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Abstract: Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced
and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric
serine-threonine phosphatase—composed of a structural, regulatory, and catalytic subunit—that
controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A
and its basic biochemistry, the diversity of its components—especially the multitude of regulatory
subunits—has impeded the determination of PP2A function. As a consequence of this complexity,
PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt
pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator
of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both
positively and negatively and at multiple levels, further understanding of this complex dynamic
may ultimately provide insight into stem cell biology and how to better treat cancers that result
from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as
a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A
in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this
pathway can contribute to tumorigenesis.
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1. Introduction

Protein phosphorylation is an essential regulator of many cellular processes, including metabolism,
transcription, proliferation, cell motility, and apoptosis [1,2]. Nearly 30% of all human proteins
are covalently bound to a phosphate—a feat made possible by the 500+ different protein kinases
encoded by the human genome [3]. Protein phosphatases make these modifications reversible,
and the serine-threonine protein phosphatase 2A (PP2A) accounts for 30–50% of these protein
dephosphorylation events [4,5]. PP2A is a heterotrimeric protein complex consisting of a structural (A),
a regulatory (B), and a catalytic subunit (C) [6]. There are two unique scaffolding isoforms (Aα and Aβ),
two unique catalytic subunit isoforms (cα and cβ), and four structurally diverse families of regulatory
(B) subunits that are referred to by a variety of naming conventions: B (or PR55), B’ (PR56/61), B”
(PR72/130), and B’” (PR93/110). As shown in Figure 1, Greek letters further identify individual
regulatory subunit isoforms of the B and B’ family. These subunits determine the substrate specificity
and subcellular localization of PP2A heterotrimers [4,7]. The precision with which PP2A regulatory
subunits target individual phospho-residues was established by early studies on the phosphorylation
of Simian virus 40 (SV40) large T antigen. A holoenzyme with a B/PR55 family regulatory subunit
dephosphorylates Thr124 of the SV40 large T antigen, while a PP2A complex with the B”/PR72
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regulatory subunit dephosphorylates Ser120 and Ser123 [8]. The targeting specificity of the regulatory
subunits allows a small pool of protein phosphatases to regulate numerous phosphoproteins with
enhanced precision [6]. While individual regulatory subunits provide precision, the diversity of
subunits also allows for the regulation of a variety of substrates.
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Figure 1. Serine-threonine protein phosphatase 2A (PP2A) holoenzyme. The PP2A holoenzyme consists
of a scaffolding (A), regulatory (B), and catalytic (C) subunits. There are two unique scaffolding subunits
(PP2A Aα and PP2A Aβ), and two unique catalytic subunits (PP2Acα and PP2Acβ). The regulatory
(B) subunits consist of four diverse families: B or PR55, B’ or PR56/PR61, B”, and B’”. Within the B and
B’ regulatory subunit families are multiple isoforms, denoted using Greek letters. A number scheme
using approximate molecular weights (i.e., PR55 or PR56) is also commonly utilized for referencing
PP2A subunits.

