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Abstract: Although a number of methods have been proposed for identifying differentially
expressed pathways (DEPs), few efforts consider the dynamic components of pathway networks,
i.e., gene links. We here propose a signaling dynamics detection method for identification of
DEPs, DynSig, which detects the molecular signaling changes in cancerous cells along pathway
topology. Specifically, DynSig relies on gene links, instead of gene nodes, in pathways, and models
the dynamic behavior of pathways based on Markov chain model (MCM). By incorporating the
dynamics of molecular signaling, DynSig allows for an in-depth characterization of pathway activity.
To identify DEPs, a novel statistic of activity alteration of pathways was formulated as an overall
signaling perturbation score between sample classes. Experimental results on both simulation
and real-world datasets demonstrate the effectiveness and efficiency of the proposed method in
identifying differential pathways.
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1. Introduction

With the rapid development of high-throughput technology, including microarrays and deep
sequencing, tremendous amounts of various omics data have been generated and accumulated,
which provides unprecedented opportunities for understanding molecular mechanisms of cells and
disease etiology [1–5]. Relative to basic gene units, pathways are higher-level functional modules in
cells, and play more critical roles in various cellular processes, such as tumorigenesis [6]. Identifying
differentially expressed genes (DEGs) often suffers from being less statistically reproducible and
less biologically interpretable, while identifying differentially expressed pathways (DEPs) provides
more consistent and more reliable knowledge about cancer or other diseases through maximizing
the potential of omics data [7,8]. Currently, computational methods for identifying DEPs is still
underdeveloped theoretically and practically, although a large number of computational methods are
available for DEG identification [6].

Current methods for identifying DEPs can be categorized into three generations [9]:
overrepresentation analysis, functional class scoring, and pathway topology. Overrepresentation
analysis methods only test how significantly a pathway contains DEGs than by chance, and employ
Fisher’s exact test or geometric distribution-based test to estimate the significance. Functional class
scoring methods assume that not only large changes, but also weaker, coordinated changes of genes in
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pathways can have significant effects on pathway activity. The gene-level statistics for all genes in a
pathway are aggregated into single pathway-level statistics for the significance test. Generally, the first
two generations have two main shortcomings: (1) equally treating all the genes in a pathway and (2)
ignoring topological information, which also likely dominates the activity of pathways. For example,
many overrepresentation analysis methods rely on comparing the numbers of DEGs between pathways
and a given reference gene list [10,11]. These methods are often overdependent on the division of DEGs
and non-DEGs that is hard to pre-define in practice. To overcome the situation, Subramanian et al. [12]
resorted to ranking genes according to their associations with the phenotype, instead of the division as
usual, and presented a second-generation method, gene set enrichment analysis (GSEA). Many variants
of GSEA have so far been proposed, which, including GSEA, generally follow three fundamental
steps: (1) estimating the association of each gene’s expression pattern with phenotype by t-statistics
or other correlation measures; (2) calculating pathway-level enrichment evidence score based on the
association scores; (3) determining the differential significance of pathways using empirical distribution
or permutation test. Others rely on the fitness of regressing phenotypes on pathway member genes for
DEP identification, e.g., Global test by Geoman et al. [13] and ScorePAGE by Rahnenfuhrer et al. [14].
Due to the ignorance of pathway topology, these second-generation methods tend to fail in real-world
applications, often producing same or similar results for pathways that have identical or similar
member genes [9].

Recent studies evidenced that the third-generation pathway topology methods can considerably
improve pathway analysis in practice, by incorporating pathway topological information. To extract
pathway topological information, Gao and Wang [15] introduced the concept of molecular connectivity
from chemoinformatics (TAPPA). By mimicking molecular connectivity, TAPPA defines a pathway
connectivity index based on gene connectivity, and employs the Mann–Whitney test to compare
pathway connectivity indexes between two classes for DEP identification. Isci et al. [16] introduced
Bayesian networks to infer pathway activity (BPA) for pathway analysis. In the BPA, a pathway
is first simplified into a directed acyclic graph, and is modeled as a Bayesian network to
score the degree to which expression data fit the pathway topology. BPA can preserve the
dependencies’ underlying pathway topology, and lead to an improvement of characterizing pathway
activity. Other researchers considered transforming or encoding pathway structures into a few
principal components, and combining with gene-level statistics for pathway analysis. For example,
Jacob et al. [17] applied spectral analysis to Fourier-transform a pathway graph (DEGraph). DEGraph
can detect the change of pathway expression between sample classes in terms of low frequency
components from a pathway spectrum. From a networking perspective, a pathway is essentially
comprised of well-organized gene links along which biological signals pass, informing cellular activity.
Genes are ubiquitous, connecting each other in pathways, and the interactions are fundamental to
maintain the activity of a biological system. Therefore, it is necessary and crucial to mine and utilize
information on gene links for characterizing DEPs in cancer research [18–20].

