
genes
G C A T

T A C G

G C A T

Article

Comparative Transcriptome Analysis Reveals
Hormone Signaling Genes Involved in the Launch of
Culm-Shape Differentiation in Dendrocalamus sinicus

Lingna Chen † ID , Xiaojuan Guo †, Yongzhong Cui, Xianggan Zheng and Hanqi Yang *

Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233,
China; chenln@caf.ac.cn (L.C.); lkygxj_417@163.com (X.G.); cafkmcyz@126.com (Y.C.);
lkyzhxq_0926@aliyun.com (X.Z.)
* Correspondence: yanghanqikm@aliyun.com; Tel.: +86-871-6386-0022
† These authors contributed equally to this work.

Received: 13 November 2017; Accepted: 19 December 2017; Published: 22 December 2017

Abstract: Dendrocalamus sinicus is a sympodial bamboo species endemic to Yunnan Province, China,
and is the strongest bamboo species in the world. However, there is substantial variation in the basal
culm shape, i.e., straight culm (SC) and bent culm (BC), among different D. sinicus as a result of
genetic and growth factors. This study performed a comparative transcriptomic analysis of bamboo
shoots of two variants at the early, mid-, and late shoot-development stages to examine the molecular
basis of this variation. In total, 98,479 unigenes were annotated, of which 13,495 were differentially
expressed in pairwise comparisons of the six libraries. More differentially expressed genes (DEGs)
were involved in SC than in BC culm development. The DEGs between BC and SC were assigned
to 108 metabolic pathways. The 1064 DEGs in early development might mainly control the launch
of culm-shape differentiation. Sixty genes encoding components of hormone signaling pathways
were differentially expressed between BC5 and SC5, indicating complex hormonal regulation of culm
differentiation. The AUX/IAA, ARF, PP2C, SnRK2, and ABF genes involved in auxin and abscisic acid
signaling played key roles. These results help us to understand the molecular mechanism of culm
variation and other aspects of culm development in D. sinicus.

Keywords: Dendrocalamus sinicus; comparative transcriptomic analysis; culm-shape differentiation;
hormonal regulation

1. Introduction

Plant asymmetric growth or bending occurs in response to gravity, light, temperature, water,
ions, and chemicals [1]. Plant stem bending is a complex biological process that has a significant
impact on plant architecture and plant resource utilization. The response of plants to gravity is an
important cue in plant stem bending [1]. An asymmetrical distribution of endogenesis hormone, starch
accumulation in gravity perception, and the effects of the actin cytoskeleton on cell expansion all
play important roles in the gravitropic response [2–4]. To elucidate the molecular mechanism of the
response in higher plants, many mutants with aberrant stem or shoot gravitropism have been isolated
from Arabidopsis, maize, sorghum, rice, and mulberry trees [2,3,5,6]. These results indicate that the
physiological effects of auxins, gibberellins, and brassinosteroids are crucial for asymmetric plant
growth [4,7,8]. They regulate stem development by modulating cell division and expansion, resulting
in the gravitropic bending of roots and shoots, as well as other aspects of plant development [7,8].
However, the molecular mechanisms by which these factors regulate the development of stem traits
remain poorly understood.
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Dendrocalamus sinicus L.C. Chia et J.L. Sun (hexaploid; 2n = 6x = 72) is a species of giant woody
sympodial bamboo belonging to subfamily Bambusoideae in family Poaceae [9]. It is endemic to
Yunnan, China. The species can reach 35 m in height, with culms 30 cm in diameter at breast height,
and it is the strongest bamboo species documented [9,10]. The culm yield per unit area is 5–8 times
as that of Phyllostachys edulis, which is a major economic bamboo species in China [11]. In its native
habitat, D. sinicus is important as a raw material for furniture, construction, and industrial paper pulp.
In nature, D. sinicus has two main stable culm-shape variants: the straight-culm (SC) and bent-culm
(BC) types [12,13] (Figure 1). The ratio of fibrocyte length to diameter is 55.20–370.99 for straight-culm
D. sinicus, reflecting elongate fibers, whereas the vascular strands and cells in the ground tissue of
the bent-culm type show radial elongation, fibers, and vessel elements, with a relatively low ratio of
fibrocyte length to diameter and short, wide fibers [14]. Molecular markers such as Random amplified
polymorphic DNA (RAPD), Simple Sequence Repeat (SSR), rpl32-trnL, rbcL-psaI, and trnG-trnT indicate
stable culm-shape variation in populations of D. sinicus [14–16]. Therefore, the straight- and bent-culm
types of D. sinicus are an ideal comparison system for studying culm-shape development.

