
genes
G C A T

T A C G

G C A T

Article

Probiotic Lactobacillus Paracasei Expressing a
Nucleic Acid-Hydrolyzing Minibody (3D8 Scfv)
Enhances Probiotic Activities in Mice Intestine as
Revealed by Metagenomic Analyses

Seungchan Cho 1,†, Dongjun Kim 1, Yongjun Lee 1, Eui-Joon Kil 1, Mun-Ju Cho 1,
Sung-June Byun 2, Won Kyong Cho 3,* and Sukchan Lee 1,*

1 Department of Genetic Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419,
Korea; seungchan1007@gmail.com (S.C.); rlaehdwns1535@gmail.com (D.K.); 88yjl11@naver.com (Y.L.);
meitantei007@naver.com (E.-J.K.); munju2004@naver.com (M.-J.C.)

2 Animal Biotechnology Division, National Institute of Animal Science (NIAS),
Rural Development Administration (RDA), 1500, Kongjwipatjwi-ro, Iseomyeon, Wanju 55365, Korea;
pcs1778@korea.kr

3 Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences,
Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea

* Correspondence: wonkyong@snu.ac.kr (W.K.C.); cell4u@skku.edu (S.L.)
† Present address: Department of Microbiology, College of Medicine, Korea University, 73, Inchon-ro,

Seoul 08826, Korea.

Received: 8 March 2018; Accepted: 17 May 2018; Published: 29 May 2018
����������
�������

Abstract: Probiotics are well known for their beneficial effects for animals, including humans and
livestock. Here, we tested the probiotic activity of Lactobacillus paracasei expressing 3D8 scFv, a nucleic
acid-hydrolyzing mini-antibody, in mice intestine. A total of 18 fecal samples derived from three
different conditions at two different time points were subjected to high-throughput 16S ribosomal
RNA (rRNA) metagenomic analyses. Bioinformatic analyses identified an average of 290 operational
taxonomic units. After administration of L. paracasei, populations of the probiotics L. paracasei,
Lactobacillus reuteri, and Pediococcus acidilactici increased, whereas the population of harmful bacteria
such as Helicobacter species decreased. Furthermore, continuous administration of L. paracasei resulted
in L. paracasei emerging as the dominant probiotic after competition with other existing probiotics.
Expression of 3D8 scFv protein specifically increased the population of P. acidilactici, which is another
probiotic. In summary, our results showed that L. paracasei expressing 3D8 scFv protein enhanced
probiotic activity in mice intestine with no observable side effects. Thus, the system developed in this
study may be a good tool for the expression of recombinant protein using probiotics.

Keywords: Lactobacillus paracasei; 3D8 scFv; metagenomics; mouse; probiotics; 16S ribosomal
RNA gene

1. Introduction

The microbiota in the gastrointestinal (GI) tracts of mammals are complex, and their composition
can be influenced by several factors, including diets and environmental changes. Among known
microbiota in the GI tracts, some bacteria species are regarded as probiotics, which can be defined as
microorganisms providing beneficial effects when consumed by humans and animals [1]. Of known
probiotics, many members of Lactobacillus spp. are consumed as health supplementary foods [2]
and are used in the food fermentation industry to ferment cereals inhibiting pathogenic bacteria [3].
Lactobacillus are gram-positive bacteria with a rod-like shape that participate in glucose fermentation
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resulting in the production of lactic acid as well as small amounts of acetic and succinic acids [4].
Lactobacillus usually inhabits the mouth and GI tract [5]. In particular, the GI tracts of diverse
mammals are preferentially colonized by Lactobacillus spp. such as Lactobacillus brevis, Lactobacillus casei,
Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus salivariu [6].
To date, more than 70 different species of Lactobacillus have been identified.

The 3D8 single-chain variable fragment referred as 3D8 scFv is a nucleic acid hydrolyzing
mini-antibody without sequence specificity [7]. The 3D8 scFv protein that was purified from
Escherichia coli was subsequently shown to penetrate the cytosol of HeLa cells via caveolae-mediated
endocytosis. Previous studies demonstrated that 3D8 scFv exhibits antiviral effects against a broad
range of viruses, including the herpes simplex virus (HSV), pseudorabies virus (PRV), classical swine
fever virus (CSFV), murine norovirus (MNV) and H1N1 influenza virus in various hosts [8–11].
Therefore, it is clear that 3D8 scFv engages in direct antiviral activities against various DNA and RNA
viruses by penetrating into cells and directly hydrolyzing the viral genome based on previous findings.
In addition, a previous study has shown that Lactobacillus paracasei expressing 3D8 scFV can be used as
a preventive probiotic against norovirus infection [8]. In order to use L. paracasei expressing 3D8 scFV
as a preventive probiotic, it is necessary to examine the possible impact of L. paracasei expressing 3D8
scFV in microbiota of the GI tracts. Because nothing is known about whether L. paracasei expressing
3D8 scFV will be beneficial or harmful to other microbiota. For this reason, metagenomics might be a
good approach.

