. Then, the shoots were excised
and transplanted to root induction medium containing 100 mg/L cefotaxim, 200 mg/L timentin,
and 25 mg/L hygromycin. Explants with well-developed roots were transferred into pots containing
sterilised vermiculite and grown in a growth chamber at a temperature of 25 ± 2 ◦C under a 16-h light
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period (Red and blue LED, 200 µmol m−2 s−1). The plants were watered with half-strength Hoagland
nutrient solution every two weeks. The transformation of these plants was verified by PCR analysis.

The primary transformants (T0) were allowed to self-fertilise, and seeds from the T1 generation
were used. Two TaGS1 transformant lines and two TaGS2 transformant lines were chosen for further
analysis. The T1 seeds were soaked in 75% ethanol for 4 min, followed by 6.25% sodium hypochlorite
for 10 min and then washed five times in sterile water. The treated seeds were sowed in MS
medium with 20 mg/L hygromycin and then grown in a growth chamber at a temperature of
25 ± 2 ◦C under a 16-h light period (Incandescent lamp, 50 µmol m−2 s−1). After 10 days, some
hygromycin-resistant seedlings were transferred to MS medium and maintained in a vertical position
for 10 days. Other hygromycin-resistant seedlings were transferred to sterilised vermiculite. The plants
were further grown and watered with modified Hoagland nutrient solution (containing 1 mM NH4NO3,
5 mM KNO3, 4 mM Ca(NO3)2, 1 mM KH2PO4, 2 mM MgSO4, 20 µM Fe-EDTA, 6.7 µM MnSO4, 0.32 µM
CuSO4, 0.77 µM ZnSO4, 46µ M H3BO3, 0.5 µM H2MoO4, 0.2 µM CoCl2, 5 µM KI) in a growth chamber
at a temperature of 25 ± 2 ◦C under a 16-h light period (Red and blue LED, 200 µmol m−2 s−1) for
9 weeks. After the first 9 weeks of growing with optimal nitrogen nutrition, plants were divided into
two sets: those sub-irrigated with the same modified Hoagland nutrient solution containing sufficient
nitrogen (N+), or those with modified Hoagland nutrient solution without a nitrogen source (N−)
(containing 5 mM KCl, 4 mM CaCl2, 1 mM KH2PO4, 2 mM MgSO4, 20 µM Fe-EDTA, 6.7 µM MnSO4,
0.32 µM CuSO4, 0.77 µM ZnSO4, 46 µM H3BO3, 0.5 µM H2MoO4, 0.2 µM CoCl2, 5 µM KI) and grew
for an additional 7 weeks.

After 9 + 7 weeks, upper, middle and lower leaves were harvested individually. The top fully
expanded leaf is considered the threshold. The second and third leaves above this threshold are the
upper (new) leaves; the second leaf beneath this threshold is the middle (functional) leaf; leaves near
the bottom of the plant are the lower (senescing) leaves (Figure S2). The harvested leaves and roots
were immediately frozen and ground in liquid nitrogen, and then the fine homogeneous powder was
placed in an Eppendorf tube and stored at −80 ◦C for further experiments. After harvesting, the leaf
area and fresh and dry weights were measured.

2.3. RNA Isolation and RT-qPCR Analysis

Total RNA was extracted from the leaves using TRIzol Reagent (Ambion; Thermo Scientific,
Waltham, MA, USA), in accordance with the manufacturer’s instructions. The cDNA was synthesised
using the First Strand cDNA Synthesis Kit (Thermo Scientific). Quantitative PCR (qPCR) was
performed on an iQ5 Multicolor Real-Time PCR (RT-PCR) Detection system (Bio-Rad, Hercules,
CA, USA). The qPCR mix was composed of 10 µL AceQ qPCR SYBR Green Master Mix (Vazyme),
9 µL diluted cDNA 1:10 (v/v), and 1 µL 10 µM forward and reverse primers. All the primers (Sangon)
used are shown in Table S2. Reactions proceeded according to the following program: 95 ◦C for 5 min,
followed by 40 cycles of 95 ◦C for 10 s, 60 ◦C for 20 s, and 72 ◦C for 20 s. Fluorescence readings were
taken during the elongation step (72 ◦C). Melting curves were obtained from 60 to 95 ◦C with a 1 ◦C
increase every 10 s. The relative expression levels of the genes were calculated using the Actin gene as
an internal control.

2.4. GS Activity Assay and Western Blotting

The fine homogeneous powder obtained from the harvested leaves (0.5 g) was used and mixed
with 0.8 mL extraction buffer (100 mM Tris, 1 mM EDTA, 1 mM MgCl2, 1 mM Phenylmethanesulfonyl
fluoride (PMFS), and 10 mM β-mercaptoethanol, pH 7.6). The extract was centrifuged at 12,000× g
and 4 ◦C for 30 min. The obtained supernatant was then prepared for further experiments.

The total GS activity was measured in accordance with a method described by Ma, et al. [45].
Protein content was determined using the Nanodrop 2000 spectrophotometer (Thermo Scientific).
The component proteins were separated using a discontinuous sodium dodecyl sulphate (SDS)-PAGE
system, with a 15% analysing gel and 5% stacking gel, and electrophoresis was performed at room
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temperature. Proteins were transferred to polyvinylidene difluoride membranes for Western blotting.
GS polypeptides were detected using polyclonal antibodies raised against GS1 and GS2 of wheat.

2.5. Determination of Free NH4
+, NO3

−, Total Amino Acid, and Total Chlorophyll Levels

The free NH4
+ in leaves was determined using the Berthelot colour reaction method [46] with

some modifications. The fine homogeneous powder (~0.2 g) was extracted with 1 mL 3% tricarboxylic
acid (TCA) at 25 ◦C for 5 min with shaking. The extracts were then centrifuged at 20,627× g and 25 ◦C
for 15 min. Then, 0.5 mL of the supernatant was mixed with 1.5 mL Solution A (5% NaOH, 0.215%
NaClO) and 1.5 mL Solution B (6.2% phenol, 0.25‰ sodium nitroprusside) and incubated at 37 ◦C for
20 min. Finally, the absorbance at 625 nm was determined by UV1000 (AOE Instruments Co., Ltd.,
Shanghai, China), and NH4

+ contents were calculated from the standard curve of (NH4)2SO4.
The nitrate in leaves was determined by salicylic acid colorimetry [47] with some modifications.

The fine homogeneous powder (~0.2 g) was extracted with 1 mL 3% TCA at 25 ◦C for 30 min with
shaking. The extracts were then centrifuged at 20,627× g and 25 ◦C for 10 min. Next, 50 µL supernatant
were mixed with 50 µL 3% TCA and 150 µL salicylic acid solution (5 g salicylic acid, 100 mL sulfuric
acid) and incubated at 25 ◦C for 20 min. Finally, 3.5 mL 8% NaOH were added. After cooling,
the absorbance at 410 nm was determined by UV1000 (AOE), and nitrate levels were calculated from
the standard curve of KNO3.