Figure 1. Vegetative forms of straight-culm (a) and bent-culm (b) Dendrocalamus sinicus.

Regrettably, however, most molecular studies of woody bamboos have focused on flowering [17–19],
rhizomes [20], bud burst and rattling growth [21–25], and primary thickening growth [26].
Little research has examined the molecular mechanism of culm-shape variation in D. sinicus and
other bamboos. Comparative transcriptome analysis is a promising, powerful approach for
discovering the molecular basis of specific biological events due to its high-throughput, accuracy,
and reproducibility [27,28]. Here, we report a detailed comparative transcriptomic analysis of culm
types SC and BC of D. sinicus at the early, mid-, and late shoot-development stages. This study
explored the mechanism of culm-shape differentiation and identified significant differences in the
transcriptomes of SC and BC D. sinicus. As a natural reference system, this difference in development
between the two culm types provides an opportunity to study the molecular mechanism that controls
culm-shape differentiation in D. sinicus. This study also enables a comprehensive understanding of
culm development in woody bamboo.

2. Materials and Methods

2.1. Plant Materials

Two culm types, SC and BC D. sinicus from Ximeng (99◦32′35 E, 22◦43′51 N) and Menglian
(99◦39′53 E, 22◦26′61 N) Counties, Yunnan Province, respectively, were sampled and used for the
transcriptome analysis. The culm shape of D. sinicus stabilizes during the first month of bamboo shoot
growth, when the plants are about 5 m tall and culm-shape differentiation can be seen visually [12].
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The variation in culm shape is mainly observed at basal internodes within 1–3 m of the ground.
Bent-culm type D. sinicus is characterized by nodal distortion within the basal portion (1–3 m) of the
culm, which presents as shortening, swelling, and skewing, making the processing and utilization of
bamboo difficult. On the other hand, straight-culm type D. sinicus grows normally. The culm taper
is small, the height under the branches exceeds 12 m, and the nodal wall thickness at about 4 m off
the ground can reach 2 cm. In June 2016, nine bamboo shoots with similar ground diameters were
selected from each type and observed morphologically from Day 0, when the shoots were unearthed.
Each type was sampled with three biological replicates at the early (5-day-old bamboo shoots),
middle (15-day-old), and late (30-day-old) stages of the culm shape changes. The node and internode
at the 15th node from the unearthed shoots were cut, transferred to liquid nitrogen immediately, and
stored at –80 ◦C until RNA extraction. The samples of stages the 5-, 15-, and 30-day-old BC and SC
shoots were named BC5, BC15, BC30, SC5, SC15, and SC30, respectively.

2.2. RNA Isolation, Library Construction, and Sequencing

Total RNA from each sample was isolated separately using a TransZol Up Plus RNA Kit
(TransGen Biotech, Beijing, China) according to the manufacturer’s protocol. RNA integrity was
evaluated in a 1.0% agarose gel with GelStain (TransGen Biotech, Beijing, China). Then, the quality
and quantity of total RNA was assessed using a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) and Qubit (Thermo Fisher Scientific, Waltham, MA, USA).
RNA samples from the three individuals at each stage and for each type were pooled in equal amounts
to generate one mixed sample. The six mixed RNA samples were subsequently used for cDNA library
construction and paired-end sequencing, which was performed on the Illumina HiSeq2000 system.

2.3. De Novo Transcriptome Assembly and Functional Annotation

The raw reads from transcriptome sequencing were filtered by removing adaptor sequences,
reads containing poly-N, and low-quality reads (Q < 20). The clean reads were assembled into contigs
using the program Trinity [29]. The transcriptome data in this study were deposited in the National
Center for Biotechnology Information (NCBI) Short Read Archive (SRA) database under the accession
PRJNA418355. This pipeline performs annotation to the NCBI non-redundant (Nr) database and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathway annotation.