The rapid development of next-generation sequencing (NGS) has promoted studies associated
with metagenomics, which reveals the composition of living microorganisms in a wide range of
environmental samples [12]. In the case of bacteria, amplification of a partial 16S ribosomal RNA
(rRNA) gene sequence followed by NGS is widely used as a culture-independent microbiological
method. NGS-based 16S rRNA target sequencing allows identification of numerous bacteria species
present in the intestine of animals. For example, it is estimated that there are approximately
40,000 bacterial species in the gastrointestinal microbiome of humans [13], and a recent study generated
a reference mouse gut metagenome derived from fecal samples of 184 mice with different genetic
backgrounds revealing 541 bacteria species [14]. Of known NGS systems, many previous studies used
the FLX 454 system (454 Life Sciences, Branford, Connecticut, US), which produces long length
sequence reads [15], whereas recent studies preferentially adopted the MiSeq system (Illumina,
San Diego, California, US), which can produce reads up to 300 bases in length for 16S rRNA target
sequencing [16].

In this study, we carried out high-throughput 16S rRNA metagenomic analyses to investigate the
effects of the probiotic L. paracasei ATCC334 expressing 3D8 scFv in microbiota of the mouse intestine.
A total of 18 fecal samples derived from three different conditions at two different time points were
subjected to high-throughput 16S rRNA metagenomic analyses. Our results showed that L. paracasei
expressing 3D8 scFv promoted probiotic activity in the mouse intestine.

2. Methods

2.1. Animals and Bacteria

Six-week-old female specific pathogen-free (SPF) BALB/c mice (Orient Bio Laboratories,
Seongnam, Korea) weighing 18–20 g were housed under standard laboratory conditions. All animal
procedures performed in this study were reviewed, approved, and supervised by the Institutional
Animal Care and Use Committee (IACUC) of Kunkuk University (Ethical code: KU16080) and all
experimental procedures performed here were in accordance with the guidelines of the Institute of
Laboratory Animal Resources (ILAR). L. paracasei ATCC 334 was kindly provided by Dr. Jos Seegers
(Falcobio, Lieden, Netherland). Wildtype (WT) L. paracasei and transgenic (TG) L. paracasei were
anaerobically cultured in antibiotic-free de Man, Rogosa, and Sharpe (MRS) media and MRS media
supplemented with 3 µg/mL chloramphenicol, respectively.
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2.2. Construction of a Vector Expressing Recombinant Protein and Transformation

A pSLP111.3 vector for expression in Lactobacillus (provided by Dr. Jos Seegers) was modified to
replace the xylose-inducible promoter with a lactate dehydrogenase (LDH) constitutive promoter [17].
Codon-optimized 3D8 scFv was chemically synthesized (IDT, Coralville, IA, USA). Cloning of the 3D8
scFv gene into L. paracasei was performed as previously described [8].

2.3. Oral Administration of Lactobacillus to BALB/c mice

Mice were assigned to three experimental groups, with three mice per group. The administration
scheme is illustrated in Figure 1. For the three experimental groups, 6-week-old female BALB/c mice
were fed 108 colony forming units (CFU) of WT and TG L. paracasei once a day for 7 days using oral
zonde needle. Mice in the negative control group were fed only with PBS once a day for 7 days.
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Figure 1. Experimental scheme of sample preparation for metagenomic study. Three different
conditions were used: negative, WT, and TG. Syringes indicate normal oral administration. Orange
rods and green shapes indicate Lactobacillus and Lactobacillus expressing 3D8 scFv, respectively. Blue
arrows indicate time points for oral administration while red arrows indicate sampling time points of
day 0 and day 7. WT: Wildtype; TG: Transgenic

2.4. Sample Preparation and DNA Extraction

Fecal samples were collected from the mice 7 days after administration. Genomic DNA was
extracted from a total of 18 samples, including three biological replicates for each condition, using
ExtractMaster™ Fecal DNA Extraction Kit according to the manufacturer’s instructions (Epicentre,
Madison, WI, USA).