Total amino acids were measured by ninhydrin colorimetry with some modifications. The fine
homogeneous powder (about 0.2 g) was extracted with 1 mL 10% acetic acid at 25 ◦C for 10 min
with shaking. The extracts were centrifuged at 20,627× g and 25 ◦C for 10 min. Then, 150 µL of the
supernatant were mixed with 2 mL acetate buffer (pH 5.4), 3 mL ninhydrin solution, and 0.1 mL 0.1%
ascorbic acid and heated at 100 ◦C for 15 min. After cooling, the absorbance at 580 nm was determined
by UV1000 (AOE), and the amino acid content was calculated from the standard curve of leucine.

Total chlorophyll was extracted from the fine homogeneous leaf powder (~0.2 g) using 1.5 mL
80% acetone at 25 ◦C for 10 min with shaking. The extracts were centrifuged at 13,201× g and 25 ◦C for
15 min. Then, 1 mL supernatant was mixed with 3 mL 80% acetone. The absorbance at 664 and 647 nm
was determined by UV1000 (AOE), and the total chlorophyll content was calculated as described
previously [48].

2.6. Statistics

All data represent mean ± standard deviation (SD) of three biological replicates. The data sets
were analysed using Microsoft Excel (2016, Microsoft, Redmond, WA, USA), the data were statistically
analysed using SPSS version 13.0 (IBM, Chicago, IL, USA). One-way analysis of variance with a
Duncan post hoc test was used for testing differences.

3. Results

3.1. Identification of Transgenic Tobacco

Transformation vectors containing TaGS1 or TaGS2 were constructed as shown in Figure S1.
The expression of TaGS1 and TaGS2 was under the control of a super-promoter [38]. The ligated
gene fragments were transformed into tobacco by an Agrobacterium-mediated method using a leaf
disc. The transgenic lines containing TaGS1 were designated GS1-TR, while those containing TaGS2
were designated GS2-TR. Six GS1-TR lines and six GS2-TR lines were confirmed by PCR. Four
independent transformed lines, GS1-TR1, GS1-TR2, GS2-TR1 and GS2-TR2, were used for the nitrogen
starvation experiment.

3.2. Characteristics of GS Expression in GS1-TR and GS2-TR

The mRNA levels of TaGS1, TaGS2, NtGS1-3, NtGS1-5 and NtGS2 were monitored by reverse
transcription quantitative PCR (RT-qPCR). The transcription of TaGS1 were about two times of NtGS1-3
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and about 50 times of NtGS1-5 in the leaf of TaGS1 transformant lines, while the transcription of TaGS2
were less than that of NtGS2 in the leaf of TaGS2 transformant lines. Under nitrogen-sufficient
conditions, the transcription of TaGS1, NtGS1-3 and NtGS1-5 was much lower than that of TaGS2
and NtGS2 in leaves of different rank, and the transcription of TaGS2 was the highest in the middle
leaves, higher in the lower leaves and the lowest in the upper leaves, while the transcription of NtGS2
was highest in the upper leaves, higher in the middle leaves and lowest in the lower leaves, and the
transcription of NtGS2 in the TaGS transformants was higher than that in the WT, especially in the
GS2-TR2 (Figure 1). Under nitrogen starvation, the transcription of TaGS1 and NtGS1-3 was increased
significantly in the leaves of different rank, especially in the middle and lower leaves of GS1-TR2,
while the transcript of TaGS2, NtGS2 and NtGS1-5 were decreased significantly in the different rank
leaves (Figure 1). In a word, the leaf age and nitrogen condition affected TaGS1 and TaGS2 expression
in transgenic tobacco, and TaGS1 expressed more while TaGS2 expressed less compared with the
background NtGS1 (NtGS1-3, NtGS1-5) and NtGS2 respectively.
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Figure 1. Relative transcription levels of Triticum aestivum glutamine synthetase (GS) TaGS1 (A),
TaGS2 (B), Nicotiana tabacum glutamine synthetase (GS) NtGS1-3 (C), NtGS1-5 (D) and NtGS2 (E) in
the upper, middle, and lower leaves of transgenic plants grown under nitrogen-sufficient (N+) and
nitrogen-starvation (N−) conditions. Data are means of three independent biological replicates ±
standard deviation (SD). Asterisks indicate that the data is significantly different (p < 0.05) from the
data of wild type (WT) plants.
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Since GS plays important functions in plant roots of plants, the expression of GS in roots was
also monitored. In TaGS1 transformant lines, TaGS1 overexpressed observably, about 20 times that of
NtGS1-3 under N+ treatment, and about 30 times that of NtGS1-3 under N− treatment; the transcription
of TaGS1 under N− treatment was about five times that under N+ treatment (Figure 2A,C). In TaGS2
transformant lines, TaGS2 was also observably overexpressed, about 4–50 times that of NtGS2 under
N+ treatment, and about 3–7 times that of NtGS2 under N− treatment; the transcription of TaGS2
under N+ treatment was about 4–15 times that under N− treatment (Figure 2B,E). Compared with the
WT, the transcription of NtGS1-3, NtGS1-5 and NtGS2 in TaGS transformants were up-regulated under
nitrogen-sufficient conditions; under nitrogen-starvation conditions, the transcription of NtGS1-3
and NtGS1-5 were up-regulated but the transcription of NtGS2 were down-regulated in TaGS1
transformants. Furthermore, the transcription of NtGS1-5 was down-regulated but the transcription of
NtGS2 were up-regulated in TaGS2 transformants (Figure 2C–E).
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Figure 2. Relative transcription levels of TaGS1 (A), TaGS2 (B), NtGS1-3 (C), NtGS1-5 (D) and NtGS2
(E) in the root of transgenic plants grown under nitrogen-sufficient (N+) and nitrogen-starvation (N−)
conditions. Data are means of three independent biological replicates ± SD. Asterisks indicate that the
data is significantly different (p < 0.05) from the data of WT plants.
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3.3. Characteristics of GS Subunit Expression in GS1-TR and GS2-TR

The molecular masses of the NtGS1and NtGS2 subunits are approximately 39 and 44 kDa,
respectively [49], which are similar to those of the TaGS1 (39 kDa) and TaGS2 (42 kDa)
subunits. Therefore, NtGS1 and TaGS1, NtGS2 and TaGS2 showed the same migration pattern
on SDS-PAGE, respectively. Because the GS of wheat and tobacco had high amino acid sequence
similarity, GS antibodies could not distinguish GS isozymes. Under nitrogen-sufficient conditions,
four transformants showed significantly higher levels of GS1 and GS2 subunits compared to WT.
The contents of GS2 subunit were highest in middle leaves, higher in upper leaves and lowest in the
lower leaves, and the contents of GS1 subunit were very low in GS1-TR2 and GS2-TR, but no GS1
subunit content was found in the leaves of WT (Figure 3). It was obvious that the expression of GS1
in the leaf was inhibited under nitrogen-sufficient conditions (Figure 3). Under nitrogen starvation,
compared with the WT, GS2-TR had much higher levels of GS2 subunits in the leaves of different
rank, especially in the middle leaves, and also had higher levels of GS1 subunits in the middle leaves
(Figure 3). Compared with WT, the GS1-TR2 showed significantly higher levels of GS1 and GS2
subunits in the leaves of different rank, but the GS1-TR1 showed lower levels of GS1 and GS2 subunits
(Figure 3).
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Figure 3. GS expression in the upper, middle and lower leaves of GS1-TR, GS2-TR, and the WT grown
under a N+ or N− regime. Western blot analysis using various antibodies against wheat cytosolic GS1
and chloroplastic GS2.