2.4. Functional Analysis of Differentially Expressed Genes

The transcript abundance was quantified using RSEM software [30]. Then, the differentially
expressed genes (DEGs) between pairs of samples were detected using the DESeq package [31],
with a p-value ≤0.01, a False Discovery Rate (FDR) <0.01, and a fold change >2. The KEGG Pathway
enrichment of DEGs was evaluated using a hypergeometric test with a significance threshold of 0.05
after the Benjamini and Hochberg FDR correction in KOBAS (2.0) [32].

2.5. Validation of DEGs Using qRT-PCR

To validate the results of transcriptome sequencing, the expression of 10 DEGs involved in plant
hormone signal transduction and phenylpropanoid biosynthesis was investigated using the CFX96
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Primers for quantitative real-time
PCR (qRT-PCR) were designed using Primer 3 [33] (Table 1). cDNA was synthesized from 10 µg of total
RNA using TransScript II One-Step gDNA Removal and cDNA Synthesis SuperMix (TransGen Biotech,
Beijing, China) as per the manufacturer’s protocol. GAPDH was used as an internal control gene for
normalization. The amplifications were performed using the SYBR Green I method with TransStart Top
Green qPCR SuperMix (TransGen Biotech, Beijing, China) according to the manufacturer’s instructions.
The relative expression levels of the selected unigenes were analyzed using the 2–∆∆C

T method [34].
This experiment was carried out in three biological replicates, each with three technical replicates.
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Table 1. Primers for quantitative PCR validation of the RNA-seq data.

Gene ID Description
Primer

Forward (5′-3′) Reverse (5′-3′)

Cluster-995.67334 ASR GCGAGAACGAGTACGAGAGGT GATCTCCTCCGCGATCTTGTG
Cluster-995.68010 EIN3 CGGTCGAAGCGGACCTTCTC GCAGGACGGCATCCTCAAGTA
Cluster-995.68211 ARP 12.5 kDa GTACTCGGACAGTGCAGGCTAGA TGGTGGCGGCCTTGCGGAGCTT
Cluster-995.68720 IAA17 CTCCGGTTCATGTCCTGCTGCT AACGCGGCGGTCCGGCGACTCG
Cluster-995.68398 IAA21 CACAGGAGCGGGACTACATC CGCCCTTGGGCAGCAG
Cluster-995.64090 CAD GATTCGTCCGGTGTCCTCTC GGGAACAACGGGGTACAGAG
Cluster-995.65679 4CL GGGGACTTCACCAGCAAGTT GCACACTGGAGACATCGGTT
Cluster-995.67588 CCoAOMT TAGTTGTCCTTGTCGGCGTC TCAACCGCGAGAACTACGAG
Cluster-995.71288 PTAL AGAGCTCCGTCAAGAACTGC TCTGCATCAGCGGGTAGTTG
Cluster-995.71840 Peroxidase 16 TGGTAGTAGCCGTTGTCGAAC GCGGCTGTACACGTTCAAG

3. Results

3.1. Transcriptome Sequencing and De Novo Assembly of D. sinicus

To understand the transcriptional changes that may be involved in regulating culm-shape
differentiation, BC and SC were sampled from 5-, 15-, and 30-day-old bamboo shoots (representing the
early, mid-, and late shoot-development stages, respectively) for high-throughput sequencing. In total,
352 million raw reads were generated from the six libraries (BC5, BC15, BC30, SC5, SC15, and SC30),
and 340 million (97%) high-quality (Q > 20) reads were obtained after removing lower-quality and
adapter-contaminated reads (Table 2). The average 53.1% GC content of D. sinicus unigenes was in the
range of GC levels of coding sequences in monocots [35].

Table 2. Overall assembly statistics for the D. sinicus transcriptomes.