In this paper, we propose to model gene links to capture biological signaling along them,
and detect the dynamic alteration of pathway topology for identifying DEPs (DynSig). Biologically,
gene links can represent various types of gene associations, e.g., binding, inhibition, or activation,
and they may be activated or silenced for a biological function in a particular cellular state. Recently,
Han et al. [21] presented an edge set enrichment analysis, which follows the idea of GSEA to only
measure the enrichment of informative edges for identifying DEPs. We, here, employ the Markov
chain model (MCM) to model gene links where biological signals are passed from the source gene to
the destination gene. DynSig characterizes the state transition between any two linked genes, and can
directly make inference about the activity of the pathway composed of the gene links. To identify DEPs,
a new pathway-level statistic that accounts for the accumulated dynamic alteration of pathway between
classes is proposed. In experiments, we evaluated the proposed method on both simulation data and
real-world expression data, and compared it with previous methods. Experimental results demonstrate
the effectiveness and efficiency of the proposed method in identifying differential pathways.
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2. Materials and Methods

2.1. Framework of DynSig for Pathway Analysis

Pathways as gene networks consist of a set of gene nodes and a set of gene links. The gene links
reflect regulatory, signaling, or binding relationships, in which the source gene activates or inhibits
the destination gene. From a regulatory aspect, genes could be in one of three regulatory states:
downregulated, non-significantly regulated, or upregulated. The state transition patterns along gene
links are potentially associated with the distinction between two phenotypes of cells. For example,
if they are both overexpressed in cancer tissues relative to those in normal tissues, one can say that
the gene links are likely related to, or even drive, cancer. We reason that pathways with many such
cancer-related gene links should be associated with cancer, and here, present a gene link-based method
(DynSig) for identifying DEPs, in which the disparity of pathways in signaling dynamics between
classes is explored and utilized. Figure 1 illustrates the framework of DynSig. Specifically, given a
pathway, the method first decomposes it into a set of gene links and introduces Markov chain model
to model the signaling pattern along each gene link in each class. Then, each link is scored based on an
MCM-based classification rule, via a leave-one-out cross validation procedure, which subsequently
results in a sample-link score matrix. Based on the score matrix, DynSig finally statistically detects
differentially expressed links and DEPs.

2.2. Data Preparation

An increasing number of methods have been developed to discretizate continuous gene expression
data for analyzing gene expression patterns. Generally speaking, these methods discretizate the
continuous gene expression values into three discrete gene regulatory states: downregulated (D),
non-regulated (N) and upregulated (U). Based on the discretization, a matrix of continuous gene
expression can be transformed into a matrix of regulatory states, i.e.,

{
sij
}

M×N , where sij ∈ {D, N, U}
represents the regulatory states of the i-th gene in the j-th sample, M is the number of genes, and N is
the number of all samples. In this paper, the recently developed biology-constrained method [22] is
used as the default method to discretize gene continuous expression data.

Without loss of generality, suppose that all the gene expression samples belong to two classes
(e.g., control vs. case or cancer vs. normal). Then these samples can be divided into three sets:
Two training sets with samples selected from the two classes, respectively, and a test set that comprises
all of the rest samples.

2.3. Modeling the Dynamics of Gene Links Using Markov Chain Model

In statistics, a Markov chain is defined as a stochastic process with Markov property, in which the
next state depends only on the current state but irrelevant with any previous event along the chain [23].
Generally, there are two types of Markov chain models, i.e., stationary and non-stationary, which differ
in whether transition matrix is shared along the process or not [23]. Compared with stationary MCM,
non-stationary one allows different state transition probability matrices (TPMs) for each transition step
along the chain of process, so that complex stochastic processes can be modeled without information
loss. Considering the complexity of signaling between genes, we here employ non-stationary MCM to
model pathways. Specifically, we here consider a chain consisting of two adjacent genes, i.e., gene link,
and establish its MCM, which can be readily extended to signaling along a cascade of three or more
genes. Figure 2 illustrates the MCM of gene links (MCMLink). Topologically, a pathway consists of a
set of gene links comprised of two adjacent genes. We view a gene link l as a Markov chain of two
genes (nodes), which transits biological information from the source gene g1 to the destination gene g2,
as shown in Figure 2.
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Figure 1. The flowchart of the proposed method DynSig. The raw input data includes an L-link pathway
and a continuous expression matrix with sample labels (e.g., Class 1 vs. Class 2). The continuous
gene expression values are discretized into three regulatory states based on discretization methods:
downregulated (D), non-regulated (N) and upregulated (U). Furthermore, all the samples are divided
into three sets: two training sets for Class 1 and Class 2, respectively, and a test set comprising the rest
of samples. For the i-th link (i = 1,2, . . . , L) in the pathway, two Markov chain model links (MCMLinks)
are built based on the two training sets, respectively. Then, by using the leave-one-out-cross-validation
(LOOCV) procedure, the j-th sample is classified by the i-th link and we have aji = 1 if the classification
is right and 0 otherwise. The classification power of the i-th link is calculated by averaging the resulted
scores {aji}j=1,2, . . . ,N, i.e., di = (a1i + a2i + . . . + aNi)/N and the classification power of the pathway is
calculated by averaging the classification powers of all links, DEP = (d1 + d2 + . . . + dL)/L. Permutation
test is utilized for evaluating p-values of the resulted classification powers.
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Figure 2. Markov chain model for a gene link (MCMLink). The box above illustrates a MCMLink l on
a training set. Matrix M = P (Y|X) is the state transition probability matrix (TPM) of l on the training
set. The box below shows all the nine possible regulatory state transition modes, downregulated (D),
non-regulated (N) and upregulated (U), delivered by the link l.

