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Abstract: It has long been hypothesized that chromosomal rearrangements play a central role in different
evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements
have been extensively mapped using chromosome painting. However, intrachromosomal
rearrangements have only been described using molecular cytogenetics in a limited number of mammals,
including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements
are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic
information. Significant progress in the detection of intrachromosomal rearrangement is now possible,
due to recent advances in molecular biology and bioinformatics. We investigated the level of
intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very
high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single
syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized
the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus,
and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements
in the subfamily at a significantly higher level of resolution than previously described. We found a
number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple
inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype
evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements
that were not previously detected.

Keywords: centromere shift; chromosome painting; comparative cytogenetics; fluorescence in situ
hybridization; inversion; microdissection; small mammals; voles

1. Introduction

Classical chromosome staining and banding allows some appreciation of the extent of
chromosomal evolution across animal species. Molecular cytogenetics puts karyological comparisons
onto a more secure footing. Chromosome painting has allowed researchers to access, with a high
degree of confidence, interchromosomal rearrangements that differentiate mammalian karyotypes

Genes 2017, 8, 215; doi:10.3390/genes8090215 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-0951-5209
https://orcid.org/0000-0002-8282-1085
http://dx.doi.org/10.3390/genes8090215
http://www.mdpi.com/journal/genes


Genes 2017, 8, 215 2 of 10

over evolutionary time. Well over 100 species of mammals were studied with chromosomal painting.
The method has mapped evolutionary conserved syntenic segments, fusions, and fissions over a
wide phylogenetic array of species. These data were sufficient to make reasonable hypotheses on a
fundamental goal of comparative cytogenetics—the reconstruction of ancestral karyotypes at principal
phylogenetic nodes on the placental mammalian tree.

The advent of whole-genomic sequencing has provided new tools for the analysis of genome-scale
data and comparison of species genomes at the level of DNA sequence. Bioinformatics led to a series
of attempts to reconstruct the architecture of the ancestral eutherian karyotype [1–3]. Although these
early sequence level reconstructions of the ancestral genome of placental mammals supported most
chromosome painting results, there was also a significant number of differences. It is necessary to
carefully evaluate why these methods often yielded different results.

Both approaches reconstruct evolutionary genomic changes by identifying the most parsimonious
number of rearrangements of ancestral building blocks, albeit on vastly different scales. As expected,
bioinformatics revealed more conserved segments and a higher number of syntenic associations then
cytogenetics. However, it is important to note that the differences did not correlate with increased
resolution provided by DNA sequence comparisons [3]. The discrepancy between cytogenetic and
bioinformatic models of the ancestral genome are better explained by the limited taxon sampling
and/or algorithms in bioinformatic analysis that do not take into account evolutionary rate variation
among lineages [3]. This conclusion is supported by the fact that over time, as more genome assemblies
and better algorithms became available, the bioinformatics and cytogenetic views of the ancestral
genome converged [4]. However, there still remain significant differences.

The main weakness of the most commonly used molecular cytogenetics method, chromosome
painting, is that intrachromosomal rearrangements go undetected [5]. At the molecular cytogenetic
level, intrachromosomal rearrangements can be identified by hybridizing cloned DNA such as bacterial
artificial chromosomes (BACs) or probes specific for particular chromosome regions, such as those
derived from microdissection. However, up to now, these methods were only used in a limited number
of mammalian taxa: marsupials, Primates, Carnivora, Rodentia, Chiroptera, Perissodactyla (see Table 1
in [6–8]).

Probes obtained by microdissection were first applied to, and mainly used for clinical analysis,
but they have also proved to be useful tools for comparative genomics. Microdissection-derived
regional chromosome probes were efficiently used to determine the orientation of conserved blocks
within a chromosome, the order of subchromosomal segments within large syntenic blocks, and were
especially helpful in identifying intrachromosomal rearrangements [9,10].