BC5 BC15 BC30 SC5 SC15 SC30

Number of raw reads 58,731,962 65,460,126 59,431,136 54,367,904 56,408,792 57,867,298

Number of clean reads (%) 56,597,392
(96.37%)

63,275,200
(96.66%)

57,515,272
(96.78%)

53,084,380
(97.64%)

55,287,738
(98.01%)

54,692,784
(94.51%)

Q20 (%) 97.29 97.49 97.4 97.29 97.40 97.63

Mapped reads (%) 39,026,306
(68.95%)

44,519,052
(70.36%)

39,786,978
(69.18%)

36,775,186
(69.28%)

39,279,750
(71.05%)

37,541,394
(68.64%)

GC (%) 52.01 52.31 54.27 53.44 54.07 51.24

Q20 (sequencing base calls with an error rate of less than 1%); BC5 (5 day old bent culm); BC15 (15 day old bent
culm); BC30 (30 day old bent culm); SC5 (5 day old straight culm); SC15 (15 day old straight culm); SC30 (30 day old
straight culm).

The de novo transcriptome assembly generated 155,392 unigenes, with a maximum length of
15,773 bp and a mean length of 989 bp, of which 103,451 unigenes (66.6%) had lengths of 200–1000 bp,
33,511 unigenes (21.6%) had lengths of 1000–2000 bp, and 18,430 unigenes (11.9%) had lengths >2000 bp
(Figure 2). The transcriptome was annotated using a search against the NCBI Nr, Gene Ontology (GO),
and KEGG databases; 98,479 unigenes had at least one hit in these databases.
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Figure 2. Length distribution of D. sinicus transcripts and unigenes.

3.2. Differentially Expressed Genes Analysis during Culm Development

The expression levels of the genes in the two culm types of D. sinicus were examined at three
growth stages, and DEGs were identified by pairwise comparisons of the six libraries (Figure 3).
Comparisons of the three BC stages identified 4275, 1788, and 5831 DEGs in the pairs BC5 vs. BC15,
BC15 vs. BC30, and BC5 vs. BC30, respectively (Figure 3a). For SC, 3993, 4574, and 6619 DEGs were
identified in the pairs SC5 vs. SC15, SC15 vs. SC30, and SC5 vs. SC30, respectively (Figure 3b). The total
number of DEGs across the three stages was higher in SC than in BC, with 9117 and 7161 DEGs,
respectively. Comparisons of BC and SC at the same stages identified 2967, 2925, and 1686 DEGs in
the 5-, 15-, and 30-day-old bamboo shoots, respectively (Figure 3c). Fewer DEGs were detected in the
same-stage comparisons between the two culm types of D. sinicus than in the same-type comparisons
at different stages. In total, 13,495 genes were differentially expressed in BC and SC at the three stages.
Of these DEGs, 5888 were significantly regulated in both types during culm development; 1273 and
3229 genes were differentially regulated in BC and SC, respectively, indicating that more DEGs are
involved in culm development in SC.

Figure 3. Overview of the serial analysis of differentially expressed genes (DEGs) identified by pairwise
comparisons of the six transcriptomes: SC5, SC15, SC30, BC5, BC15, and BC30. (a) Venn diagram of the
DEGs in bent culm (BC) at the three stages; (b) Venn diagram of the DEGs in straight culm (SC) at the
three stages; (c) Venn diagram of the DEGs between BC and SC at the three stages.

The KEGG enrichment analysis of DEGs assigned them to 108 KEGG pathways, including
plant hormone signal transduction, phenylpropanoid biosynthesis, the citrate cycle, and oxidative
phosphorylation (see Supplementary File S1, in which the details of significantly enriched genes in
every KEGG pathway are shown). Table 3 shows the five largest pathways at every stage. At the three
development stages, there were 1064, 1090, and 500 DEGs, respectively, between BC and SC. The plant
hormone signal transduction pathways included the most DEGs between BC and SC in the 5-day-old
bamboo shoots. The expression of 44 of 60 DEGs was higher in BC5 than in SC5. The number of DEGs
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involved in the phenylpropanoid biosynthesis pathway was always high, with 39, 50, and 40 DEGs,
respectively, assigned to the pathway in 5-, 15-, and 30-day-old bamboo shoots. Of these, the expression
level of 33, 15, and 22 DEGs was higher in BC, indicating a dramatic difference in lignin biosynthesis
throughout the course of culm development.