In the roots, GS1 was the main subunit and no GS2 polypeptide was detected in WT and TaGS
transformants. Compared with the WT, TaGS transformants had higher levels of GS1 subunits
(Figure 4). Under nitrogen starvation, the contents of GS1 subunit were higher than those under
nitrogen-sufficient conditions (Figure 4).
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3.4. Characteristics of GS Activity in GS1-TR and GS2-TR

Under nitrogen-sufficient conditions, compared with the WT, GS1-TR and GS2-TR had higher
total GS activity than those in the leaves of different rank, except for the upper leaves of GS1-TR1.
Under nitrogen-starvation conditions, the total GS activity of WT and TaGS transformants was higher
than those under nitrogen-sufficient conditions, except in the upper leaves of GS2-TR2. Compared with
the WT, TaGS transformants showed significantly higher total GS activity in the leaves of different rank,
except for the middle leaves of GS1-TR1 and the upper leaves of GS2-TR1 and GS2-TR2 (Figure 5).
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3.5. Characteristics of Nitrogen Metabolic Status in GS1-TR and GS2-TR

In plants, NO3
− is the major storage form of nitrogen [50]. Under nitrogen starvation, the NO3

−

content in leaves was only about 20% of that under nitrogen sufficiency (Figure S3), showing that the
nitrogen storage in leaves was dramatically reduced under nitrogen starvation.

Under nitrogen-sufficient conditions, the NH4
+ levels of the two transformants were significantly

decreased in the upper and middle leaves compared with those in the WT (Figure 6A), while the amino
acid and total soluble protein levels were significantly increased (Figure 6B,C). These results indicate
that TaGS overexpression may improve the efficiency of NH4

+ assimilation into amino acids and
protein. However, the chlorophyll levels (Figure 6D) of the four transformants showed non-significant
differences compared with those in the WT, except for low leaves of GS2-TR2.

Under nitrogen starvation, NH4
+ is generated mainly from the self-metabolism process of the

plants and degradation of nitrogenous substances such as proteins and chlorophyll. The NH4
+

contents in the lower leaves of GS1-TR1, GS1-TR2, GS2-TR1 and the middle leaves of GS2-TR1 were
significantly lower than that in the WT, and the NH4

+ content was lower than that in the respective
leaves under nitrogen-sufficient conditions (Figure 6A), indicating that overexpression of TaGS1 or
TaGS2 can improve NH4

+ assimilation. Interestingly, higher NH4
+ content was observed in the upper

leaves of GS1-TR2, GS2-TR1 and GS2-TR2, compared with WT; these results may be related to the
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strong self-metabolism process and lower GS activity of upper leaves. Amino acid contents differed
significantly in the leaves of different rank among GS1-TR, GS2-TR and WT plants with the following
order: GS2-TR > GS1-TR > WT (Figure 6B). For GS1-TR2, the contents of amino acid, chlorophyll and
soluble protein in upper and middle leaves were significantly higher than those in WT, but the amino
acid content was significantly higher and the soluble protein content was significantly lower in the
lower leaves. The chlorophyll and soluble protein contents of the GS2-TR leaves were higher than that
of WT leaves (Figure 6C,D). These results suggest that overexpression of TaGS1 or TaGS2 can improve
nitrogen reassimilation in different ways, but GS2-TR is more efficient at reassimilating nitrogen than
is GS1-TR.
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Figure 6. Nitrogen metabolite levels in the upper, middle, and lower leaves of GS1-TR, GS2-TR, and the
WT plants grown under nitrogen-sufficient and nitrogen-starvation conditions. The free NH4

+ (A),
total free amino acid (B), total soluble protein (C) and total chlorophyll (D) content were determined.
Each value is shown as the mean ± standard error of three replicates. Asterisks indicate that the date is
significantly different (p < 0.05) from the data of WT plants.
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3.6. Phenotypes of GS1-TR and GS2-TR

Compared with the WT, GS2-TR seedlings had more but shorter lateral roots, and GS1-TR
seedlings had longer lateral roots (Figure 7A and Table S3), suggesting that overexpression of TaGS1
and TaGS2 can stimulate the lateral root formation of transgenic tobacco. With regard to the shoots,
GS1-TR exhibited a larger leaf area than WT during the seedling stage (Figure 7A, which is consistent
with the findings of Oliveira, Brears, Knight, Clark and Coruzzi [27].

Under nitrogen-sufficient conditions, GS1-TR showed significantly higher leaf area and plant
height than those in WT, but GS2-TR showed a similar phenotype to the WT, with no difference in plant
height, leaf area and plant dry weight (Figure 7B, Table 1). Under nitrogen starvation, GS1-TR showed
an improved phenotype compared to WT, i.e., a higher plant height and greener and larger upper
leaves, and GS2-TR exhibited greener and larger leaves (Figure 7B). The plant height, dry weights
and the leaf area of GS1-TR increase significantly compared with the WT, except for the plant height
of the GS1-TR1. For GS2-TR, the plants were smaller than WT, especially for GS2-TR2. However,
the plant dry weights and the leaf area of GS2-TR did not significantly reduce, and the leaf area of
GS2-TR1 increased significantly (Figure 7B, Table 1). These results suggest that overexpression of
TaGS1 or TaGS2 can improve tobacco growth, and when nitrogen is a limiting factor of tobacco growth,
overexpression of TaGS1 or TaGS2 improves the tolerance to nitrogen stress in different ways.

Table 1. Plant height, leaf area, dry weight (DW) and root dry weight of GS1-TR, GS2-TR and WT
plants grown under nitrogen-sufficient (N+) and nitrogen-starvation (N−) conditions.

N+ N−
Plant

Height (cm)
Leaf Area

(cm2)
Plant

DW (g) Root DW (g) Plant
Height (cm)

Leaf Area
(cm2)

Plant
DW (g) Root DW (g)

GS1-TR1 35.5 ± 1.1 * 3732 ± 449 * 5.2 ± 0.8 0.64 ± 0.09 * 21.2 ± 2 1392 ± 66 * 3.9 ± 0.4 * 0.72 ± 0.03 *
GS1-TR2 33 ± 1.5 * 3340 ± 323 * 6 ± 1.2 0.65 ± 0.07 * 25.5 ± 2.3 * 1552 ± 75 * 5.2 ± 0.5 * 0.89 ± 0.04 *

WT 26 ± 2.3 2331 ± 317 4.2 ± 0.2 0.51 ± 0.02 20.3 ± 1 1190 ± 53 3.1 ± 0.2 0.55 ± 0.04
GS2-TR1 27.8 ± 1.9 2885 ± 241 5.3 ± 1.2 0.55 ± 0.07 19 ± 1.1 1442 ± 126 * 3.5 ± 0.1 0.59 ± 0.02
GS2-TR2 27.2 ± 2.5 3093 ± 299 5.1 ± 0.6 0.65 ± 0.04 * 14.8 ± 0.2 * 1338 ± 42 3.6 ± 0.2 0.67 ± 0.01 *