Wnt signaling is known to regulate patterning and cell fate decisions during embryonic
development, and has been implicated in the pathogenesis of cancer [9]. Over 90% of colorectal
carcinomas have alterations in Wnt signaling; mutations in the adenomatous polyposis coli (APC)
tumor suppressor or activating mutations in β-catenin account for ~80% of cases [10]. The key
effector of canonical Wnt signaling, β-catenin, is tightly regulated within the cell, predominantly
through two distinct complexes: the adherens junction complex and the β-catenin destruction complex
(Figure 2). The adherens junction helps to initiate and stabilize cell–cell adhesion by coupling
the transmembrane glycoprotein E-cadherin and associated cytoplasmic catenins with the actin
cytoskeleton [11]. E-cadherin can recruit β-catenin to the cell membrane, thereby preventing its
nuclear localization [12] in a cell–cell contact-dependent fashion [13]. Cytoplasmic pools of β-catenin
are also regulated through the β-catenin destruction complex. In the absence of Wnt ligand stimulation,
the cytoplasmic β-catenin destruction complex (composed of the scaffolding proteins Axin and APC
and the protein kinases glycogen synthase kinase 3 (GSK3) and casein kinase 1 alpha (CK1α)) binds and
phosphorylates β-catenin. This leads to its ubiquitinylation by the beta-transducin repeats-containing
protein (β-TrCP) ubiquitin ligase and subsequent proteasomal degradation. CK1α phosphorylation
of Ser45 on β-catenin primes the protein for subsequent phosphorylation by GSK3 at Ser33, Ser37,
and Thr41, which are required for β-TrCP recognition and β-catenin ubiquitination [14]. In the
presence of Wnt ligand (e.g., Wnt3a), Axin is sequestered at the membrane, which prevents assembly
of the destruction complex, stabilizes β-catenin [15,16], and allows its translocation to the nucleus
for transcription of TCF/β-catenin target genes. Many components of the Wnt pathway can be
modified via phosphorylation: the G protein-coupled Wnt receptor Frizzled [17], the Frizzled binding
protein Dishevelled [18], the Frizzled co-receptor low-density lipoprotein receptor-related protein-6
(LRP6), components of the β-catenin destruction complex (APC [19,20], Axin [21,22], CK1 [23,24], and
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GSK3 [25,26]), and β-catenin [14] (Figure 2). Determining the Wnt components targeted by PP2A may
identify novel regulatory mechanisms and opportunities for therapeutic intervention.Genes 2018, 9, x FOR PEER REVIEW  3 of 11 
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kinase 3 beta; APC: adenomatous polyposis coli; CK1γ: casein kinase 1 gamma; LRP: low-density 
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HEK TER cells—are immortalized but not tumorigenic (i.e., they lack anchorage-independent growth 
in soft agar and cannot form tumors in immunocompromised mice [35,36]). However, the addition 
of ST—which interferes with PP2A function—imparts cells with anchorage-independent growth and 
the ability to grow as subcutaneous xenografts [36]. Chen et al. determined that this phenotype 
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Figure 2. Phosphorylatable proteins involved in the regulation of β-catenin. Left: The adherens
junction, consisting of E-cadherin, P120, and the catenins, sequesters β-catenin at the plasma membrane.
Phosphorylation of E-cadherin at Ser834, Ser836, and Ser842 enhances β-catenin binding affinity, while
phosphorylation at Ser846 reduces β-catenin binding. Middle: In the absence of Wnt stimulation,
β-catenin is bound to the β-catenin destruction complex. CK1α phosphorylation of β-catenin at
Ser45 primes β-catenin for subsequent phosphorylation by GSK3β at Ser33, Ser37, and Thr41, which
targets β-catenin for proteasomal degradation. Phosphorylation of Axin improves its stability and
subsequent ability to negatively regulate Wnt signaling. Axin and APC also contain phosphorylation
sites that improve binding to β-catenin. Right: In the presence of Wnt ligand, CK1γ phosphorylates
LRP5/6, which sequesters Axin at the plasma membrane and prevents the destruction complex from
phosphorylating β-catenin. CK1α: casein kinase 1 alpha; GSK3β: glycogen synthase kinase 3 beta;
APC: adenomatous polyposis coli; CK1γ: casein kinase 1 gamma; LRP: low-density lipoprotein
receptor-related protein.

2. A Tumor Suppressive Role for Protein Phosphatase 2A

Early studies using okadaic acid—a serine-threonine phosphatase inhibitor that targets the
catalytic PP2Ac subunit—increased tumor formation in a cutaneous carcinogenesis challenge and
provided early biochemical support for a tumor suppressive role of PP2A [27,28]. However, this
model may suffer from off-target effects as PP2A is inhibited at low doses of okadaic acid [29,30],
but increasing concentrations can inhibit multiple protein phosphatases [31]. Subsequent work has
more specifically identified a role for PP2A in tumor suppression. The SV40 small T (ST) antigen, the
gene product of two transforming DNA viruses—SV40 and polyoma virus—was found to interact
with PP2A A and C subunits through co-immunoprecipitation experiments, likely inhibiting PP2A
function through displacement of the regulatory subunits [32,33]. Human embryonic kidney cells
expressing the catalytic subunit of telomerase, a G12V mutant H-ras, and the SV40 large T antigen
(which inactivates the retinoblastoma (RB) and p53 tumor suppressors [34])—otherwise known as
HEK TER cells—are immortalized but not tumorigenic (i.e., they lack anchorage-independent growth
in soft agar and cannot form tumors in immunocompromised mice [35,36]). However, the addition of
ST—which interferes with PP2A function—imparts cells with anchorage-independent growth and the
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ability to grow as subcutaneous xenografts [36]. Chen et al. determined that this phenotype partially
depended upon the B’ regulatory subunit PR61γ-isoform 3 (PR61γ3), as small interfering RNA (siRNA)
knockdown of PR61γ3 increased cell proliferation and conferred cells with the ability to grow in soft
agar and form tumors in nude mice. Furthermore, overexpression of the regulatory subunit rescued
the phenotype, partially reversing tumorigenicity in HEK TER cells as well as human lung cancer cell
lines [37]. However, the HEK TER cells with PR61γ3 knockdown formed fewer tumors than HEK TER
cells expressing ST, suggesting additional tumor promoting effects of ST aside from just preventing
PR61γ3 from incorporating into the PP2A complex. Finally, knockdown of the PP2A Aα scaffolding
subunit activates AKT signaling and imparts tumorigenicity to HEK TER cells in immunocompromised
mice [38].