Table 3. Kyoto Encyclopaedia of Genes and Genomes (KEGG) classification of DEGs between the two
types of D. sinicus at the same culm-development stages.

Development Stages KEGG Categories Rich
Factor

Corrected
p-Value

No. of
Unigenes

BC5 vs. SC5

Plant hormone signal transduction 0.089 0.002 60
alpha-Linolenic acid metabolism 0.158 0.002 18

Stilbenoid, diarylheptanoid, and gingerol
biosynthesis 0.222 0.002 12

Phenylalanine metabolism 0.150 0.002 19
Phenylpropanoid biosynthesis 0.099 0.003 39

BC15 vs. SC15

Phenylpropanoid biosynthesis 0.127 5.52 × 10−6 50
Cyanoamino acid metabolism 0.169 1.94 × 10−4 23

Steroid biosynthesis 0.197 0.004 13
Citrate cycle (TCA cycle) 0.119 0.021 21

Glycolysis/Gluconeogenesis 0.087 0.038 40

BC30 vs. SC30

Phenylpropanoid biosynthesis 0.102 1.23 × 10−11 40
Flavonoid biosynthesis 0.137 0.001 10

Flavone and flavonol biosynthesis 0.455 0.001 5
Glyoxylate and dicarboxylate metabolism 0.082 0.001 16

Oxidative phosphorylation 0.058 0.001 25

3.3. DEGs Involved in Plant Hormone Signal Transduction

Plant hormones are involved in many different processes throughout the life of a plant, including
growth, development, and senescence [36]. In this study, 428 DEGs assigned to hormone signal
transduction, hormone biosynthesis pathways, hormone responsive proteins, and hormone transporter
proteins were identified; 179, 108, 65, 37, 12, and 7 of them were involved in auxin, ethylene, abscisic
acid (ABA), gibberellin (GA), jasmonic acid (JA), and brassinosteroid (BR) pathways, respectively.
Of these, there were respectively 60, 31, and 14 DEGs between BC and SC at 5, 15, and 30 days
of development. Most of them showed higher expression in BC compared with SC at the same
development stage. As with the ABA signaling pathway, 15 protein phosphatase 2C (PP2C) and
6 ABRE Binding Factor (ABF) transcription factors had higher expression in BC. The same was true
for the gibberellin receptor GID1 and DELLA gene in the GA signaling pathway and for jasmonic
acid–amido synthetase (JAR1) and transcription factor MYC2 genes in the JA signaling pathway.
Nevertheless, there were some exceptions; most of the auxin-responsive protein AUX/IAA and all
SAUR families involved in auxin signal transduction were generally higher in SC.

Auxin, the first plant growth hormone discovered, plays a pivotal role in plant growth,
including the development of roots, shoots, flowers, and fruit [37]. There were 179 DEGs that
encoded genes such as auxin response factor (ARF), AUX/IAA, SAUR, PIN, ABC transporter, etc.
Of these, 77 DEGs with similar expression patterns in BC and SC with culm development might
participate in culm elongation. The genes in the upregulated groups with the highest expression
were AUX/IAA, including the IAA1-like (Cluster-995.67344), IAA3-like (Cluster-995.68181), IAA17-like
(Cluster-995.66645), and IAA30-like (Cluster-995.67202) genes. The gene expression increased gradually
with development of the bamboo shoot. Another 56 DEGs with different expression patterns (Figure 4)
should not be ignored in culm-shape differentiation of D. sinicus. The DEGs included AUX/IAA, ARF,
SAUR, and CH3. Of these genes, 24 and 11 were AUX/IAA and ARF family members, respectively.
Of these, the auxin-repressed 12.5 kDa protein-like (Cluster-995.68211) gene had the highest expression,
followed by the ARP13-like (Cluster-995.66421) and IAA17-like genes (Cluster-995.68720).
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Figure 4. Heatmap of differentially expressed genes assigned to hormone signal transduction pathways
in the six D. sinicus transcriptomes: BC5, BC15, BC30, SC5, SC15, and SC30. DEGs related to (a) auxin,
(b) ethylene, and (c) abscisic acid. FPKM (fragments per kilobase of exon per million mapped reads)
values range from 0 to 50.