Note: Each value is shown as the mean ± standard error of three replicates. Asterisk indicate that the date is
significantly different (p < 0.05) from the data of WT plants.
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Figure 7. Qualitative growth phenotypes of transgenic and WT plants. (A) Comparison of seedlings
from the WT and transgenic tobacco GS1-TR and GS2-TR. The plants were germinated and grown for
20 days in Murashige and Skoog (MS) medium as described in Materials and Methods section. (B) The
phenotype of transgenic tobacco GS1-TR and GS2-TR, compared with that of the WT, after 7 weeks of
growth under nitrogen-sufficient (N+) and nitrogen-starvation (N−) conditions.
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The roots are central to the acquisition of nitrogen and play a central role for NUE. Compared
with the WT, GS1-TR had longer root length and significantly higher root dry weight, but GS2-TR
showed a similar root length to the WT, and only GS2-TR2 had significantly higher root weight
(Figure 8 and Table 1). Under nitrogen starvation, the dry weight of GS1-TR was higher than that
under nitrogen-sufficient conditions; in addition, the root length of GS1-TR increased under nitrogen
starvation (Figure 8 and Table 1).
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4. Discussion

GS has an important role in the assimilation of inorganic nitrogen. For decades, in order to
improve nitrogen use efficiency, overexpression of GS has been investigated in numerous cases.
However, the outcome has generally been inconsistent [5,23]. Therefore, it is necessary to parse the
reasons if we want to improve NUE by overexpressing GS. The way to overexpress GS has mainly
been based on the use of constitutive promoters [21,25,27–29,51]. The expression of endogenous GS is
regulated by complex mechanisms [5] at pre-transcriptional, transcriptional and post-transcriptional
levels to adapt to plant growth and environmental conditions. This multilevel regulation of GS can
potentially interfere with the expression of GS driven by a constitutive promoter.

The super-promoter is a constitutive promoter; it can efficiently drive transgene expression
in leaf and root of tobacco [38]. In this study, under nitrogen-sufficient conditions, the leaves of
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GS2-TR showed high accumulation of the TaGS2 transcript, while those of GS1-TR showed a low
TaGS1 transcript levels (Figure 1A,B). However, under nitrogen starvation, the TaGS1 transcript level
increased in the leaves of different rank, but the TaGS2 transcript level decreased in leaves of different
rank (Figure 1A,B). Furthermore, the transcription of TaGS1 in the roots was much higher than that of
TaGS2 in N− and N+ treatment (Figure 2). These results would suggest that although TaGS1 and TaGS2
were driven by a constitutive super-promoter, their expression was regulated by nitrogen condition
and organs.

Under nitrogen-sufficient conditions, the transcript level of TaGS2 in the middle leaves was about
2.5-fold that in the upper leaves (Figure 1B). Furthermore, increases in GS polypeptide content and
activity were detected in the leaves of the four transformants, especially in the middle and lower leaves
(Figures 3 and 4). Under nitrogen starvation, the TaGS1 and TaGS2 transcript levels were highest in the
middle leaves (Figure 1A,B). Moreover, GS activity of the four transformants increased significantly in
the middle and lower leaves compared with the activity of the WT (Figure 4). These results suggest
that although TaGS1 and TaGS2 were driven by a constitutive super-promoter, the expression of TaGS1
and TaGS2 was regulated by leaf age, and overexpression of TaGS1 or TaGS2 can improve the GS
activity and polypeptide content.

GS1 and GS2 have different functions in plant growth; accordingly, the genes expression must
be regulated in different manners to match genes different roles. Which is even more intriguing,
given that nitrogen supply and leaf age had similar effect on the expression of endogenous genes
of NtGS1-3 and NtGS2 and exogenous genes of TaGS1 and TaGS2 in the transcript levels (Figure 1).
Under nitrogen-starvation conditions, the nitrogen in senescing (lower) leaves becomes very precious
for transferral to the developing leaves. Improving the transcript level of TaGS1 and NtGS1-3 can
facilitate nitrogen transport from senescing leaves to newly budded leaves (upper) to enable plant
survival under nitrogen stress. When inorganic nitrogen is not available, the content of NH4

+ derived
from nitrate reduction decreases, and this part of the ammonia assimilation process would decrease
correspondingly, leading to decreased transcript levels of TaGS2 and NtGS2 in the middle and lower
leaves (functional leaves) (Figure 1B,E). In this regard, exogenous gene expression is dependent not
only on the constitutive promoter, but also on the gene itself, the plant developmental stage and
the environment.

Due to the CDS of TaGS1 or TaGS2 being driven by a constitutive super-promoter, there is
no regulation of transcriptional level. Our data suggests that there may be a post-transcriptional
regulation that plays a major role in controlling the accumulation of the TaGS1 and TaGS2 in tobacco.
Numerous studies have implicated microRNAs (miRNAs) as key regulators of post-transcriptional
gene expression [52,53]. miRNAs are small ~21–22 nt molecules that play critical roles in various
developmental, stress and signalling responses [54]. Recent studies have examined the changes
in expression levels of miRNAs in response to nitrogen starvation in maize [55,56], rice [57] and
Arabidopsis [58,59]. GS is the key enzyme in nitrogen metabolism, and the expression of GS is
regulated by nitrogen supply and plant developmental stage [33,34]. Therefore, we presumed
that the transcription level of TaGS1 or TaGS2 might be negatively regulated by miRNAs in the
post-transcriptional level.

In addition to nitrogen supply and leaf age, other factors can also affect the expression of GS.
In sorghum, two different GS1 isoforms were induced by NH4

+ but not by nitrate [60]. In Arabidopsis,
red light increased the expression of GS2, but far-red light decreased GS2 expression [61]. In peas, high
CO2 content inhibited the expression of GS2 [62]. We presumed that these factors may also affect the
expression of GS, even when driven by a constitutive promoter.

In roots, the transcription of TaGS1 was much higher than that of TaGS2, accordingly more GS1
subunit (no GS2) was detected in TaGS transformants than in WT (Figures 2 and 4). These results
suggest that the translation of TaGS2 was inhibited in the root. Therefore, the change of root phenotype
in TaGS2 transformants may be mainly caused by the change of NtGS1-3 and NtGS1-5. In TaGS1
transformants, the root length and root dry weight and the expression of endogenous gens of NtGS1-3
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and NtGS1-5 and exogenous gens of TaGS1 increased compared to WT (Figures 2 and 8, Tables 1 and
S3). These results show that TaGS1, NtGS1-3 and NtGS1-5 can promote root growth.

The assimilation of inorganic nitrogen that takes place through the GS/GOGAT pathway
requires carbon skeletons, reducing power and ATP, which are provided directly or indirectly by
photosynthesis [63,64]. Meanwhile, a high photosynthetic rate also requires a sufficient nitrogen
supply. In C3 plants, GS2 plays an important role in the reassimilation of NH4

+ derived from
photorespiration [11]. Compared with the WT, the leaves of GS2-TR had lower free NH4

+ (Figure 6A)
and higher amino acid (Figure 6B) and soluble protein (Figure 6C) levels under nitrogen-starvation
conditions. These results suggest that TaGS2 overexpression can improve nitrogen assimilation.
Therefore, the chlorophyll level remained higher in GS2-TR than that in WT plants (Figure 6D), leading
to a higher photosynthetic rate (Figure S4).