2.5. Preparation of Libraries for 16S Ribosomal RNA Sequencing and Paired-End Sequencing Using the
MiSeq System

Libraries were constructed following the Illumina 16S metagenomics sequencing library
preparation guide. In brief, the V3 and V4 regions of the 16S rRNA gene were targeted for PCR
amplification using isolated DNA as a template. The 7-bp barcoded PCR primers were used to label
16S rRNA amplicons for each individual sample. Paired-end sequencing (2 × 300 bp) was conducted
using the MiSeq system (Illumina Inc., San Diego, CA, USA) at Macrogen (Seoul, Korea). The raw
images generated by Illumina MiSeq system were processed using MiSeq Control Software (MCS,
v2.2, Illumina Inc.) for system control with base calling by integrated primary analysis software called
Real Time Analysis (RTA, v1.18, Illumina Inc.). The binary base calls (BCL) is converted into FASTQ
using the Illumina package MiSeq Reporter (MSR). The obtained raw data were deposited in Sequence
Read Archive (SRA) database in National Center for Biotechnology Information NCBI with project
number PRJNA352304.
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2.6. Preprocessing of Raw Data, Clustering, and Taxonomic Assignment

Data analyses consisted of three steps: preprocessing and clustering, taxonomic assignment,
and statistical analyses for diversity. Paired-end reads were merged using the FLASH program [18].
The filtered clean reads were subjected to clustering at 100% identity to identify operational taxonomic
units (OTUs) using the CD-HIT-OUT program [19]. Clustering was comprised of three steps.
First, short reads and extra-long tails were removed from the raw data. The second step was to identify
error-free reads. In the third step, the remaining representative reads from non-chimeric clusters
were clustered using a greedy algorithm into OTUs with 97% identity at species level. Taxonomical
composition from phylum to species level for each sample was analyzed using the quantitative insight
into microbial ecology (QIIME) pipeline [20]. Community richness and diversity (α diversity) were
analyzed by diverse α diversity metrics: Chao1, Shannon, Simpson, and Good’s coverage using the
QIIME pipeline.

2.7. Statistical Analyses

We have conducted a power test using the G*Power program (version 3.1.9.2) to calculate the
power of the study [21]. Post hoc testing to compute the achieved power was conducted by one-way
analysis of variance (ANOVA) using an F-test with the following parameters: Repeated measures,
within-between interaction, effect size f 0.4 (large), α error probability 0.05, number of groups 3,
number of measurements 2, correlation among replicate measures 0.05, nonsphericity correction 1,
resulting in a power of 0.7882055 (78.82). In order to achieve a power higher than 0.8 (80) with the
same parameters, the sample size should be more than 42, with an expected power of 0.8034136.

In addition, a t-test was conducted on five major species of Helicobacter sp., Pediococcus acidilactici,
L. paracasei, L. reuteri, and Bifidobacterium using the following parameters: difference between two
dependent means (matched pairs), correlation between groups 0.5, α error probability 0.05, total
sample size 6, and respective effect size. Effect sizes for two different groups was determined from
group parameters (mean value group 1, mean value group 2, standard deviation (SD) value group 1,
SD value group 2) using the G*Power program.

Next, we conducted a two-way ANOVA with replication using Excel's Data Analysis (version
2016, Microsoft, Redmond, WA, USA) to find bacteria species significantly changed under three
different conditions (negative (N), TG and WT) and two time points.

The differences in abundance of bacterial genera among 18 samples, the ANOVA was performed
using the Statistical Analysis of Metagenomic Profiles (STAMP v. 2.1.3) software package [22].
For comparison between two different conditions, two-sided Fisher’s exact test with confidence
interval (CI) method (DP: Asymptotic-CC with 0.95) was conducted using STAMP software package.

3. Results

3.1. Sample Preparation and High-Throughput 16S ribosomal RNA Metagenomic Analyses Using
MiSeq System

Negative samples were obtained from the mice fed with PBS buffer or fed a diet containing WT
samples were from mice fed L. paracasei, and TG samples were from mice fed L.paracasei expressing
3D8 scFv, as established in a previous study [8]. To examine changes in the microbiota in mice
intestines among different conditions, we harvested fecal samples at two different time points (day 0
and day 7) for each condition (Figure 1 and Table 1). Finally, a total of 18 samples derived from three
different conditions at two different time points with three biological replicates were subjected to
metagenome profiling. A total of 5,089,513 reads (2,302,478,088 bp) were obtained from 18 libraries
(Table 1). Between 224,927 reads (102,570,095 bp) and 326,110 reads (148,592,201 bp) were obtained
from each sample (Table 1). The power of our study was 0.7882055 (78.82) with three number of groups
(three conditions), two number of measurements (two time points), and three replicates for each group.
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Table 1. Summary of treatment conditions and samples with respective sequencing results.