Mathematically, an MCM can be specified by three parameters, i.e., a finite set of discrete states,
initial probability distribution of states (P0), and a state transition probability matrix M, as shown
in Figure 2. From a viewpoint of biology, we simply specify a tri-state set {D, N, U} for nodes
within an MCM. Given continuous gene expression values, we infer the regulatory states of a gene
using discretization methods, for example, the recently developed biology-constrained method [22].
Along a gene link, the regulation states transit to carry signaling specific to a particular biological
process. The signaling patterns beneath the gene link are encapsulated in the initial state distribution
and the state transition probability matrix. We need to learn them from training data as follows.

Given a gene link l from g1 to g2 and a Ntrain-sample training set for class control/case, we denote
the initial state distribution as P0(x), x = D, N, or U for the source gene g1 and the TPM as M = {mij, i, j
= 1, 2, 3}, where mij represents the regulatory state transition probability from the i-th state on gene
g1 to the j-th state on gene g2. Totally, there are nine state transition modes, as shown in Figure 2.
The initial distribution P0(x) is estimated as the likelihood of gene g1 being in state x—in other words,
the frequency of gene g1 being in state x in the training set, is

P0(x) =
1

Ntrain

Ntrain

∑
j=1

I
(
sg1,j, x

)
, (1)

where sg1,j represents the state of gene g1 in the j-th sample in the training set, and I(·,·) is an indicator
function, yielding 1 if the two elements are equal and 0 otherwise. Similarly, we estimate mij in M as
follows: Let x and y represent the i-th and j-th states in the set {D, N, U}, respectively. With g1 as the
source gene and g2 as the destination gene, mij (i, j = 1, 2, 3) that represents the conditional likelihood
of y occurring on x in this Ntrain-sample training set can be estimated as

mij = P(y|x ) =

Ntrain
∑

i=1
I
(
sg1,i, x

)
&I
(
sg2,i, y

)
Ntrain

∑
i=1

∑
y∈{D,N,U}

I
(
sg1,i, x

)
&I
(
sg2,i, y

) , (2)

where sg1,i and sg2,i are the states of genes g1 and g2 in the i-th sample in the training set.



Genes 2018, 9, 323 6 of 17

Based on the MCM of l on the Ntrain-sample training set above, a statistical way to infer the class
likelihood of an observed chain sample from the test set is provided. Assume a test sample t, in which
the two genes of the gene link l, g1 and g2 are in regulatory states x′ and y′, respectively. The likelihood
of the test sample t belonging to the same class as the Ntrain-sample training set can be estimated as a
joint probability, i.e.,

P(t) = P(x′, y′) = P0(x′)P(y′
∣∣x′), (3)

where P0(x′) and P(y′|x′) are the initial probability of x′ and the conditional probability of state
y′ (gene g2) on state x′ (gene g1) that can be obtained by Equations (1) and (2), respectively.

2.3.1. Scoring Gene Links for the Disparity of Signaling Dynamics

Biologically, gene links can exhibit different activity levels in different cellular states, and so
a non-trivial gene link can distinguish two different phenotypes due to the disparity of signaling
dynamics. Given two MCMs of a same gene link on training sets of two classes (e.g., control and case),
we can calculate the likelihoods of a test sample t belonging to the two classes according to Equation (3)
and subsequently, the test sample t is assigned to the class with the larger likelihood. Based on the
classification rules above, we apply leave-one-out cross–validation (LOOCV) to recursively divide the
whole N samples into training sets and a test set consisting only one sample. Suppose

{
aij
}

N×L are
the overall classification results with aij indicating the classification of the i-th sample by the j-th link,
we have aij = 1 for correct classification and 0 otherwise. The overall classification power of the j-th
gene link on all the N samples is defined as dj = (a1j + a2j + . . . + aNj)/N, where N is the total number
of samples.

To assess the statistical significance of the overall classification power of the j-th link, i.e., dj,
a permutation test pipeline is then designed: (1) Randomly shuffling the class labels of samples;
(2) applying the LOOCV procedure to the shuffled data; (3) repeating (1–2) B = 1000 times and
obtaining B accuracies rdb, b = 1, 2, . . . , B; 4) Calculating the p-value for the observed dj as

Pdj
=

1
B

B

∑
b=1

I
(
dj < rdb

)
(4)

where rdb is the bth rd and I is an indicator function yielding 1 if true and 0 otherwise.