Clinical evidence further supports a role of PP2A in tumor suppression. Cancer-associated
mutations in the PP2A Aα scaffolding subunit impair binding to specific B subunits as well as the
catalytic Cα subunit [39]. Mutations in PP2A Aα appear to act in a dominant negative fashion on
wild-type Aα, and also decrease B and C subunit stability, suggesting that an intact PP2A complex
stabilizes individual holoenzyme subunits [38]. Additionally, mutations in the PP2A Aβ subunit
have been found in human colon cancer, lung cancer, and breast cancer specimens. A list of reported
mutations is presented in Table S1. While the majority of these mutations appear to affect the binding
of subunits and holoenzyme formation [39], the functional consequences on Wnt signaling have yet to
be determined. Clinically, the PP2A inhibitor SET is increased in human non-small cell lung cancer,
and leads to poorer overall survival rates, further supporting a tumor suppressive role for PP2A [40].
Additional endogenous inhibitors of PP2A, such as I1

PP2A (PHAP), may also be clinically relevant;
however, additional studies in cancer are needed [41,42]. Reciprocally, small-molecule activators of
PP2A (SMAPs) provide a promising avenue for tumor suppression via augmenting PP2A function.
KRAS-mutant lung cancer cell lines and xenografts treated with SMAPs lead to the inhibition of tumor
growth and apoptosis with reductions in phosphorylated ERK [43]. The PP2A-activating drug FTY720
has also shown promising results in multiple hematologic malignancies [44–46]. It is unclear how
effective these activators will be in the context of cancers harboring mutations in PP2A, and given
PP2A’s dual role in regulating Wnt signaling, these activators may also have dichotomous effects.

3. Protein Phosphatase 2A Regulation of E-Cadherin and β-Catenin at the Membrane

Two PP2A catalytic subunits, cα and cβ, share 97% sequence homology [47], yet mice lacking cα
die at embryonic day 6.5, demonstrating that cβ cannot compensate for loss of cα [48]. cβ localizes
to the cytoplasm and nucleus, while cα is predominantly present at the plasma membrane [49,50].
Thus, subcellular localization may prevent cβ from compensating for loss of cα. Furthermore, β-catenin
colocalizes with cα at the plasma membrane in the inner cell mass of early mouse embryos, and loss
of cα results in E-cadherin and β-catenin redistribution to the cytoplasm [50]. Destabilization of
membrane-bound β-catenin reduces β-catenin levels, likely due to the action of a functional β-catenin
destruction complex. While this leads to reductions in total cellular β-catenin levels, the remaining
β-catenin is no longer sequestered at the membrane, and is thus free to translocate to the nucleus and
induce transcription of β-catenin target genes [12]. Presumably, this makes the cells more responsive
to Wnt stimulation. A similar phenomenon is observed in RKO cells, which have a mutation in
E-cadherin and low levels of cytoplasmic β-catenin [51] but are exquisitely sensitive to Wnt ligand.
In a more recent study, Su et al. demonstrate that PP2Acα knockdown similarly leads to dramatic
reductions in membrane-associated and total levels of both β-catenin and E-cadherin in HT29, SW480,
DLD1, and HEK293 cell lines [52].

The question of how PP2Acα loss alters E-cadherin localization remains unsolved, but E-cadherin
is highly phosphorylated within a serine-enriched domain that comprises the β-catenin binding
domain [53]. Phosphorylation of serine residues Ser834, Ser836, and Ser842 enhance β-catenin binding
affinity over 300-fold [54,55]. Conversely, CK1-mediated phosphorylation of E-cadherin at Ser846
reduces β-catenin binding and leads to increased E-cadherin internalization [56]. It is plausible that a
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PP2A complex with a yet-to-be-defined regulatory subunit may specifically dephosphorylate Ser846 on
E-cadherin, and that loss of PP2Acα abrogates this interaction, leading to reduced β-catenin binding
and E-cadherin internalization.