The use of cloned DNA probes in fluorescence in situ hybridization (FISH) such as BACs not only
permitted high-resolution investigations, but efficiently revealed intrachromosmomal rearrangements
such as inversions at even a higher level of resolution. Results of BAC-FISH investigations of primate
genomes led to the discovery of a new type of rearrangement—centromere repositioning or shift [11],
that is, the movement of the centromere without a change in marker order (i.e., without inversions).
It is notable that this phenomenon is very arduous to track, and was not discovered at the DNA
sequence level. Later it was shown that this type of rearrangement is not rare, and centromere shifts
have frequently led to the evolutionary emergence of new centromeres in many different groups of
mammals [12–15].

Arvicolinae is a subfamily of more than 150 species of rodents characterized by great karyotypic
variability. This variability was generated over a relatively short period of evolutionary time—less than
10 million years [16,17]. Arvicolinae is a taxonomically complex and debated group of rodents. Some
researchers recognize 26 genera divided into ten tribes but with two genera of unknown positions [18].
A more recent publication taking Russian fauna into consideration recognized 30–32 genera, grouped
into 10–11 tribes [19].

The entire subfamily represents a useful model to study chromosomal evolution. Comparative
cytogenetic investigations have shown that many fusion/fission rearrangements occurred in the
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evolution of the subfamily [20–23]. Centromeric shifts were also suggested as a mechanism that helped
differentiate the karyotypes of common voles of the Microtus arvalis group [24]. It was sometimes
proposed that inversions, with variable contributions in different phylogenetic lineages, have probably
played an important role in the karyotype evolution of Arvicolinae [20,21,23].

Here, we focused on the evolutionary conserved syntenic block 7 of the ancestral Arvicolinae
karyotype (AAK, [25]). The region is homologous to the distal part of chromosome 1 of Microtus agrestis
(MAGR) and is present as a separate chromosome in the majority of vole species studied and
in some other arvicolines [20–22,25]. Although this chromosome varies little in G-banding, the
position of the centromere varies considerably. The different morphologies of this conserved
syntenic block suggest that it has been altered by centromere shifts, as well as other types of
intrachromosomal rearrangements [20]. We generated a set of region-specific probes from the p-arm
of Alexandromys oeconomus (tribe Arvicolini) chromosome 1 (AOEC1 = AAK7) by microdissection.
For analysis, we chose Myodes rutilus (MRUT) and Dicrostonyx torquatus (DTOR) representing tribes
Myodini and Dicrostonychini in Arvicolinae, and Microtus agrestis and Microtus arvalis (MARV),
belonging to the Arvicolini. Comparative chromosome painting of this set of probes in four
representative arvicoline species uncovered a number of cryptic intrachromosomal rearrangements,
and provides an explanation for changes in centromere position.

2. Materials and Methods

2.1. Ethics Approval

All experiments were approved by the Ethics Committee on Animal Experiments of the Institute
of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Russia
(approval No. 31 of August 6, 2015).

2.2. Species Sampled

M. agrestis, M. arvalis, A. oeconomus, M. rutilus, and D. torquatus cell lines were retrieved from the
IMCB SB RAS cell bank (“The general collection of cell cultures”, No. 0310-2016-0002). The origin
of each sample, establishment of cell lines, and karyotype description for each species studied were
previously reported [20,22,26].

2.3. Chromosome Preparation and Chromosome Staining

Chromosome suspensions were obtained from cell lines according to earlier published
protocols [27,28]. G-banding was performed on chromosomes of all species prior to FISH, using
the standard trypsin/Giemsa treatment procedure [29].

2.4. Microdissection, Probe Amplification and Labeling

Microdissection of the p-arm of the A. oeconomus chromosome 1 was performed on G-banded
chromosomes as described in [30]. Ten copies of each region were collected. Chromosomal DNA was
amplified and labeled using WGA kits (Sigma-Aldrich, Saint Louis, MO, USA). In total, we obtained
five region-specific painting probes covering the whole p-arm of the AOEC chromosome 1.