2.3.2. Identifying Differentially Expressed Pathways

Since a pathway is essentially a set of organized gene links, the activity of it can be estimated
based on the activity of the gene link components. Assume a pathway that contains L gene links. Let dj
represent the score of the j-th gene link, a novel statistic for measuring the pathway-level differential
expression can be calculated as

DEP =
1
L

L

∑
j=1

dj. (5)

The statistic, DEP, reflects the disparity of signaling dynamics in the pathway between two classes.
From Equation (5), it can be seen that the calculation of DEP only involves the association perturbation
of two directly connected genes in the pathway, and thus avoids noise or bias from the expression of
individual genes.

To estimate the significance of the DEP score of a pathway, permutation test is utilized here.
Specifically, Z = 1000 random pathways are generated with the same genes and the same number
of links (i.e., L) in the original pathway. Then, the p-value for DEP of the original pathway can be
calculated as

pDEP =
1
Z

Z

∑
i=1

I(DEP < rDEPi), i ∈ {1, 2, . . . , Z}, (6)
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where rDEPi, i =1, 2, ..., Z, is the DEP value of the ith random pathways. A pipeline of the proposed
approach DynSig is shown in Figure 1.

2.3.3. Principal Pattern of Signaling Dynamics Specific to a Cancer Type

Pathways are a directed gene network in which genetic or physiological information flows
along gene chains. In a differentially expressed pathway, there may exist principal patterns of
signaling dynamics specific to the cancer type. The use of MCM here allows for finding such principal
patterns that consist of principal state transitions of consecutive gene links along a cascade gene chain.
Considering that each link is modeled individually, we determine the principal pattern of a given
cascade chain starting from the ending link that is usually key to the biological role that the chain plays.
For the ending link, the principal state transition will be taken as one of the nine modes that has the
maximum transition probability. Then, we determine the principal state transition of the penultimate
link. Suppose that the destination gene of it is A, which is also the source gene of the ending link.
The principal state transition is the mode that has the largest transition probability conditioned on the
principal state of A in the ending link. Similarly, the principal state transitions of other subsequent links
along the chain are determined. Finally, we obtain the principal pattern of the chain by concatenating
the resulting principal state transitions of each link.

2.4. Simulation Data Generation

Assume two classes (control vs. case) of equal sizes n = 60 and 200 pathways, of which one half
are DEPs that are differentially expressed between the two classes, and the other half are non-DEPs
The 200 pathways follow two types of pathway structures: a cascade structure consisting of ten genes,
and a complex structure mimicking a real Kyoto Encyclopedia of Genes and Genome (KEGG) pathway
(cell cycle), as illustrated in Figure 3. Three regulatory states of genes are assumed, i.e., S = {D, N, U},
where D, N, and U represent downregulated, non-regulated, and upregulated, respectively. For a
sample class, genes associated with it are assumed to be predominantly in one of the three regulatory
states (major state), and pathways associated with it then exhibit principal state transition patterns
consisting of the major states of such genes. Accordingly, each of the 100 DEPs were generated to take
two different principal patterns of activity in the case and control classes respectively, while each of
the 100 non-DEPs were assumed to be in a same principal pattern between the case and control classes.
Let r be the probability of the dominant pattern of a pathway, the major states of the associated genes
will be present at a probability of r, and the two other states are preset to occur at an equal odd of
(1 − r)/2. From a viewpoint of biology, the probability (r) reflects the variability of cell systems under a
particular phenotype. Gene expression values are then simulated as follows: When genes are in major
states, their expression values were randomly sampled from normal distributions, N (1, 4), N (3, 4),
and N (5, 4), for state D, N, and U, respectively, and when genes are in minor states, the expression
values from different gamma distributions, Γ (1, 0.5), Γ (3, 0.5), and Γ (5, 0.5), for state D, N, and
U, respectively. Additionally, to examine the effect of DEGs on DEP identification, we also varied
the proportion (ρ) of DEGs in DEPs when generating the simulation data. In summary, we totally
simulated 2 × 3 × 4 data scenarios by varying r = {50%, 60%, 70%, 80%} and ρ = {30%, 50%, 70%} for
the two types of pathway structures, and generated 20 random datasets in each data scenario.
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Figure 3. Two types of pathway structures: (a) the cascade structure, and (b) the complex structure
used in simulation data.

3. Results

3.1. Simulation Data Study

We first applied the proposed method to analyze the simulated data. For each simulation scenario,
we calculated (i) average accuracy (ACC) of DEP identification, (ii) true positive rate (TPR), (iii) false
positive rate (FPR), (iv) positive predictive value (PPV), (v) false negative rate (FNR), (vi) Matthews
correlation coefficient (MCC), and area under the curve (AUC) of receiver operating characteristics
over 20 random datasets of same scenarios. Mathematically, these measures are defined as

ACC = (TP + TN)/(TP + TN + FN + FP), (7)

TPR = TP/(TP + FN), (8)

FPR = FP/(FP + TN), (9)

PPV = TP/(TP + FP), (10)

FNR = FN/(FN + TP), (11)