Condition Day Replicate Abbreviation Total Bases (bp) Read Count

N

0
1 N0R1 117,395,034 259,801
2 N0R2 129,075,064 285,466
3 N0R3 128,072,181 283,889

7
1 N7R1 102,570,095 224,927
2 N7R2 147,077,671 325,948
3 N7R3 113,530,929 250,331

WT

0
1 W0R1 129,201,892 288,118
2 W0R2 125,601,235 278,505
3 W0R3 140,795,712 311,553

7
1 W7R1 121,644,286 269,049
2 W7R2 123,340,544 271,652
3 W7R3 148,592,201 326,110

TG

0
1 T0R1 138,288,303 305,165
2 T0R2 107,080,820 237,986
3 T0R3 135,852,937 300,959

7
1 T7R1 139,324,032 307,834
2 T7R2 131,123,910 287,958
3 T7R3 123,911,242 274,262

Samples were harvested from three conditions at two different time points with three biological replicates for
each. Group name, sampling time, name of replicate, and abbreviated name for individual sample are provided.
In addition, total sequenced nucleotide bases and read counts for each sample by NGS are provided. N: negative;
WT: wildtype; TG: Transgenic.

3.2. Microbial Composition in Mice Intestine

We carried out bioinformatics analyses for NGS data as described in methods section. Because
of the stringent criteria for filtering sequenced reads, approximately 21% to 27% of sequenced raw
data were further used for the identification of OTUs. We obtained from 48,511 reads (W0R2) to
69,639 reads (N7R2), which was enough for OTU analyses (Figure 2A). There was some bias for the
number of filtered reads among replicates. In total, we identified 396 OTUs from 18 libraries (Table S1).
In detail, between 242 OTUs (N7R2) and 320 OTUs (T0R1) were identified, with an average of 290 OTUs
(Figure 2B). Based on our results, there was no correlation between number of reads and number
of OTUs.

To reveal microbial composition in the mice intestine, we combined all data and classified the
microbes into phylum, order and genus. We identified 9 phyla, 13 classes, 16 orders, 31 families,
and 52 genera. Based on phylum, Bacteroidetes (60.70%) was dominant followed by Firmicutes
(26.90%), Proteobacteria (7.60%), and Deferribacteres (3.40%) (Figure 2C). According to the order, most
bacteria belonged to the Bacteroidales (60.70%) followed by Clostridiales (18.50%), Lactobacillales (5.70%),
Campylobacterales (5.70%), and Deferribacterales (3.40%) (Figure 2D). However, many bacteria (33.30%)
were not assigned into any known bacteria genera. The Lactobacillus accounted for 4.10% of all
identified bacteria in the mice intestine.

Among 13 identified known classes, the proportion of bacteria belonging to an unknown class
ranged from 0.5% (W0R1) to 26.10% (N7R1) (Figure 3A). The proportion of the class Bacteroidia ranged
from 42.6% (T0R2) to 72.7% (N7R3). The second dominant bacterial class was Clostridia ranging
from 11.5% (N7R1) to 38.2% (T0R2). The class Epsilonproteobacteria was also abundantly present in all
samples. The class Deferribacteres was identified in most samples except W7R2, and compared with
other samples, the proportion of class Deferribacteres was very high in the N7R2 sample.



Genes 2018, 9, 276 6 of 15
Genes 2017, 8, x FOR PEER REVIEW  6 of 16 

 

 
Figure 2. Analyses of sequenced reads in each library and assignment of all filtered reads according 
to bacterial taxonomy. (A) Number of analyzed reads in each library, (B) number of identified 
operational taxonomic units (OTUs) in each library, (C-E) taxonomical classification of all analyzed 
reads from 18 libraries according to phylum (C), order (D), and genus (E).  

To reveal microbial composition in the mice intestine, we combined all data and classified the 
microbes into phylum, order and genus. We identified 9 phyla, 13 classes, 16 orders, 31 families, and 
52 genera. Based on phylum, Bacteroidetes (60.70%) was dominant followed by Firmicutes (26.90%), 
Proteobacteria (7.60%), and Deferribacteres (3.40%) (Figure 2C). According to the order, most bacteria 
belonged to the Bacteroidales (60.70%) followed by Clostridiales (18.50%), Lactobacillales (5.70%), 
Campylobacterales (5.70%), and Deferribacterales (3.40%) (Figure 2D). However, many bacteria (33.30%) 
were not assigned into any known bacteria genera. The Lactobacillus accounted for 4.10% of all 
identified bacteria in the mice intestine.  