The expression of genes in the ABA signaling pathway was also compelling. There were 15 PP2C,
15 sucrosenon-fermenting1-related protein kinase SnRK2, 6 ABF, and 5 ABA receptor PYR genes with
differential expression. Three abscisic stress ripening (ASR) genes, Cluster-995.67334, Cluster-995.67322,
and Cluster-995.67324, had the highest expression. They were sharply up-regulated on the 15th day of
shoot development and maintained high expression in later development stages. In terms of the GA,
ethylene, and JA signaling pathways, the regulated expression of GID1, DELLA, ETR, JAR1, MYC2, etc.
indicated that they are also involved in shoot development.

3.4. DEGs Involved in Phenylpropanoid Biosynthesis

Phenylpropanoid-based polymers that have extensive physiological activity contribute
substantially to regulating plant growth and defence against disease [38,39]. In our study, from the
annotated 98,479 unigenes, 394 unigenes encoding 16 key enzymes were identified as involved in
phenylpropanoid biosynthesis. Among these, 93 unigenes encoding 15 key enzymes showed different
expression levels at different stages in BC and SC. They were mainly involved in lignin synthesis,
and included p-hydroxyphenyl lignin (H type), guaiacyl lignin (G type), 5-hydroxyguaiacyl lignin,
and syringyl lignin (S type) (Figure 5), suggesting obvious differences in lignin synthesis between
BC and SC plants. Of the 93 DEGs encoding peroxidase, 47 had high expression, which varied
greatly throughout development. The fragments per kilobase of transcript per million mapped reads
(FPKM) of Cluster-995.67494 exceeded 4000 in SC15. The expression of the unigenes decreased
throughout BC development, whereas it increased initially and then decreased with development
in SC. As the first step, PATL had continuous high expression with culm development. The FPKM
value of Cluster-995.66569 exceeded 4000 in BC30 and SC30.
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Figure 5. Expression patterns of the expressed genes assigned to lignin biosynthesis in the six D. sinicus
transcriptomes: BC5, BC15, BC30, SC5, SC15, and SC30. Completed according to KEGG source record:
ko00940. All metabolic enzymes predicted in the D. sinicus transcriptome are marked in the pathway.
FPKM values range from 0 to 200. PAL: phenylalanine ammonia-lyase; PTAL: phenylalanine/tyrosine
ammonia-lyase; C4H: cinnamate 4-hydroxylase; 4CL: 4-coumarate–CoA ligase; HCT: shikimate
O-hydroxycinnamoyltransferase; C3′H: coumaroylquinate(coumaroylshikimate)3′-monooxygenase;
CCoAOMT: caffeoyl-CoA O-methyltransferase; CCR: cinnamoyl–CoA reductase, CAD:
cinnamyl–alcohol dehydrogenase; F5H: ferulate-5-hydroxylase; POD: peroxidase.

3.5. Verification of the Gene Expression through qRT-PCR

The results of the DEG analysis obtained from the transcriptome data were validated in
a biologically independent manner using qRT-PCR. Ten plant hormone signal transduction and
phenylpropanoid biosynthesis DEGs were selected. Of these, nine showed similar expression patterns
in the qRT-PCR data and the transcriptome results (Figure 6), suggesting the consistency of the results.

Figure 6. Expression of 10 selected genes as determined by qRT-PCR in comparison with the
transcriptome results. The qRT-PCR values for each gene are the means ± SD of three biological
replicates, with three technical replicates per experiment. The gene names and primers used for
qRT-PCR analysis are shown in Table 1. The white bars indicate FPKM values as determined by
transcriptome sequencing, and the grey bars show the expression as determined by qRT-PCR. ASR:
abscisic acid stress ripening protein; EIN3: ethylene-insensitive protein 3; APR 12.5 kDa: auxin-repressed
12.5 kDa protein-like; IAA17: auxin-responsive protein IAA17-like; IAA21: auxin-responsive
protein IAA21; CAD: cinnamyl–alcohol dehydrogenase; 4CL: 4-coumarate–CoA ligase; CCoAOMT:
caffeoyl–CoA O-methyltransferase; PTAL: phenylalanine/tyrosine ammonia-lyase.
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4. Discussion