MCC =
(TP× TN − FP× FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
, (12)

where TP, TN, FP, and FN denote the numbers of true positives, true negatives, false positives, and false
negatives, respectively. For comparison, we also analyzed the simulation data using the previous
five methods, Global test [13], LRpath [24], TAPPA [15], Clipper [25], and DEGraph [17]. Global test
fits the relationship between gene expression and clinical outcome of samples using a generalized
linear model, and calls pathways significantly differentially expressed if any of regression coefficients
is statistically non-zero [13]. LRpath relates the odds of a gene belonging to a predefined pathway
with the significance of differential expression in a linear function, and then employs a Wald statistic
to determine if a pathway is significantly differentially expressed. Compared with Global test and
LRpath, the three methods, TAPPA, Clipper, and DEGraph, can make use of the information of pathway
topology for the identification of DEPs. For example, similar to our method, TAPPA is based on gene
links, but uses a pathway connection index as a differential expression statistic, and Clipper models
gene expression distributions of different sample groups with different graph Gaussian models of a
pathway graph. Comparatively, DEGraph relies on spectral analysis to extract pathway topological
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information for pathway analysis. Table 1 summarizes the results by the six methods at an ad hoc
p-value cutoff of 0.05 for different data scenarios of r = 0.5 and ρ = 0.3, 0.5, or 0.7 for the two types of
pathway structures. From this table, we can clearly see that our method outperforms all the previous
methods with highest ACC, PPV, MCC, and AUC values in almost all data scenarios, showing the
superior performance of the proposed method. Among the five previous methods, LRpath, DEGraph,
Clipper, and Global test obtained similar poor results, which are inferior to those by TAPPA. Similar
observations were made for other data scenarios of r and ρ (Tables S1–S3).

Figure S1 illustrates the changes of AUCs with the probability parameter r for different methods
in differential scenarios of ρ. From this figure, it can be found that our method achieved the highest
AUCs among these methods in all the scenarios. Even when r is lowered to 0.5, i.e., only 50% samples
have genes in their major states, the AUCs of our method are still up to more than 80%, whereas small
r significantly degrades the performance of the previous methods. This suggests that our method
is insensitive to noise (r), but most of the previous methods not. Figure S1 also reveals that all the
methods exhibit an increasing pattern of AUCs with r in different ρ scenarios, as expected. Further
comparison indicates that our method and TAPPA led to very close changing patterns in all the
scenarios, which should be because they both are based on gene links. At the same time, three previous
methods, Global test, DEgraph and Clipper, had similar changing patterns, which should be because
they all are based on the utility of gene correlation via multivariate analysis. Among all these methods,
only LRpath considers neither gene correlations nor pathway topology, which should be the reason for
its poorest AUC performance, as shown in Figure S1.

Table 1. Performance comparison (%) of different methods on simulation data with cascade/complex
pathway topology and r = 0.5.

Method TPR FPR FNR ACC PPV MCC AUC

ρ = 0.3
Our method 56.40/48.30 7.90/9.30 43.60/51.70 74.25/69.50 88.51/85.84 52.32/42.66 87.19/85.09

Global 0.00/0.00 0.00/0.00 100.00/100.00 50.00/50.00 NA/NA NA/NA 46.50/47.95
LRpath 3.30/4.10 3.60/3.80 96.70/95.90 49.85/50.15 47.02/52.61 −0.94/0.90 50.01/51.70
TAPPA 5.80/7.30 3.40/2.70 94.20/92.70 51.20/52.30 61.96/72.08 5.47/10.29 58.37/63.05
Clipper 0.20/1.00 0.50/1.70 99.80/99.00 49.85/49.65 NA/32.33 NA/−3.38 46.11/48.71

DEGraph 1.80/2.20 2.00/2.20 98.20/97.80 49.90/50.00 46.67/47.33 −0.79/−0.31 46.74/48.05

ρ = 0.5
Our method 96.70/94.10 5.80/9.10 3.30/5.90 95.45/92.50 94.61/91.84 91.30/85.67 99.69/98.24

Global 0.00/0.00 0.00/0.00 100.00/100.00 50.00/50.00 NA/NA NA/NA 46.96/48.29
LRpath 2.40/4.00 4.70/4.70 97.60/96.00 48.85/49.65 32.59/46.33 −6.40/−1.67 49.87/50.26
TAPPA 8.80/4.50 2.40/1.60 91.20/95.50 53.20/51.45 77.12/72.25 13.48/8.11 70.07/63.95
Clipper 0.30/1.20 0.80/1.50 99.70/98.80 49.75/49.85 NA/48.00 NA/−0.71 47.43/47.30

DEGraph 1.80/2.40 2.20/2.10 98.20/97.60 49.80/50.15 NA/54.99 NA/1.00 46.93/47.28

ρ = 0.7
Our method 100.00/99.90 6.40/8.60 0.00/0.10 96.80/95.65 94.21/92.32 93.90/91.76 99.95/99.18

Global 0.00/0.00 0.00/0.00 100.00/100.00 50.00/50.00 NA/NA NA/NA 43.38/44.64
LRpath 3.30/3.50 5.30/5.60 96.70/96.50 49.00/48.95 36.85/36.46 −5.19/−5.40 49.94/48.92
TAPPA 19.30/2.20 0.60/0.40 80.70/97.80 59.35/50.90 97.20/NA 31.26/NA 87.69/63.11
Clipper 0.10/1.00 0.50/2.00 99.90/99.00 49.80/49.50 NA/24.88 NA/−4.92 44.28/44.61

DEGraph 1.50/1.80 2.40/2.40 98.50/98.20 49.55/49.70 32.64/35.48 −3.91/−3.01 44.98/47.14

The best results are marked in bold and NA means that no positives were reported. TPR: True positive rate;
FPR: False positive rate; FNR: False negative rate; ACC: Average accuracy; PPV: Positive predictive value; MCC:
Matthews correlation coefficient; AUC: Area under the curve.