Among 13 identified known classes, the proportion of bacteria belonging to an unknown class 
ranged from 0.5% (W0R1) to 26.10% (N7R1) (Figure 3A). The proportion of the class Bacteroidia ranged 
from 42.6% (T0R2) to 72.7% (N7R3). The second dominant bacterial class was Clostridia ranging from 
11.5% (N7R1) to 38.2% (T0R2). The class Epsilonproteobacteria was also abundantly present in all 
samples. The class Deferribacteres was identified in most samples except W7R2, and compared with 
other samples, the proportion of class Deferribacteres was very high in the N7R2 sample.  

Figure 2. Analyses of sequenced reads in each library and assignment of all filtered reads according to
bacterial taxonomy. (A) Number of analyzed reads in each library, (B) number of identified operational
taxonomic units (OTUs) in each library, (C–E) taxonomical classification of all analyzed reads from
18 libraries according to phylum (C), order (D), and genus (E).Genes 2017, 8, x FOR PEER REVIEW  7 of 16 

 

 

Figure 3. Taxonomical classification of OTUs in 18 samples. The identified OTUs were classified 
according to class (A) and family (B). Each color bar indicates the relative proportion of identified 
bacteria.  

Among the 31 known bacterial families, only 0.8% of bacteria were identified as unknown  
(Figure 3B). The three bacterial families Porphyromonadaceae, Bacteroidaceae, and Rikenellaceae were 
abundantly present in all samples. Rarefaction curves based on the Chao1 index were generated for 
18 libraries and showed that the rarefaction curves nearly reached a plateau (Figure 4). Sequencing 
coverage for the 18 samples ranged from 0.9991079 to 0.999704 (Table 2). Both rarefaction and 
sequencing coverage indicate sufficient coverage of 16S rRNA sequencing. In addition, we calculated 
the richness estimate and diversity index using the Mothur program [23]. Although there was 
significant bias for the richness estimate and diversity index among biological replicates in the same 
condition, we did not find any significant differences among conditions (Table 2). 

Table 2. Richness estimate and diversity index for gut samples under different diets: community 
diversity index and richness estimate for 18 samples.  

Sample OTUs Chao1 Shannon Simpson Goods Coverage 

N0R1 313 352.667 5.8142597 0.9593455 0.999321705 
N0R2 266 282.235 5.0649192 0.9344073 0.999626564 

Figure 3. Taxonomical classification of OTUs in 18 samples. The identified OTUs were classified according
to class (A) and family (B). Each color bar indicates the relative proportion of identified bacteria.



Genes 2018, 9, 276 7 of 15

Among the 31 known bacterial families, only 0.8% of bacteria were identified as unknown
(Figure 3B). The three bacterial families Porphyromonadaceae, Bacteroidaceae, and Rikenellaceae were
abundantly present in all samples. Rarefaction curves based on the Chao1 index were generated for
18 libraries and showed that the rarefaction curves nearly reached a plateau (Figure 4). Sequencing
coverage for the 18 samples ranged from 0.9991079 to 0.999704 (Table 2). Both rarefaction and
sequencing coverage indicate sufficient coverage of 16S rRNA sequencing. In addition, we calculated
the richness estimate and diversity index using the Mothur program [23]. Although there was
significant bias for the richness estimate and diversity index among biological replicates in the same
condition, we did not find any significant differences among conditions (Table 2).
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Table 2. Richness estimate and diversity index for gut samples under different diets: community
diversity index and richness estimate for 18 samples.

Sample OTUs Chao1 Shannon Simpson Goods Coverage

N0R1 313 352.667 5.8142597 0.9593455 0.999321705
N0R2 266 282.235 5.0649192 0.9344073 0.999626564
N0R3 301 332.316 5.5026827 0.9550186 0.999373422
N7R1 291 338.3 5.6458194 0.9655083 0.999107885
N7R2 242 264.235 4.4974754 0.9035892 0.999597926
N7R3 275 295.313 5.4140089 0.9521503 0.999518581
W0R1 309 335.4 5.4151359 0.9425895 0.999424134
W0R2 295 334 5.8569545 0.9670265 0.999175445
W0R3 297 332.769 5.6102921 0.955642 0.999459148
W7R1 319 338.833 5.6387481 0.9569166 0.99931734
W7R2 282 295.043 5.610285 0.9572774 0.999523501
W7R3 281 307.105 5.6519495 0.9641348 0.999536245
T0R1 320 349 5.8469024 0.963316 0.999508937
T0R2 261 282.368 4.9104504 0.9228563 0.99940355
T0R3 311 320 5.810696 0.9640873 0.999703967
T7R1 305 330.588 5.631011 0.9554437 0.999512853
T7R2 266 295.077 5.140159 0.9231 0.999554686
T7R3 287 297.5 5.7108717 0.9602213 0.999632989