4.1. Transcriptome Changes in Culm-Shape Differentiation of D. sinicus

The culm development of D. sinicus is regulated by complex, endogenous factors according
to a transcriptome analysis of different internodes originating from the same bamboo plant [22].
However, the study elucidated the molecular processes involved in culm elongation of straight-culm
D. sinicus rather than differentiation of two culm-shape variants. To understand molecular mechanisms
controlling the culm-shape differentiation, we sequenced and annotated the transcriptome of three
critical culm-development stages from the bent-culm D. sinicus and the straight-culm D. sinicus.
We generated 177 and 163 million paired end reads from types BC and SC, respectively. Unfortunately,
de novo transcriptome assembly of D. sinicus had the lower mapped reads about 70% because
of suboptimal parameter settings for polyploids in Trinity program [40]. More than 88 percent
of unmapped reads matched to monocots such as Oryza sativa, Setaria italic, and Zea mays.
The 98,479 annotated genes constituted 1.5 times the number of annotated genes in the transcriptome
analysis of culm elongation of D. sinicus [22]. A total of 13,495 DEGs showed an enormous change
during shoot development in the two types of D. sinicus. This is the first report of the molecular
mechanism of culm-shape variation in woody bamboo obtained by contrasting a natural reference
system. The greater number of DEGs involved in culm development in SC provided valuable clues
for further elucidation of the mechanisms regulating culm development [36]. Although the draft
genome of Phyllostachys heterocycla [41] and transcriptome data of other bamboo species have been
reported [18,22,42], our study was the first to examine culm-shape differentiation of D. sinicus.

Based on the comparative transcriptome analysis, the two types examined in our study showed
distinct differences related to culm development. There were significantly more DEGs between BC
and SC in the 5- and 15-day-old bamboo shoots, indicating that culm shape differentiates at an early
development stage in D. sinicus. The Pearson correlation coefficients in the analysis of gene expression
levels between BC and SC were 0.575, 0.618, and 0.69 at days 5, 15, and 30, respectively, which
strengthened this result. The KEGG pathways analysis found that most of the DEGs were involved
in plant hormone signal transduction and phenylpropanoid biosynthesis, suggesting that they have
prominent roles in culm development in D. sinicus.

4.2. DEGs Involved in Plant Hormone Signal Transduction during Culm-Shape Differentiation

Plant stem or culm development is a complex biological process, and many genes participate in
the hormone signal transduction and secondary metabolism that are involved in plant stem bending
and related traits [43,44]. The present comparative transcriptome analysis of the two types of D. sinicus
supports this view. In this study, the differential expression of 60 related genes in early development
indicated that they played important roles in launching culm-shape differentiation in D. sinicus.

Auxin, which was the first plant endogenous hormone discovered, promotes cell division
to adjust stem growth and development by regulating the cell cycle, enabling extension of the
cell wall, and inducing the synthesis of RNA and proteins [37]. The asymmetrical distribution of
IAA in tissues is the main cause of plant organ bending [37]. In Arabidopsis thaliana, knockout or
suppression of AUX1 and PIN2, two IAA carriers, completely blocked or altered root gravitropism
bending [8]. Overexpression of rice OsIAA1, OsIAA3, and OsIAA4 also revealed that they are
involved in root, stem, and leaf architecture [45]. Very recent reports suggest that auxin signaling
genes play a central role in shoot growth in woody bamboo [26,43,46]. In our study, gene families
participating in auxin synthesis and signal transduction were obtained from the transcriptomes
of two types of D. sinicus. Among 56 DEGs that had markedly different expression patterns in
BC and SC, 24 and 11 were AUX/IAA and ARF family members, respectively, including IAA1
(Cluster-995.83130), IAA4 (Cluster-995.72629), IAA7 (Cluster-995.113198), IAA14 (Cluster-995.73908),
IAA17 (Cluster-995.66288 and Cluster-995.68720), and IAA19 (Cluster-995.58739). Their role in
root, hypocotyl, shoot, and inflorescence gravitropism bending has been well documented in
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Arabidopsis mutants and rice [45,47,48]. The role of homologous genes in culm-shape differentiation of
D. sinicus should be noted. In addition, ARF7 (Cluster-995.67304), IAA2 (Cluster-995.61978), SAUR32
(Cluster-995.46392), and RAC6 (Cluster-995.69558), which had completely opposite expression patterns,
might have important roles in culm differentiation.