3.2. Applications to Real-World Expression Data

To evaluate the proposed method on real data, we collected two benchmark gene expression
datasets: liver cancer dataset [26] and acute lymphocytic leukemia (ALL) dataset [27]. For the liver
cancer data, all the samples are divided into two groups: One in which patients had early intrahepatic
recurrence (n1 = 20, REC) and another in which patients did not (n2 = 40, NREC), and each sample
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consists of the expression levels of 7129 probes. The ALL dataset characterizes gene expression
signatures in acute lymphocytic leukemia cells associated with known genotypic abnormalities for
adult patients, and consists of n1 = 37 patients with presence of BCR/ABL gene rearrangement
(BCR group) and n2 = 41 patients with absence of BCR/ABL gene rearrangement (NEG group).
Each sample in the dataset consists of the expression levels of ~11,556 probes. We preprocessed
the two datasets as follows: The intensities of multiple probes matching a same Entrez ID were
averaged as the expression values of the gene, and non-specific or noise genes were filtered out
using a coefficient of variation (CV) filter [28] with a CV cutoff of 0.05. To apply MCMLink, all the
genes in the two datasets were discretized into three states, downregulated (−1), non-regulated (0),
and upregulated (1), using the biology-constrained discretization method [29].

For the analysis, 220 pathways were downloaded from KEGG database [30] and used as candidate
pathways. Since for a given pathway, not all genes in it are present in a particular dataset, we examined
the member genes of these pathways with the two datasets. By examination, 213 of the 220 pathways
were found to have more than one gene link present in the liver cancer dataset, and 218 have more than
one gene link present in the ALL dataset. We considered only these qualified pathways in subsequent
analyses on the two datasets.

3.2.1. Identification of Differentially Expressed Pathways

We identified DEPs with DynSig for the two real-world datasets. For each pathway, the obtained
p-value was adjusted using SLIM [31] to produce a q-value for controlling false positive rate (FPR).
As a result, for the liver cancer data, 48 pathways (Table S4) were called significantly differentially
expressed between the two liver cancer classes at an ad hoc q-value cutoff of 0.1, and 102 (Table S5) for
the ALL dataset. For comparison, five previous methods, Global test [13], LRpath [24], Clipper [25],
TAPPA [15] and DEGraph [17], were also applied to analyze the datasets. Figure S2 shows the
cumulative probability distribution (CPD) curves of q-values across all the pathways by each of these
methods for the two datasets. From Figure S2, it can be found that the CPD curve of our method has
a larger increase of CPD, around 0.05, than those of the previous methods, irrespective of whether
the data are liver cancer data or the ALL data, suggesting the superior power of our method in
identifying DEPs.

For the liver cancer data, three previous methods, Global test, LRpath, and TAPPA called no
differentially expressed pathways at an ad hoc q-value cutoff of 0.1, and another two previous methods,
Clipper and DEGraph, only three and one pathways, respectively. By relaxing a p-value cutoff to 0.05,
these previous methods still called very few pathways as being significantly differentially expressed:
9 for Global test, 8 for LRpath, 7 for TAPPA, 27 for Clipper, and 14 for DEGraph, respectively. Literature
survey shows that most of DEPs identified by our methods were previously reported to be related to
liver cancer, for example, p53 signaling pathway (p-value = 0.012), transcriptional misregulation in
cancer (p-value = 0.003), and hepatitis B (p-value = 0), which are likely differentially expressed between
recurrent and non-recurrent liver cancer. However, these pathways were not called significantly
expressed by all the previous methods.

For the ALL data, the five previous methods led to disparate results: three, LRpath (7), TAPPA
(9), and DEGraph (60), called relatively few DEPs at an ad hoc q-value cutoff of 0.1, while other two
methods, Global test (136) and Clipper (132), called a large number of DEPs. Compared with the
previous methods, DynSig called 102 DEPs at an ad hoc q-value cutoff of 0.1, which is moderate and
may be more reasonable, statistically. Given the presence of the BCR/ABL chimera, pathways including
BCR and/or ABL1 would be biologically affected, and be true DEPs between the two classes of ALL,
BCR, and NEG. Of the total 218 pathways, nine were found to be BCR and/or ABL1-involved according
to KEGG pathway annotation. Table 2 shows the identification results of the nine pathways by DynSig
and the five previous methods. From this table, it can be found that TAPPA missed eight of the nine
pathways and LRpath found only four. Martini et al. [25] previously reported that GSEA [12], SPIA [32]
and BPA [16] called only 2, 2, 1 of the 9 pathways at a uncorrected p-value cutoff of 0.1, respectively.
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Compared with these results, our method recognized almost all the nine BCR/ABL1-related pathways
(8), which is comparable with the three previous methods, Global test (8), Clipper (7), and DEgraph (7).