During leaf senescence, nitrogenous compounds are used as nutrient sources to build new
organs [20,65]. GS1 plays a key role in nitrogen remobilisation in this process [5,10]. However, the ability
of GS1 to transport nitrogen seems to be insufficient [66]. In our study, when the middle and lower
leaves of GS1-TR began to senesce under nitrogen starvation (Figure 7B), the levels of TaGS1 and
NtGS1-3 expression and GS activity were increased in GS1-TR (Figure 1A,C and Figure 4), resulting in a
higher content of free amino acids (Figure 6B), the main form of nitrogen translocation in the senescent
leaves [67]. Additionally, the upper leaves had higher levels of chlorophyll and soluble protein than
those of the WT (Figure 6C,D). These results indicate that TaGS1 overexpression may improve the
efficiency of nitrogen remobilisation from senescent leaves to developing ones.

Under nitrogen starvation, TaGS1 and TaGS2 transgenic plants had higher GS activity and a
better nitrogen metabolism status than those of WT, suggesting that applying less nitrogen to GS
transgenic plants may be an effective way to increase nitrogen use by improving the ability to assimilate
nitrogen or the efficiency of nitrogen remobilisation. Sun, Huang and Su [30] found that GS1 and
GS2 overexpression simultaneously induced tolerance to nitrogen starvation in transgenic plants.
Therefore, based on these complementary functions of TaGS1 and TaGS2, concurrent overexpression of
GS1 and GS2 may be an effective method to improve the efficiency of nitrogen use.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/8/406/s1,
Figure S1: Recombinant vector containing a derivative of the super-promoter, GS1 or GS2, and the NOS terminator
between the right (RB) and left borders (LB) of the T -DNA. The hygromycin resistance gene (hyg) was located
between the 35S promoter and poly-A tail. Figure S2: Leaf strata designation of tobacco plants used in this
study. Figure S3: The NO3

− content in the upper, middle, and lower leaves of GS1-TR, GS2-TR, and the WT
plants grown under nitrogen sufficient and nitrogen-starvation conditions. Each value is shown as the mean ±
standard error of three replicates. Asterisk indicate that the date is significantly different (p < 0.05) from the data
of WT plants. Figure S4: CO2 response curve (A) and light response curve (B) of photosynthesis in the middle
leaves from TR-GS1, TR-GS2, and WT plants grown under optimum nitrogen and nitrogen-starvation conditions.
Table S1: The primers used to amplify the full cDNA of TaGS1 and TaGS2 from wheat. Table S2: The primers
used in quantitative RT-PCR analysis of transgenic lines and Wild Type. Table S3: Total root length and lateral
root number of seedlings from GS1-TR, GS2-TR, and WT plants.

Author Contributions: Formal analysis, Y.W., Z.Z. and M.G.; Funding acquisition, X.M. (Xinming Ma) and X.W.;
Investigation, Y.W., A.S., X.J. and M.G.; Methodology, A.S., X.J. and X.M. (Xiaodan Meng); Project administration,
X.W.; Supervision, X.M. (Xinming Ma) and X.W.; Writing—original draft, Y.W. and X.J.; Writing—review and
editing, Z.Z., X.M. (Xinming Ma), X.M. (Xiaodan Meng) and X.W.

Funding: This work was supported by the National Natural Science Foundation of China (31271650), the Modern
Agricultural Technology System in Henan province (S2010-01-G04) and the National Key Research and
Development Program of China (2016YFD0300205) and State Key Laboratory of Wheat and Maize Crop
Science (39990047).

Acknowledgments: We thank Hairong Zhang (China Agriculture University, Beijing, China) for giving us the
modified pCAMBIA 1300 vector and Textcheck (http://www.textcheck.com) for editing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2073-4425/9/8/406/s1
http://www.textcheck.com


Genes 2018, 9, 406 15 of 18

References

1. Kaur, G.; Asthir, B.; Bains, N.S.; Farooq, M. Nitrogen nutrition, its assimilation and remobilization in diverse
wheat genotypes. Int. J. Agric. Biol. 2015, 17, 531–538. [CrossRef]

2. Kichey, T.; Heumez, E.; Pocholle, D.; Pageau, K.; Vanacker, H.; Dubois, F.; Le Gouis, J.; Hirel, B. Combined
agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine
synthetase. New Phytol. 2006, 169, 265–278. [CrossRef] [PubMed]

3. Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev.
Environ. Resour. 2009, 34, 97–125. [CrossRef]

4. Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.;
Tilman, D.G. Technical report: Human alteration of the global nitrogen cycle: Sources and consequences.
Ecol. Appl. 1997, 7, 737–750. [CrossRef]

5. Thomsen, H.C.; Eriksson, D.; Møller, I.S.; Schjoerring, J.K. Cytosolic glutamine synthetase: A target for
improvement of crop nitrogen use efficiency? Trends Plant Sci. 2014, 19, 656–663. [CrossRef] [PubMed]

6. Miflin, B.J.; Lea, P.J. Amino acid metabolism. Annu. Rev. Plant Physiol. 1977, 28, 299–329. [CrossRef]
7. Edwards, J.W.; Walker, E.L.; Coruzzi, G.M. Cell-specific expression in transgenic plants reveals

nonoverlapping roles for chloroplast and cytosolic glutamine synthetase. Proc. Natl. Acad. Sci. USA
1990, 87, 3459–3463. [CrossRef] [PubMed]

8. Tobin, A.; Ridley, S.; Stewart, G. Changes in the activities of chloroplast and cytosolic isoenzymes of
glutamine synthetase during normal leaf growth and plastid development in wheat. Planta 1985, 163,
544–548. [CrossRef] [PubMed]

9. Hirel, B.; Gadal, P. Glutamine synthetase in rice a comparative study of the enzymes from roots and leaves.
Plant Physiol. 1980, 66, 619–623. [CrossRef] [PubMed]

10. Bernard, S.M.; Møller, A.L.B.; Dionisio, G.; Kichey, T.; Jahn, T.P.; Dubois, F.; Baudo, M.; Lopes, M.S.;
Tercé-Laforgue, T.; Foyer, C.H. Gene expression, cellular localisation and function of glutamine synthetase
isozymes in wheat (Triticum aestivum L.). Plant Mol. Biol. 2008, 67, 89–105. [CrossRef] [PubMed]

11. Wallsgrove, R.M.; Turner, J.C.; Hall, N.P.; Kendall, A.C.; Bright, S.W. Barley mutants lacking chloroplast
glutamine synthetase—biochemical and genetic analysis. Plant Physiol. 1987, 83, 155–158. [CrossRef]
[PubMed]

12. Avila-Ospina, L.; Moison, M.; Yoshimoto, K.; Masclaux-Daubresse, C. Autophagy, plant senescence,
and nutrient recycling. J. Exp. Bot. 2014, 65, 3799–3811. [CrossRef] [PubMed]

13. Guan, M.; Møller, I.; Schjoerring, J. Two cytosolic glutamine synthetase isoforms play specific roles for seed
germination and seed yield structure in Arabidopsis. J. Exp. Bot. 2015, 66, 203–212. [CrossRef] [PubMed]

14. Brugiere, N.; Dubois, F.; Limami, A.M.; Lelandais, M.; Roux, Y.; Sangwan, R.S.; Hirel, B. Glutamine synthetase
in the phloem plays a major role in controlling proline production. Plant Cell 1999, 11, 1995–2012. [CrossRef]
[PubMed]

15. Kamachi, K.; Yamaya, T.; Mae, T.; Ojima, K. A role for glutamine synthetase in the remobilization of leaf
nitrogen during natural senescence in rice leaves. Plant Physiol. 1991, 96, 411–417. [CrossRef] [PubMed]

16. Oaks, A.; Hirel, B. Nitrogen metabolism in roots. Annu. Rev. Plant Physiol. 1985, 36, 345–365. [CrossRef]
17. Bernard, S.M.; Habash, D.Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and

recycling. New Phytol. 2009, 182, 608–620. [CrossRef] [PubMed]
18. Funayama, K.; Kojima, S.; Tabuchi-Kobayashi, M.; Sawa, Y.; Nakayama, Y.; Hayakawa, T.; Yamaya, T.

Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots.
Plant Cell Physiol. 2013, 54, 934–943. [CrossRef] [PubMed]

19. Hirel, B.; Le, G.J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants:
Towards a more central role for genetic variability and quantitative genetics within integrated approaches.
J. Exp. Bot. 2007, 58, 2369–2387. [CrossRef] [PubMed]

20. Kichey, T.; Hirel, B.; Heumez, E.; Dubois, F.; Le Gouis, J. In winter wheat (Triticum aestivum L.), post-anthesis
nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological
markers. Field Crops Res. 2007, 102, 22–32. [CrossRef]

21. Martin, A.; Lee, J.; Kichey, T.; Gerentes, D.; Zivy, M.; Tatout, C.; Dubois, F.; Balliau, T.; Valot, B.; Davanture, M.
Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain
production. Plant Cell 2006, 18, 3252–3274. [CrossRef] [PubMed]

http://dx.doi.org/10.17957/IJAB/17.3.14.539
http://dx.doi.org/10.1111/j.1469-8137.2005.01606.x
http://www.ncbi.nlm.nih.gov/pubmed/16411930
http://dx.doi.org/10.1146/annurev.environ.032108.105046
http://dx.doi.org/10.2307/2269431
http://dx.doi.org/10.1016/j.tplants.2014.06.002
http://www.ncbi.nlm.nih.gov/pubmed/25017701
http://dx.doi.org/10.1146/annurev.pp.28.060177.001503
http://dx.doi.org/10.1073/pnas.87.9.3459
http://www.ncbi.nlm.nih.gov/pubmed/1970638
http://dx.doi.org/10.1007/BF00392711
http://www.ncbi.nlm.nih.gov/pubmed/24249453
http://dx.doi.org/10.1104/pp.66.4.619
http://www.ncbi.nlm.nih.gov/pubmed/16661490
http://dx.doi.org/10.1007/s11103-008-9303-y
http://www.ncbi.nlm.nih.gov/pubmed/18288574
http://dx.doi.org/10.1104/pp.83.1.155
http://www.ncbi.nlm.nih.gov/pubmed/16665193
http://dx.doi.org/10.1093/jxb/eru039
http://www.ncbi.nlm.nih.gov/pubmed/24687977
http://dx.doi.org/10.1093/jxb/eru411
http://www.ncbi.nlm.nih.gov/pubmed/25316065
http://dx.doi.org/10.1105/tpc.11.10.1995
http://www.ncbi.nlm.nih.gov/pubmed/10521528
http://dx.doi.org/10.1104/pp.96.2.411
http://www.ncbi.nlm.nih.gov/pubmed/16668201
http://dx.doi.org/10.1146/annurev.pp.36.060185.002021
http://dx.doi.org/10.1111/j.1469-8137.2009.02823.x
http://www.ncbi.nlm.nih.gov/pubmed/19422547
http://dx.doi.org/10.1093/pcp/pct046
http://www.ncbi.nlm.nih.gov/pubmed/23509111
http://dx.doi.org/10.1093/jxb/erm097
http://www.ncbi.nlm.nih.gov/pubmed/17556767
http://dx.doi.org/10.1016/j.fcr.2007.01.002
http://dx.doi.org/10.1105/tpc.106.042689
http://www.ncbi.nlm.nih.gov/pubmed/17138698


Genes 2018, 9, 406 16 of 18

22. Zhang, Z.; Xiong, S.; Wei, Y.; Meng, X.; Wang, X.; Ma, X. The role of glutamine synthetase isozymes in
enhancing nitrogen use efficiency of n-efficient winter wheat. Sci. Rep. 2017, 7, 1000. [CrossRef] [PubMed]

23. Feng, W.; Xing, G.; Niu, X.; Dou, C.; Han, Y. Progress and application prospects of glutamine synthase in
plants. Chin. J. Biotechnol. 2015, 31, 1301–1312.

24. Habash, D.Z.; Massiah, A.J.; Rong, H.L.; Wallsgrove, R.M.; Leigh, R.A. The role of cytosolic glutamine
synthetase in wheat. Ann. Appl. Biol. 2001, 138, 83–89. [CrossRef]

25. Fuentes, S.I.; Allen, D.J.; Ortiz-Lopez, A.; Hernández, G. Over-expression of cytosolic glutamine synthetase
increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 2001, 52, 1071–1081.
[CrossRef] [PubMed]

26. Gallardo, F.; Fu, J.; Cantón, F.R.; García-Gutiérrez, A.; Cánovas, F.M.; Kirby, E.G. Expression of a conifer
glutamine synthetase gene in transgenic poplar. Planta 1999, 210, 19–26. [CrossRef] [PubMed]

27. Oliveira, I.C.; Brears, T.; Knight, T.J.; Clark, A.; Coruzzi, G.M. Overexpression of cytosolic glutamine
synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol. 2002, 129, 1170–1180. [CrossRef]
[PubMed]

28. Brauer, E.K.; Rochon, A.; Bi, Y.M.; Bozzo, G.G.; Rothstein, S.J.; Shelp, B.J. Reappraisal of nitrogen use efficiency
in rice overexpressing glutamine synthetase1. Physiol. Plant. 2011, 141, 361–372. [CrossRef] [PubMed]

29. Cai, H.; Zhou, Y.; Xiao, J.; Li, X.; Zhang, Q.; Lian, X. Overexpressed glutamine synthetase gene modifies
nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009, 28, 527–537. [CrossRef]
[PubMed]

30. Sun, H.; Huang, M.; Su, J. Highly effective expression of glutamine synthetase genes GS1 and GS2 in
transgenic rice plants increases nitrogen-deficiency tolerance. J. Plant Physiol. Mol. Biol. 2005, 31, 492–498.