4. Protein Phosphatase 2A’s Dual Regulation of Wnt Signaling in the Cytoplasm

4.1. Negative Regulation of Wnt Signaling

PP2A is unlikely to exert its Wnt-inhibitory effects through direct dephosphorylation of β-catenin,
as β-catenin dephosphorylation at Ser33, Ser37, and Thr41 removes β-TrCP recognition sites and
subsequently stabilizes the protein [14]. Consequently, studies have focused on understanding how
PP2A affects other proteins involved in β-catenin regulation. Yokoyama et al. demonstrate that PP2A
inhibition via treatment with okadaic acid, knockdown of the PP2Ac catalytic subunit, or treatment
with SV40 ST antigen potentiates Wnt signaling following Wnt3a stimulation. Furthermore, all
three modifications led to increases in phosphorylated-GSK3β [57]. Phosphorylation of GSK3β at
Ser9 suppresses GSK3β kinase activity [25,26], and PP2A treatment can reverse this kinase activity
in vitro [58]. Mitra et al. confirm this finding and show that PP2A-mediated dephosphorylation of
GSK3β occurs through recruitment of two heatshock proteins: DNAJB6 (DnaJ homolog subfamily
B member 6) and HSPA8 (heat-shock cognate protein, HSC70) [59]. An intriguing report focusing
specifically on PP2Acα knockout in cardiomyocytes may further elucidate tissue-specific roles of
individual PP2Ac isoforms [60]. These data support a potential role of PP2A in dephosphorylating,
and thereby activating, GSK3β with resultant phosphorylation of β-catenin leading to its destruction.

Treatment with ST antigen potentiates Wnt signaling and also disrupts B subunit binding to the
holoenzyme [31], suggesting that these regulatory subunits aid in inhibiting Wnt signaling. Seeling et al.
show that overexpression of the B’ regulatory subunits PR61α, PR61β, PR61δ, PR61ε, and PR61γ3 all
decrease exogenous β-catenin in HEK293 cells [61], although an effect on endogenous β-catenin was
not evaluated. This decrease in β-catenin was inhibited with okadaic acid treatment, a non-degradable
β-catenin mutant that lacks the GSK3β phosphorylation sites, and with proteasomal inhibition,
which taken together suggests that PR61-dependent decreases in β-catenin are due to alterations
in phosphorylation-induced proteasomal degradation or impaired targeting of β-catenin through the
proteasomal degradation pathway. A yeast two-hybrid screen also identified that the PR61α and
PR61δ subunits interact with the N-terminal third of APC (unpublished data referenced in [61]) which
brings the subunits in close proximity to phospho-residues on Axin, APC, and GSK3β. Overexpression
of PR61α in the colorectal cancer HCA7 cell line (wild-type APC) but not the SW480 cell line (APC
truncation at 1338) recapitulates the decreases in β-catenin observed in HEK293 cells. These data
suggest that PR61α promotes β-catenin degradation through an APC-dependent signaling complex.

Axis duplication experiments in Xenopus embryos reveal that the PP2A A, PP2Ac, and B’ PR61α
regulatory subunit all have ventralizing activity, indicating Wnt inhibition. In Xenopus, β-catenin
levels are higher dorsally than ventrally, and higher Wnt tone leads to dorsalization/secondary axis
formation [62]. Ventral injection of Wnt agonists leads to secondary body axis formation. To determine
where in the Wnt pathway the PP2A regulatory subunits are inhibiting Wnt signaling, epistasis studies
using lithium chloride (a GSK3β inhibitor that leads to dorsalization), dominant-negative Axin, and
degradation-resistant β-catenin provide evidence that PR61α acts downstream of GSK3β and Axin
but upstream of β-catenin to negatively regulate Wnt signaling. Furthermore, PP2A A, PP2Ac, and
PR61α co-immunoprecipitate with Axin in Xenopus egg extracts, supporting a role for PP2A as a
component of the β-catenin degradation complex [63]. Adding to the complexity, another group
shortly thereafter demonstrated that two additional B’ family regulatory subunits (PR61β and PR61γ)
directly interact with Axin in COS cells. PR61β expression reduces Wnt reporter activity, but did
not decrease endogenous β-catenin levels in wild-type L cells, suggesting that PR61β inhibits Wnt
signaling through a mechanism independent of β-catenin stability [64]. Taken together, these data
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highlight the ability of various PP2A components and specifically the regulatory subunits to negatively
regulate Wnt signaling at multiple levels.