OTUs: Operational taxonomic unit is an operational definition of a species or group of species that is often used
when only DNA sequence data are available; Chao1: The Chao calculator returns the Chao1 richness estimate for an
OTU definition; Shannon: The Shannon index takes into account the number and evenness of species; Simpson:
The Simpson index represents the probability that two randomly selected individuals in the habitat will belong to
the same species; Goods Coverage: Goods Coverage calculated as C = 1 − (s/n), where s is the number of unique
OTUs and n is the number of individuals in the sample. This index gives a relative measure of how well the sample
represents the larger environment.
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3.3. Comparison of Bacterial Compositions Among the Three Different Conditions

To identify condition-specific bacterial genera, we analyzed the composition of bacterial genera in
three conditions at two different time points (Figure 5). A total of 49 and 50 genera were identified at day
0 and day 7, respectively. Most of the identified bacterial genera were commonly identified in all three
conditions. For example, 43 genera (87.8%) and 44 genera (88%) were commonly identified at day 0 and
day 7, respectively. At day 0, the two genera Akkermansia and Enterococcus were specific for the negative
condition whereas Atopostipes and Pediococcus were specific for TG and WT, respectively. The read
counts for condition specific bacterial genera were very low, ranging from only 1 count to 22 counts.
At day 7, the genera Oceanobacillus and Olsenella were specific for negative condition. Interestingly,
the read count for the genus Oceanobacillus was very high (2815 reads). The genus Akkermansia was
commonly identified in negative and TG conditions relatively high read counts (N: 570, TG: 1443).
Furthermore, between TG and WT conditions, the three genera Pediococcus (TG: 9697, WT: 4), Aerococcus
(TG: 274, WT: 17), and Enterococcus (TG: 7, WT: 11) were identified. In particular, the number of reads
associated with the genus Pediococcus was very high in the TG condition.
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Figure 5. Comparison of identified bacteria in three different conditions based on genus. The identified
bacterial genera in each condition were compared at two individual time points of day 0 (A) and day
7 (B) and visualized by Venn-diagram. Orange, gray, and pale red circles indicate N, TG, and WT
conditions, respectively. Bacteria genera that were condition specific or commonly identified in two
conditions were indicated with number of read counts. For each condition, bacterial genera from three
replicates were combined regardless of number of read counts.

We further analyzed the identified bacteria according to species in order to decipher changes in
bacterial composition among the three different conditions (Table 3). In total, 1,032,761 reads were
identified from 18 samples. Of these, 89.37% of reads were derived from uncultured bacteria, followed
by uncultured Helicobacter sp. (5.63%), and unknown species (2.35%). At the species level, there were
dramatic changes in microbial composition among conditions (Figure 6). L. paracasei that was used
for feeding was not found in N0, N7, T0, or W0, as expected (Table 3 and Figure 6A–C). At 7 days
after feeding, a large number of L. paracasei were found in both TG and WT samples (Figure 6B,C).
The number of L. paracasei in WT at day 7 (4,790 reads) was about five times larger than that in TG at
day 7 (953 reads). Interestingly, we also identified another lactobacillus, L. reuteri that was not fed to
the mice. The amount of L. reuteri was decreased in negative and transgenic samples at day 7 compared
day 0, whereas the amount of L. reuteri was increased in wildtype at day 7 (Figure 6B,C). In addition,
we identified P. acidilactici, which is a known probiotic. Surprisingly, the population of P. acidilactici
was dramatically increased in the transgenic condition at day 7 (Figure 6D). However, the number of
uncultured Bifidobacterium species was decreased in all three conditions at day 7 compared with day 0
(Figure 6A–C).
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Table 3. Number of sequenced reads for known bacteria species in six conditions.