31. Migge, A.; Carrayol, E.; Hirel, B.; Becker, T.W. Leaf-specific overexpression of plastidic glutamine synthetase
stimulates the growth of transgenic tobacco seedlings. Planta 2000, 210, 252–260. [CrossRef] [PubMed]

32. Harper, C.J.; Hayward, D.; Kidd, M.; Wiid, I.; van Helden, P. Glutamate dehydrogenase and glutamine
synthetase are regulated in response to nitrogen availability in Mycobacterium smegmatis. BMC Microbiol.
2010, 10, 138. [CrossRef] [PubMed]

33. Caputo, C.; Criado, M.V.; Roberts, I.N.; Gelso, M.A.; Barneix, A.J. Regulation of glutamine synthetase 1
and amino acids transport in the phloem of young wheat plants. Plant Physiol. Biochem. 2009, 47, 335–342.
[CrossRef] [PubMed]

34. Tian, H.; Fu, J.; Drijber, R.A.; Gao, Y. Expression patterns of five genes involved in nitrogen metabolism
in two winter wheat (Triticum aestivum L.) genotypes with high and low nitrogen utilization efficiencies.
J. Cereal Sci. 2015, 61, 48–54. [CrossRef]

35. Avila-Ospina, L.; Marmagne, A.; Talbotec, J.; Krupinska, K.; Masclaux-Daubresse, C. The identification of
new cytosolic glutamine synthetase and asparagine synthetase genes in barley (Hordeum vulgare L.), and their
expression during leaf senescence. J. Exp. Bot. 2015, 66, 2013–2026. [CrossRef] [PubMed]

36. Brugière, N.; Dubois, F.; Masclaux, C.; Sangwan, R.S.; Hirel, B. Immunolocalization of glutamine synthetase
in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted
to the mesophyll cytosol. Planta 2000, 211, 519–527. [CrossRef] [PubMed]

37. Ortega, J.L.; Temple, S.J.; Sengupta-Gopalan, C. Constitutive overexpression of cytosolic glutamine synthetase
(GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and
protein turnover. Plant Physiol. 2001, 126, 109–121. [CrossRef] [PubMed]

38. Lan-Ying, L.; Kononov, M.E.; Burgund, B.; Frame, B.R.; Kan, W.; Gelvin, S.B. Novel plant transformation
vectors containing the superpromoter. Plant Physiol. 2007, 145, 1294–1300.

39. Ni, M.; Cui, D.; Einstein, J.; Narasimhulu, S.; Vergara, C.E.; Gelvin, S.B. Strength and tissue specificity of
chimeric promoters derived from the octopine and mannopine synthase genes. Plant J. 1995, 7, 661–676.
[CrossRef]

40. Yang, Q.; Chen, Z.-Z.; Zhou, X.-F.; Yin, H.-B.; Li, X.; Xin, X.-F.; Hong, X.-H.; Zhu, J.-K.; Gong, Z.
Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis.
Mol. Plant 2009, 2, 22–31. [CrossRef] [PubMed]

41. Liu, L.Y.; Duan, L.S.; Zhang, J.C.; Zhang, Z.X.; Mi, G.Q.; Ren, H.Z. Cucumber (Cucumis sativus L.)
over-expressing cold-induced transcriptome regulator ICE1 exhibits changed morphological characters and
enhances chilling tolerance. Sci. Hortic. 2010, 124, 29–33. [CrossRef]

http://dx.doi.org/10.1038/s41598-017-01071-1
http://www.ncbi.nlm.nih.gov/pubmed/28428629
http://dx.doi.org/10.1111/j.1744-7348.2001.tb00087.x
http://dx.doi.org/10.1093/jexbot/52.358.1071
http://www.ncbi.nlm.nih.gov/pubmed/11432923
http://dx.doi.org/10.1007/s004250050649
http://www.ncbi.nlm.nih.gov/pubmed/10592028
http://dx.doi.org/10.1104/pp.020013
http://www.ncbi.nlm.nih.gov/pubmed/12114571
http://dx.doi.org/10.1111/j.1399-3054.2011.01443.x
http://www.ncbi.nlm.nih.gov/pubmed/21214879
http://dx.doi.org/10.1007/s00299-008-0665-z
http://www.ncbi.nlm.nih.gov/pubmed/19123004
http://dx.doi.org/10.1007/PL00008132
http://www.ncbi.nlm.nih.gov/pubmed/10664131
http://dx.doi.org/10.1186/1471-2180-10-138
http://www.ncbi.nlm.nih.gov/pubmed/20459763
http://dx.doi.org/10.1016/j.plaphy.2009.01.003
http://www.ncbi.nlm.nih.gov/pubmed/19230696
http://dx.doi.org/10.1016/j.jcs.2014.09.007
http://dx.doi.org/10.1093/jxb/erv003
http://www.ncbi.nlm.nih.gov/pubmed/25697791
http://dx.doi.org/10.1007/s004250000309
http://www.ncbi.nlm.nih.gov/pubmed/11030551
http://dx.doi.org/10.1104/pp.126.1.109
http://www.ncbi.nlm.nih.gov/pubmed/11351075
http://dx.doi.org/10.1046/j.1365-313X.1995.7040661.x
http://dx.doi.org/10.1093/mp/ssn058
http://www.ncbi.nlm.nih.gov/pubmed/19529826
http://dx.doi.org/10.1016/j.scienta.2009.11.018


Genes 2018, 9, 406 17 of 18

42. Li, Y.J.; Zhang, J.C.; Zhang, J.; Hao, L.; Hua, J.P.; Duan, L.S.; Zhang, M.C.; Li, Z.H. Expression of an Arabidopsis
molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under
field conditions. Plant Biotechnol. J. 2013, 11, 747–758. [CrossRef] [PubMed]

43. Wang, X.; Zhang, T.; Li, G.; Cheng, Z.; Liu, N.; Ma, X. Cloning of glutamine synthetases in wheat and analysis
of their expression characteristics. J. Henan Agric. Univ. 2012, 46, 487–492.

44. Horsch, R.B.; Fraley, R.T. A simple and general method for transferring genes into plants. Science 1985, 227,
1229–1231.

45. Ma, X.; Li, L.; Zhao, P.; Xiong, S.; Guo, F. Effect of water control on activities of nitrogen assimilation enzymes
and grain quality in winter wheat. Acta Phytoecol. Sin. 2005, 29, 48–53.

46. Gordon, S.A.; Fleck, A.; Bell, J. Optimal conditions for the estimation of ammonium by the Berthelot reaction.
Ann. Clin. Biochem. 1978, 15, 270–275. [CrossRef] [PubMed]

47. Xie, H. Determination of nitrogen content in nitrate by salicylic acid colorimetry in water. Guizhou Agric. Sci.
1999, 27, 40–41.