Table 2. Identification results of the nine BCR/ABL1-involved pathways by our methods and previous
methods for the ALL data.

Pathway Our Method Global Test LRpath TAPPA Clipper DEGraph

Axon guidance
√ √

X
√ √ √

Cell cycle
√ √ √

X
√ √

Chronic myeloid leukemia
√ √

X X
√ √

ErbB signaling pathway X
√

X X X
√

Neurotrophin signaling pathway
√ √

X X
√ √

Pathogenic Escherichia coli infection
√ √

X X
√ √

Pathways in cancer
√ √

X X X
√

Shigellosis
√ √

X X
√

X
Viral myocarditis

√
X

√
X

√
X

3.2.2. Gene Links Play Significant Roles in Pathway Activity

Gene links, as a dynamic element of a pathway, may play crucial roles in pathway activity.
We examined how such gene links classifies samples. For the liver cancer data, the resulting
48 significant pathways contain 9949 unique gene links present in the dataset. Figure 4A shows
the p-values of these links classifying the dataset. For comparison, we randomly sampled the same
number of random gene links from the total genes, and calculated their p-values of classifying the
dataset based on DynSig. Figure 4A illustrates the differences between counts of p-values in bins
resulted by the true links and randomly generated links on liver data. From this figure, we can
clearly see that, compared with the randomly generated links, the true links had more small p-values
(e.g., <0.5) and fewer large ones (e.g., >0.5), showing that gene links of the selected DEPs are more
discriminative than by chance. Similar results were obtained on the ALL dataset (26,309 true gene
links), as shown in Figure 4B. We also compare the cumulative probability distributions (CPD) of
p-values between the true and random gene links for the two datasets, as shown in Figure 4C. When a
classifier is not discriminative, the p-values will uniformly distribute between 0 and 1, and have a CPD
curve along the diagonal line: y = x. From Figure 4C, we clearly see that, on both datasets, the true
gene links hold CPD curves farther away from y = x than the those of the random links, especially with
p-values < 0.5. These suggest the better classification power by the true gene links (p-value < 2.2×10-16

according to a t-test). Taken together, these results demonstrate that gene links, as a dynamic element
in pathway activity, tend to be discriminative between cancer and normal tissues or between different
cancer subtypes.
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Figure 4. Differences between the p-value distributions of true gene links and random links on liver 

data and ALL data. (A,B) The differences between counts of p-values resulted by the true gene links 

and the randomly generated links in each bin for (A) liver data, (B) ALL data, and (C) the cumulative 

probability distributions of p-values of true links and random links on liver data and ALL data. 

We then overlaid genes involved in the significant gene links (p-value < 0.05) onto the network 

map of pathways. For the ALL data, one of DEPs called by DynSig is neurotrophin signaling 

pathway (KEGG ID: hsa04722), which as an ABL1-involved pathway that has been proven to 

behave distinctly between BCR and NEG ALL patients. Biologically, neurotrophin signaling 

transmits positive signals like enhanced survival and growth, and interplays with a variety of 

intracellular signaling cascades, such as MAPK pathway. Figure 5 shows the overlaid neurotrophin 

signaling pathway downloaded from KEGG database. It can be seen that hub genes tend to be 

involved in the significant links, as expected, and that most gene links along the paths towards the 

biological end of cell survival are called significant to the classification of BCR-ABL and NEG 

tissues. Among the paths, in particular, two involving nuclear factor-κB (NF-κB) and starting from 

TrkA/B/C and p75NTR, are exclusively recognized, with all involved gene links significant.  

Biologically, NF-κB as a family of transcription factors regulates the genes involved in 

inflammatory responses, proliferation and differentiation [33]. It is well known that BCR–ABL 

fusion results in the activation of NF-κB that can trigger tumorigenesis [34,35]. We then examined 

the state transitions of the link IKBA–NFκB in BCR–ABL and NEG tissues. Results reveals that the 

state transition with maximum probability is N → U in BCR–ABL patients, but N → N in NEG 

patients, suggesting that the dissociation between IKBA gene and NF-κB is activated in BCR-ABL, 

but not in NEG. The dissociation of IKBA from NF-κB in BCR-ABL should activate NF-κB and 

consequently, cell proliferation.  

Figure 4. Differences between the p-value distributions of true gene links and random links on liver
data and ALL data. (A,B) The differences between counts of p-values resulted by the true gene links
and the randomly generated links in each bin for (A) liver data, (B) ALL data, and (C) the cumulative
probability distributions of p-values of true links and random links on liver data and ALL data.