All * N0 N7 W0 W7 T0 T7

Lactobacillus paracasei 5743 (0.6%) 0 0 0 4790 (2.8%) 0 953 (0.5%)
Lactobacillus reuteri 6120 (0.6%) 1068 (0.6%) 163 (0.1%) 733 (0.4%) 2518 (1.5%) 1295 (0.8%) 343 (0.2%)
Pediococcus acidilactici 9702 (0.9%) 0 0 1 4 0 9697 (5.3%)
Uncultured bacterium 922,984 (89.4%) 153,395 (89.3%) 158,000 (91.3%) 141,368 (86.7%) 158,205 (91.6%) 152,017 (89.2%) 159,999 (88.1%)
Uncultured Bifidobacterium sp. 360 82 0 53 0 225 (0.1%) 0
Uncultured Firmicutes bacterium 275 14 52 65 53 84 7
Uncultured Helicobacter sp. 58,145 (5.6%) 14,060 (8.2%) 9849 (5.7%) 16,001 (9.8%) 1213 (0.7) 13,879 (8.1%) 3143 (1.7%)
Uncultured organism 2469 (0.2%) 594 (0.3%) 236 (0.1%) 307 (0.2%) 260 (0.2%) 274 (0.2%) 798 (0.4%)
Uncultured Shigella sp. 2669 (0.3%) 41 39 168 (0.1%) 1843 (1.1%) 40 538 (0.3%)
Unknown 24,294 (2.4%) 2473 (1.4%) 4628 (2.7%) 4437 (2.7%) 3852 (2.2%) 2703 (1.6%) 6201 (3.4%)

Total 1,032,761 171,727 172,967 163,133 172,738 170,517 181,679

At the species level, most identified bacteria were assigned as uncultured bacteria. Only a few bacteria species have been identified. Number of reads and percentage of respective bacteria
species are indicated. * Six different conditions were used: Negative in Day 0 (N0), Negative in Day 7 (N7), WT in Day 0 (W0), WT in Day 7 (W7), TG in Day 0 (T0) and TG in Day 7 (T7).
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(D) T7 vs W7 were visualized by extended error bar plots implemented in STAMP program. The mean
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We identified not only probiotics, but also potential pathogenic bacteria such as uncultured
Firmicutes bacterium, uncultured Helicobacter species, and uncultured Shigella species. Of these,
the number of Helicobacter species was decreased in all conditions at day 7 compared with day 0
(Figure 6A–C).

We calculated the power based on five major species of Helicobacter sp., P. acidilactici, L. paracasei,
L. reuteri, and Bifidobacterium. As a result, we obtained a power greater than 0.8 following three
bacteria species in a given comparison, such as a power of 0.8556975 (T0 vs. T7) and 0.8820874
(W0 vs. W7) for Helicobacter sp., a power of 0.9914611 (N7 vs. T7) and 0.9825466 (W0 vs. W7)
for P. acidilactici, and a power of 0.8329246 (W0 vs. W7), 0.9139413 (T7 vs. W7), and 0.9370286
(W7 vs. N7) for Lactobacillus reuteri. Furthermore, a two-way ANOVA test demonstrated that the
abundance of Helicobacter sp. (p = 0.020955727) was significantly changed among the three conditions,
while P. acidilactici showed significant changes in abundance by time (p = 0.007410375), condition
(p = 0.00245994), and by the interaction between time and condition (p = 0.002458016).

We examined the relative abundance of the 52 known bacteria genera in three conditions at two
different time points. The relative abundance of selected bacteria at day 7 was compared to that at day
0. The heat map shows changes in bacteria abundance under the three conditions (Figure 7). Bacteria
belonging to the genera Aeroccus (p = 0.237), Pediococcus (p = 0.093), and Enterococcus (p = 0.060) were
highly present in WT and TG, but not in the N sample (Table S2). Genera Oceanobacillus (p = 0.332)
and Olsenella (p = 0.006) were only present in N samples; however, Oceanobacillus (p = 0.332) was
highly abundant at day 7, whereas Olsenella (p = 0.006) was highly abundant at day 0. The abundance
of bacteria belonging to the genera Anaeroplasma (p = 0.067), Atopostipes (p = 0.167), Jeotgalicoccus
(p = 0.176), Staphylococcus (p = 0.105), and Prevotella (p = 0.024) was high at day 7 in all three conditions.
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4. Discussion

Mice are frequently used as a model animal to examine the changes in microbiota in various
tissues in response to diverse environmental stimuli. Modulation of the microbiota under a given
condition results in a beneficial or harmful effect on the host life. For instance, many studies have
shown the effects of antibiotic treatment on the mouse intestinal microbiome [24–26]. In addition,
some studies have demonstrated the influence of dietary ingredients on the fecal microbial community
in mice [27,28]. Moreover, the change of mouse intestinal microbiota in response to different
environmental changes such as irradiation [29], acclimatization-induced stress [30], and exposure to
arsenic and iron [31] has been studied. Gut microbiota from mice with different genetic backgrounds
such as wildtype mice and gnotobiotic mice have also been previously examined [32,33].