4.2. Positive Regulation of Wnt Signaling

For every piece of evidence that PP2A negatively regulates Wnt signaling, there is evidence
to the contrary. Teleological thinking would support a positive role for PP2A in regulating Wnt
signaling, as dephosphorylation of the main effector (β-catenin) increases its abundance [14].
Accordingly, Zhang et al. were the first to show that a B family regulatory subunit, PR55α, can
interact with β-catenin [65]. Knockdown of PR55α increases β-catenin phosphorylation at Ser33,
Ser37, and Thr41 (required for β-TrCP recognition and ubiquitination) in SW480 cells, and also
decreases β-catenin levels in HEK293 cells. PR55α overexpression increases Wnt reporter activity in
HEK293T cells. Interestingly, phosphorylation of Ser675 (promotes β-catenin stability [66]) and Ser552
(causes β-catenin dissociation from cell–cell contacts and cytosolic/nuclear accumulation [67]) were
also increased in SW480 cells with PR55α knockdown. While increased β-catenin stability due to
reduced phosphorylation at Ser33, Ser37, and Thr41 appear to trump any effects of Ser675 and Ser552
phosphorylation, the dichotomy highlights the complexity of Wnt phosphorylation and the need for
precise phosphatase activity. Hein et al. demonstrated similar results in CD-18/HPAF pancreatic
cancer cells, where knockdown of PR55α increased phosphorylation of β-catenin at Ser33, Ser37, and
Thr41, destabilized the protein, and reduced total levels of β-catenin. PR55α was increased in human
pancreatic ductal adenocarcinoma tissue when compared to normal pancreatic tissue, suggesting that
its elevated expression may maintain Wnt signaling and other oncogenic signaling cascades [68].

The scaffolding protein APC is also a putative target of PP2A dephosphorylation and subsequent
Wnt activation, as GSK3 phosphorylation of APC improves its ability to bind β-catenin [19,20].
A number of theories exist as to how APC regulates β-catenin levels. APC may promote the export
of nuclear β-catenin [69,70], or it may simply sequester β-catenin in the cytoplasm and prevent
association with transcription factor 4 (TCF4) in the nucleus [71]. The observation that APC truncations
in human colorectal cancers increase total β-catenin levels suggests that APC has a direct role in
β-catenin degradation. Su et al. support this hypothesis with evidence that wild type (WT) APC
“protects” phosphorylated β-catenin from dephosphorylation by a PP2AAα/PP2Acα dimer, which
ensures that the β-TrCP ubiquitin ligase binding site remains intact [52]. This PP2AAα/PP2Acα
dimer stabilizes β-catenin by dephosphorylating Ser33 and Ser37, thereby removing the β-TrCP
ubiquitin ligase binding site. Mutations in APC abrogate this protective mechanism and allow the
PP2AAα/PP2Acα dimer to dephosphorylate β-catenin, shunting it away from the ubiquitination
pathway. It should be noted that the PP2Aα/PP2Acα complex identified in this study was isolated
from bovine cardiac muscle and utilized in a cell-free system which may limit in vivo correlation.
However, this study does highlight the potentially promiscuous nature of PP2A in the absence of a
regulatory subunit.

The scaffolding protein Axin has binding sites for both GSK3β and β-catenin, and acts as a negative
regulator of Wnt signaling by promoting β-catenin phosphorylation. Axin phosphorylation within the
β-catenin binding domain increases binding to β-catenin, stabilizing Axin and increasing β-catenin
degradation [22]. Using a combination of yeast-two hybrid screening and co-immunoprecipitation,
Hsu et al. showed that Axin can bind directly to the PP2Ac catalytic subunit and mapped this
interaction between amino acids 632 and 836 of Axin. Interestingly, this PP2Ac-Axin binding domain
is in close proximity to both the GSK3β binding domain (amino acids 477–561) and β-catenin binding
domain (amino acids 561–630) [72], again placing phosphatase activity within proximity of putative
phosphorylation targets. Using a Wnt reporter assay, Strovel et al. showed that PP2Ac overexpression
activates Wnt signaling and that PP2A likely mediates these effects through dephosphorylation of
Axin, but the exact target of PP2Ac dephosphorylation has not been determined [73]. Taken together,
these data suggest that PP2Ac-mediated dephosphorylation of Axin activates the Wnt pathway.
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5. Protein Phosphatase 2A Regulation of Stem Cells and Self-Renewal