48. Graan, T.; Ort, D.R. Quantitation of the rapid electron donors to p700, the functional plastoquinone pool,
and the ratio of the photosystems in spinach chloroplasts. J. Biol. Chem. 1984, 259, 14003–14010. [PubMed]

49. Carvalho, H.; Pereira, S.; Sunkel, C.; Salema, R. Detection of a cytosolic glutamine synthetase in leaves
of Nicotiana tabacum L. by immunocytochemical methods. Plant Physiol. 1992, 100, 1591–1594. [CrossRef]
[PubMed]

50. Miller, A.J.; Smith, S.J. Cytosolic nitrate ion homeostasis: Could it have a role in sensing nitrogen status?
Ann. Bot. 2008, 101, 485–489. [CrossRef] [PubMed]

51. Hirel, B.; Marsolier, M.C.; Hoarau, A.; Hoarau, J.; Brangeon, J.; Schafer, R.; Verma, D.P. Forcing expression
of a soybean root glutamine synthetase gene in tobacco leaves induces a native gene encoding cytosolic
enzyme. Plant Mol. Biol. 1992, 20, 207–218. [CrossRef] [PubMed]

52. Fischer, J.J.; Beatty, P.H.; Good, A.G.; Muench, D.G. Manipulation of microRNA expression to improve
nitrogen use efficiency. Plant Sci. 2013, 210, 70–81. [CrossRef] [PubMed]

53. Jones-Rhoades, M.W.; Bartel, D.P.; Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev.
Plant Biol. 2006, 57, 19–53. [CrossRef] [PubMed]

54. Sunkar, R.; Chinnusamy, V.; Zhu, J.H.; Zhu, J.K. Small RNAs as big players in plant abiotic stress responses
and nutrient deprivation. Trends Plant Sci. 2007, 12, 301–309. [CrossRef] [PubMed]

55. Xu, Z.; Zhong, S.; Li, X.; Li, W.; Rothstein, S.J.; Zhang, S.; Bi, Y.; Xie, C. Genome-wide identification of
microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE 2011, 6, e28009.
[CrossRef] [PubMed]

56. Trevisan, S.; Nonis, A.; Begheldo, M.; Manoli, A.; Palme, K.; Caporale, G.; Ruperti, B.; Quaggiotti, S.
Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings.
Plant Cell Environ. 2012, 35, 1137–1155. [CrossRef] [PubMed]

57. Nischal, L.; Mohsin, M.; Khan, I.; Kardam, H.; Wadhwa, A.; Abrol, Y.P.; Iqbal, M.; Ahmad, A. Identification
and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS ONE 2012,
7, e50261. [CrossRef] [PubMed]

58. Zhao, M.; Ding, H.; Zhu, J.-K.; Zhang, F.; Li, W.-X. Involvement of miR169 in the nitrogen-starvation
responses in Arabidopsis. New Phytol. 2011, 190, 906–915. [CrossRef] [PubMed]

59. Liang, G.; He, H.; Yu, D. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana.
PLoS ONE 2012, 7, e48951. [CrossRef] [PubMed]

60. El Omari, R.; Rueda-López, M.; Avila, C.; Crespillo, R.; Nhiri, M.; Cánovas, F.M. Ammonium tolerance and
the regulation of two cytosolic glutamine synthetases in the roots of sorghum. Funct. Plant Biol. 2010, 37,
55–63. [CrossRef]

61. Oliveira, I.C.; Coruzzi, G.M. Carbon and amino acids reciprocally modulate the expression of glutamine
synthetase in Arabidopsis. Plant Physiol. 1999, 121, 301–310. [CrossRef] [PubMed]

62. Edwards, J.W.; Coruzzi, G.M. Photorespiration and light act in concert to regulate the expression of the
nuclear gene for chloroplast glutamine synthetase. Plant Cell 1989, 1, 241–248. [CrossRef] [PubMed]

63. Nunes-Nesi, A.; Fernie, A.R.; Stitt, M. Metabolic and signaling aspects underpinning the regulation of plant
carbon nitrogen interactions. Mol. Plant 2010, 3, 973–996. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/pbi.12066
http://www.ncbi.nlm.nih.gov/pubmed/23581509
http://dx.doi.org/10.1177/000456327801500164
http://www.ncbi.nlm.nih.gov/pubmed/31129
http://www.ncbi.nlm.nih.gov/pubmed/6389539
http://dx.doi.org/10.1104/pp.100.3.1591
http://www.ncbi.nlm.nih.gov/pubmed/16653165
http://dx.doi.org/10.1093/aob/mcm313
http://www.ncbi.nlm.nih.gov/pubmed/18089584
http://dx.doi.org/10.1007/BF00014489
http://www.ncbi.nlm.nih.gov/pubmed/1356501
http://dx.doi.org/10.1016/j.plantsci.2013.05.009
http://www.ncbi.nlm.nih.gov/pubmed/23849115
http://dx.doi.org/10.1146/annurev.arplant.57.032905.105218
http://www.ncbi.nlm.nih.gov/pubmed/16669754
http://dx.doi.org/10.1016/j.tplants.2007.05.001
http://www.ncbi.nlm.nih.gov/pubmed/17573231
http://dx.doi.org/10.1371/journal.pone.0028009
http://www.ncbi.nlm.nih.gov/pubmed/22132192
http://dx.doi.org/10.1111/j.1365-3040.2011.02478.x
http://www.ncbi.nlm.nih.gov/pubmed/22211437
http://dx.doi.org/10.1371/journal.pone.0050261
http://www.ncbi.nlm.nih.gov/pubmed/23227161
http://dx.doi.org/10.1111/j.1469-8137.2011.03647.x
http://www.ncbi.nlm.nih.gov/pubmed/21348874
http://dx.doi.org/10.1371/journal.pone.0048951
http://www.ncbi.nlm.nih.gov/pubmed/23155433
http://dx.doi.org/10.1071/FP09162
http://dx.doi.org/10.1104/pp.121.1.301
http://www.ncbi.nlm.nih.gov/pubmed/10482686
http://dx.doi.org/10.1105/tpc.1.2.241
http://www.ncbi.nlm.nih.gov/pubmed/2577725
http://dx.doi.org/10.1093/mp/ssq049
http://www.ncbi.nlm.nih.gov/pubmed/20926550


Genes 2018, 9, 406 18 of 18

64. Seger, M.; Gebril, S.; Tabilona, J.; Peel, A.; Sengupta-Gopalan, C. Impact of concurrent overexpression of
cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in
transgenic tobacco. Planta 2015, 241, 69–81. [CrossRef] [PubMed]

65. Fischer, A.M. The complex regulation of senescence. CRC Crit. Rev. Plant Sci. 2012, 31, 124–147. [CrossRef]
66. Tegeder, M. Transporters involved in source to sink partitioning of amino acids and ureides: Opportunities

for crop improvement. J. Exp. Bot. 2014, 65, 1865–1878. [CrossRef] [PubMed]
67. Masclaux-Daubresse, C.; Reisdorf-Cren, M.; Orsel, M. Leaf nitrogen remobilisation for plant development

and grain filling. Plant Biol. 2008, 10, 23–36. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00425-014-2165-4
http://www.ncbi.nlm.nih.gov/pubmed/25213117
http://dx.doi.org/10.1080/07352689.2011.616065
http://dx.doi.org/10.1093/jxb/eru012
http://www.ncbi.nlm.nih.gov/pubmed/24489071
http://dx.doi.org/10.1111/j.1438-8677.2008.00097.x
http://www.ncbi.nlm.nih.gov/pubmed/18721309
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Plasmid Construction 
	Plant Transformation and Growth Conditions 
	RNA Isolation and RT-qPCR Analysis 
	GS Activity Assay and Western Blotting 
	Determination of Free NH4+, NO3-, Total Amino Acid, and Total Chlorophyll Levels 
	Statistics 

	Results 
	Identification of Transgenic Tobacco 
	Characteristics of GS Expression in GS1-TR and GS2-TR 
	Characteristics of GS Subunit Expression in GS1-TR and GS2-TR 
	Characteristics of GS Activity in GS1-TR and GS2-TR 
	Characteristics of Nitrogen Metabolic Status in GS1-TR and GS2-TR 
	Phenotypes of GS1-TR and GS2-TR 

	Discussion 
	References