We then overlaid genes involved in the significant gene links (p-value < 0.05) onto the network
map of pathways. For the ALL data, one of DEPs called by DynSig is neurotrophin signaling pathway
(KEGG ID: hsa04722), which as an ABL1-involved pathway that has been proven to behave distinctly
between BCR and NEG ALL patients. Biologically, neurotrophin signaling transmits positive signals
like enhanced survival and growth, and interplays with a variety of intracellular signaling cascades,
such as MAPK pathway. Figure 5 shows the overlaid neurotrophin signaling pathway downloaded
from KEGG database. It can be seen that hub genes tend to be involved in the significant links,
as expected, and that most gene links along the paths towards the biological end of cell survival are
called significant to the classification of BCR-ABL and NEG tissues. Among the paths, in particular,
two involving nuclear factor-κB (NF-κB) and starting from TrkA/B/C and p75NTR, are exclusively
recognized, with all involved gene links significant.

Biologically, NF-κB as a family of transcription factors regulates the genes involved in
inflammatory responses, proliferation and differentiation [33]. It is well known that BCR-ABL fusion
results in the activation of NF-κB that can trigger tumorigenesis [34,35]. We then examined the state
transitions of the link IKBA–NFκB in BCR–ABL and NEG tissues. Results reveals that the state
transition with maximum probability is N→ U in BCR–ABL patients, but N→ N in NEG patients,
suggesting that the dissociation between IKBA gene and NF-κB is activated in BCR-ABL, but not in
NEG. The dissociation of IKBA from NF-κB in BCR-ABL should activate NF-κB and consequently,
cell proliferation.
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3.2.3. Principal Patterns of Pathways Reflect Abnormality of Signaling Dynamics in Cancer

Biological information is necessary to propagate along pathway networks for the mediation and
maintenance of the life of cells. Such signaling should be manifested in the state transition patterns of
gene chains. We then recognized the principal patterns of pathways specific to each of the two classes
for the ALL and liver datasets. For the ALL data, take neurotrophin signaling pathway as example
and consider one of the two significant NF-κB-ending cascades, i.e., 4916→ 53358→ 2549→ 5291→
207→ 4792→ 4790 (Entrez IDs), as shown in Figure 6A. Figure 6C compares the principal patterns of
the cascade between the two ALL classes, BCR and NEG. From Figure 6C, we can clearly see that the
two classes have two distinct state transition patterns with respective to the link cascade. Especially, in
NEG, the consecutive D or N states along the path lead to the low expression of NF-κB, implying the
suppression of cellular survival in NEG. We also noticed that signaling protein, GAB1 (Entrez ID: 2549),
is mainly upregulated in BCR but not in NEG. This is in accordance with the experimental observation
that GAB1 is tyrosine-phosphorylated in response to B cell antigen receptor engagement [36,37]. For the
liver cancer data, similar results were also obtained. Figure 6B,D shows the result for one of three-link
chain in differentially expressed hepatitis B pathway: 5295→ 208→ 572→ 863 (Entrez IDs), which is
involved in the activation cascade of caspases responsible for apoptosis execution. From Figure 6B,D,
it can be seen that the principal pattern in NREC, D→ N→ N→ U, leads to overexpression of CASP3
(Entrez ID: 863), and finally, activates the apoptosis of cell. This is consistent with the non-recurrence
of liver cancer in NREC patients.
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ALL (A,C) and liver (B,D) datasets. Genes involved are marked with blue-edge boxes and labeled with
their Entrez IDs.

4. Discussion

Currently, most of current methods are based on counting DEGs, in which only the static
information in pathways is considered. By contrast, the proposed method extracts signaling flows
along a pathway by modeling gene links. As a result, the proposed method takes advantage of pathway
topology, as well as characterizes dynamics of pathways based on MCM. One of advantages of the
proposed method is that it allows for detecting abnormal state transitions along gene links or pathways
in cancer for the purpose of DEP identification, as demonstrated in applications to two real-world
cancer datasets (Figures 5 and 6). For example, based on the liver cancer data, we find that a gene
chain ending with CASP3, which inactivates CASP3 and suppresses apoptosis of cells, is potentially
associated with the recurrence of primary liver cancer patients. These will definitely help to gain deep
insight into the molecular mechanisms of cancer.

A comprehensive comparison of the classification power of gene links with those of random
gene pairs confirmed the justification of DynSig in capturing the disparity of dynamics of pathways
between classes (Figure 5). In particular, DynSig accurately called eight of the nine BCR/ABL1-involved
pathways for the ALL dataset outperforming previous methods (Table 1). These initial results on
gene links of length two genes are encouraging, and future work will extend DynSig to gene chains
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of length three or more genes, that provide a more objective and comprehensive understanding of
signaling dynamics along pathways.

5. Conclusions

We have proposed a signaling dynamics-based approach, DynSig, for identifying differential
pathways from high-throughput transcriptomics data analysis. The method takes emphasis on gene
links, instead of gene nodes as usual, which facilitate the use of topological information of pathways
in pathway analysis. Specifically, we first decompose the pathway networks into a set of gene
links and introduce MCM to characterize and capture the dynamics of pathways. Finally, a new
signaling dynamics-based statistic was derived to measure the disparity of pathways between different
conditions of cells. Experimental results on simulation data and two real-world datasets, liver cancer
and ALL datasets, demonstrated the effectiveness and efficiency of the proposed method.
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