A role for Wnt signaling in the control of stem cells and cancer stem cells has been well established
and previously reviewed [15,74–77], and the literature reviewed above supports an indirect role
of PP2A in regulating stem cells through its modulation of Wnt signaling, yet few studies have
looked at Wnt-independent regulation of stemness and self-renewal by PP2A. Wang et al. show
that PP2A mediates the equilibrium between self-renewal and differentiation of neural stem cells
predominately through regulation of asymmetric division of neural stem cells [78]. Additionally, human
embryonic stem cell (hESC) self-renewal has been linked to PP2A activity as forced expression of
PP2A reduced levels of SSEA-4, a marker of undifferentiated hESCs [79]. Accordingly, inactivating
PP2A via treatment with okadaic acid maintained hESC even in the absence of basic fibroblast growth
factor (bFGF)—a key factor known to maintain hESCs [80]. Mechanistically, PP2A inhibition leads to
increased phosphorylation of AKT, GSK3β, and Ser62-cMyc with reduced levels of Thr58-phosphorylated
c-Myc [79]. Phosphorylation of c-Myc at these two key residues—Thr58 and Ser62—differentially affects
c-Myc stability. Phosphorylation at Ser62 stabilizes c-Myc, while phosphorylation on Thr58 signals
c-Myc for degradation [81]. PR61α directs PP2A to c-Myc doubly phosphorylated at Thr58/Ser62 and
dephosphorylates Ser62, thereby increasing levels of phospho-Thr58 c-Myc. This shift in phosphorylation
status signals c-Myc to be degraded by the proteasome [81]. A recent study by Janghorban et al. utilizing
a PP2A-PR61α hypomorph mouse with very low levels of PR61α demonstrated hyperproliferation of
the epidermis, hair follicles, and sebaceous glands with increased levels of c-Myc phosphorylation at
Ser62. Furthermore, PR61α deficiency increased the number of bromodeoxyuridine (BrdU) long-term
label-retaining skin stem cells in these mice and enhanced keratinocyte colony formation [82].
Additional studies have indicated c-Myc—a known Wnt target gene [83]—as a regulator of stem cell
self-renewal [84,85], highlighting the interplay and complexity of Wnt, c-Myc, and phosphatase signaling.
Together, these data support a role for PP2A-PR61α-mediated regulation of stem cell self-renewal and
proliferation which may in large part be driven via PP2A mediated c-Myc de-phosphorylation and
subsequent stabilization.

6. Conclusions

Protein dephosphorylation is a complex and nuanced process, and the PP2A family of
serine-threonine phosphatases play an important role in regulating multiple signaling pathways
implicated in tumorigenesis, stem cell maintenance, and self-renewal. Early studies of PP2A inhibitors
and genomic studies identifying mutations in PP2A subunits support its tumor suppressive role.
While perturbations in Wnt signaling can help initiate a number of human malignancies, Wnt signaling
is also critical for the maintenance of normal tissue and stem cell homeostasis in the non-transformed
state. Ample data supports a role for PP2A as a negative regulator of Wnt signaling; however, there is
similarly strong data supporting PP2A’s role in potentiating Wnt signaling. PP2A-mediated regulation
of Wnt signaling is likely cellular context-specific, and care must be taken to control for these variables.
Given the specificity with which each regulatory subunit targets PP2A-mediated dephosphorylation,
future studies must continue to identify how individual trimeric complexes function in regulating
a target of interest—referring simply to PP2A provides scant biological relevance. Knockdown and
overexpression studies must consider compensatory mechanisms, given the high similarity, yet
extreme specificity, of individual regulatory subunits and the numerous levels at which they appear
to modulate Wnt signaling. Taken together, the PP2A family of serine/threonine phosphatases
regulate Wnt signaling and stemness at multiple levels, both positively and negatively, and further
understanding of this complex dynamic will aid in identifying key regulators of tumorigenesis and
normal tissue homeostasis.
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