In this study, we performed metagenome sequencing of a mouse model to examine the impact
of consumption of lactobacillus expressing a recombinant protein on mouse intestine microbiota.
We identified approximately 300 species from a single source mouse which represents about 60% of
known bacteria species in a reference mouse gut metagenome derived from 184 mice [14]. Based on
this result, our metagenomic approach was successful for revealing the microbiota in the intestine
of a single source mouse. Among three biological replicates used for each condition, the microbial
compositions among different replicates for the same condition were similar, but the abundance of
identified bacteria was diverse. These results indicate that each individual mouse has a unique complex
of microbiota, as previously shown [14].
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Of the known top core genera in the mouse gut metagenome, three genera, Bacteroides, Alistipes,
and Lactobacillus, were identified in our study; however, we additionally identified Barnesiella,
Mucispirillum, and Oscillibacter genera. Of these, bacteria in the genus Bacteroides are clinical pathogens
present in most anaerobic infections and have a beneficial relationship with the host [34]. In addition,
Barnesiella is an obligatory anaerobic bacteria belonging to the Bacteroidetes and is one of the bacteria
most frequently identified in the gut microbiota of BALB/c mice, which were used in our study [35].

Numerous studies have demonstrated that many factors influence the composition of microbiota.
Of factors known to influence the composition of microbiota, probiotics are the main living factors
that positively affect host health. For example, a transcriptome-based study showed that B. bifidum,
a probiotic, reduced the cholesterol level in mice [36]. Colonization of B. bifidum in the intestine of
different mice was monitored by quantitative real-time PCR [37]. Other studies using lactobacillus
species showed a reduction in obesity [38] and inhibition of alcohol-induced pathogenic activity in the
liver [39]. In addition, several previous studies using metagenomic approaches showed that probiotics
modulate the intestinal microbiota [40]. Furthermore, a recent study demonstrated that the probiotic
L. casei expressing human lactoferrin confers antibacterial activity in the GI tract of mouse [41].

In this study, we found that the administration of lactobacillus resulted in an increased population
of the introduced L. paracasei. However, the populations of other probiotics L. reuteri and uncultured
Bifidobacterium spp., which were already present in the intestine of the mouse, were decreased. We
suppose that this result reflects competition among different probiotics, with the introduced L. paracasei
becoming the dominant probiotic as a result of its continuous administration. In contrast, the
population of uncultured Helicobacter sp., which are harmful bacteria, was decreased by administration
of lactobacillus. These results are highly consistent with the known ability of probiotics to increase
populations of probiotics and decrease populations of harmful bacteria.

The heat map identified several bacteria genera whose abundance was dramatically increased by
the administration of lactobacillus. In particular, several round-shaped bacteria such as the genera
Aerococcus, Pediococcus, Enterococcus, and Ruminococcus were identified. In general, members of the
genera Pediococcus and Enterococcus are lactic acid bacteria of the phylum Firmicutes [42]. Therefore, we
cautiously presume that the identified bacteria belonging to the genera Aerococcus and Ruminococcus
might be similar to other lactic acid bacteria.

We also identified a large number of uncultured bacteria that are unknown. Although these
included several bacteria species that might be involved in probiotic activity, most of them were
unknown bacteria for which genome and basic characteristics are not currently available. Therefore,
identification and characterization of unknown bacteria residing in the mouse intestine should be
intensively conducted.

The most interesting result was a dramatic increase in the population of P. acidilactici, which
is a probiotic in the T7 condition. The number of reads for P. acidilactici was one in W0 and
four in W7 conditions. This result indicates the presence of P. acidilactici in the BALB/c mouse.
Interestingly, administration of L. paracasei expressing 3D8 scFv facilitated growth by P. acidilactici,
whereas administration of L. paracasei without 3D8 scFv did not change the population of P. acidilactici.
Based on this result, we cautiously propose a positive relationship between expressions of 3D8 scFv
and P. acidilactici.

We hypothesized that the newly developed system composed of lactobacillus expressing 3D8
scFv would not affect the microbial composition in the mouse intestine. However, the influence of
lactobacillus expressing 3D8 scFv was very species specific. It might be of interest to further examine
the correlation between expression of 3D8 scFv and P. acidilactici. Furthermore, it would also be
interesting to test other recombinant proteins for the ability to change the microbiota in the intestine
of mice. We believe that the newly established system expressing a recombinant protein might be a
useful tool for probiotics-related research or industry.

Taken together, our results showed that probiotic L. paracasei expressing 3D8 scFv protein enhances
probiotic activity in the mice intestine without any observable side effects. Thus, the system developed
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in this study might be a good tool for expression of recombinant protein using probiotics in the
near future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/6/276/s1,
Table S1: Classification of identified 396 OTUs identified from 18 samples with respective bacteria taxonomy and
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each condition.
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