However, culm development is not the result of the action of a single hormone, but involves
complex cross-talk among plant hormones [44]. In this study, numerous genes in the ABA signaling
pathway showed obvious differences in expression between the two types of D. sinicus. They included
15 PP2C and 15 SnRK2 gene family members, which are important ABA signal mediators [49].
Additionally, higher expression of two important GA signaling genes, GID1 and DELLA, in BC5
compared with SC5 suggested that culm-shape differentiation in D. sinicus depends on GA signal
transduction. Several studies have suggested that the interaction of auxin with GA and BRs is involved
in the gravitropic response of shoots and roots [50,51]. These findings suggest that culm-shape
differentiation in D. sinicus is dependent on a hormone-mediated signal transduction process, especially
involving auxin and ABA.

4.3. DEGs Involved in Lignin Biosynthesis during Culm-Shape Differentiation

Our transcriptomic data revealed differences in the expression of lignin synthesis-related genes
during shoot development. Therefore, lignin synthesis probably facilitates the construction of structural
components during bamboo culm development, including culm elongation [46,52,53]. In this study,
16 annotated enzymes involved in the biosynthesis of monolignols, including H-, G-, and S-type
monolignols, played roles in the formation and development of the bamboo [38]. The differences in the
expression of genes encoding key enzymes in the pathways hinted at variation in lignin biosynthesis
in D. sinicus (Figure 5). PAL/PTAL catalyzes the first step in the phenylpropanoid biosynthesis
pathway, and PAL/PTAL expression and abundance directly affect the synthesis of lignin [39]. In our
study, six DEGs between BC and SC encoding PAL/PTAL were up-regulated as culm development
proceeded in BC, whereas only Cluster-995.68104 and Cluster-995.68617 were up-regulated in SC,
although the greatest expression was seen in BC30 and SC30. In the 5-day-old bamboo shoots,
the expression of 6 PAL/PTAL was much higher in SC compared with BC, which was opposite the
expression in the 15-day-old bamboo shoots, revealing greater changes in lignin biosynthesis in BC
occur during the early stage of culm development. The contribution of the corresponding enzymes
leading to different monolignol compositions and resulting in various ratios of different units of
lignin have been summarized, and the effects of the corresponding genes have been analyzed in
detail [38,54,55]. We found that CCoAOMT and PAL were expressed similarly. Higher expression of
these genes during the early development stage suggested that there is more G-type lignin in BC.
CCoAOMT suppression in Medicago sativa, Zea mays, and Pinus radiate causes a reduction in G-type
lignin [56–59], and the RNAi-mediated suppression of PAL in Salvia miltiorrhiza also led to abnormal
phenotypes, including stunted growth, delayed root formation, and altered leaves [60]. Further
research is needed to understand the function of PAL and CCoAOMT in D. sinicus. And cellulose
biosynthesis genes, such as cellulose synthase (CesA) and cellulose synthase-like (CSL) genes, were also
found to be expressed contribution to rapid culm development of D. sinicus, as previously reported in
Dendrocalamus hamiltonii [25].

Overall, culm-shape differentiation of D. sinicus is a complex developmental process that
depends on the balanced expression of genes within a complex network. The launch of culm-shape
differentiation in D. sinicus might be controlled mainly by the genes in hormone transduction pathways,
whereas culm development might be mainly controlled by the genes in phenylpropanoid biosynthesis
pathways [22,43]. Further studies of the functions of these potential candidate genes might help us to
understand culm-shape differentiation in D. sinicus.
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