2.5. Fluorescence in situ Hybridization

The painting probes were labeled with either biotin or digoxigenin by degenerate
oligonucleotide-primed polymerase chain reaction amplification as described previously [22,26,31,32].
We used dual-color FISH with different pairwise combinations of probes to establish their relative
localization. FISH was performed according to previously published protocols [33,34]. Images
were captured using VideoTest-FISH software (Zenit, Saint-Petersburg, Russia) with a JenOptic
charge-coupled device (CCD) camera (Jena, Germany) mounted on an Olympus BX53 microscope
(Shinjuku, Japan). Hybridization signals were assigned to specific chromosome regions defined by
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G-banding pattern captured by the CCD camera prior to FISH. All images were processed using Corel
Paint Shop Pro X2 (Corel, Ottawa, ON, Canada).

3. Results

We made a set of region-specific painting probes of the p-arm of chromosome 1 of A. oeconomus
(Arvicolini tribe). FISH was performed on metaphase chromosomes of selected species to define the
precise localization of each probe. In total, we obtained five partly overlapping probes covering the
whole p-arm of AOEC1 = AAK7 (Figure 1). Based on comparative chromosomal studies, the size of
AOEC1p approximately corresponded to mouse chromosome 9 [26]. According to the assembly of the
mouse genome GRCm38/mm10, the size of the chromosome is 124 Mbp, so a rough estimate of each
microdissected probe size was about 25 Mb.

The set of probes was used for the comparison of the chromosomes of four species: M. agrestis
and M. arvalis (both from the Arvicolini tribe), M. rutilus (Myodini), and D. torquatus (Dicrostonychini).
In all cases, the probes produced clear and bright signals sufficient for comparative investigation.
Examples of fluorescence in situ hybridizations are shown in Figure 2.
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Figure 2. FISH of microdissection-derived painting probes on chromosomes of different species:
(a) M. arvalis; (b) M. arvalis; (c) M. agrestis; (d) D. torquatus; (e) A. oeconomus; (f) D. torquatus. G-banded
chromosomes are shown on the left, the image with localization of both probes—on the right. Separate
images for the green and red signals are presented (e,f). Color-coded number of the probe is shown for
each image.
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The set of probes marked chromosome 8 of D. torquatus. The pattern of the probe distribution
was the same as in the karyotype of A. oeconomus (Figure 2). A similar localization of the probes was
seen in the distal part of M. agrestis chromosome 1. However, probe 1.5. produced a small signal in the
pericentromeric region of the chromosome of M. agrestis (Figure 2).

Five probes hybridized the q-arm of chromosome 2 in the karyotype of M. arvalis and
demonstrated the presence of intrachromosomal rearrangements (Figure 3a). In the karyotype of
M. rutilus, probes 1.1., 1.3., and 1.4. each produced two signals on chromosome 3 (Figure 3b).
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microdissection-derived probes correspond to those on Figure 1.

In the karyotypes of D. torquatus, M. agrestis, and A. oeconomus, we detected a similar hybridization
pattern by the probes (Figure 1). We suggest that the probe order found in D. torquatus, M. agrestis,
and A. oeconomus could be considered as ancestral for at least the Microtus genus. Probe 1.5. produced
small signals in the pericentromeric region of chromosome 1 of M. agrestis (Figure 2) which may have
been due to repeat sequences. This probe was derived from the pericentromeric region of AOEC1,
and could include some repeated sequences that had high homology to the pericentromeric region
sequences of various arvicolines.

The localization of the five probes on M. arvalis chromosome 2 is best interpreted as due to
intrachromosomal rearrangements. In Figure 3b we illustrated the hypothesized changes that may
have led to formation of the hybridization pattern that we found, as compared to the ancestral pattern.
We propose that a centromere shift has occurred. Apparently, two paracentric inversions reshuffled
syntenic blocks of the M. arvalis chromosome 2q. In M. rutilus, multiple signals given by probes 1.1.,
1.3., and 1.4. indicated the probable presence of two paracentric inversions, which gave origin to the
chromosome MRUT3 (Figure 3a).

4. Discussion

Up to now, intrachromosomal rearrangements were identified by molecular cytogenetic methods
in only a limited number of species. Whole chromosome-specific probes were mostly used to document
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interchromosomal rearrangements (translocations). Occasionally, chromosome paints also reveal
intrachromosomal rearrangements such as inversions, but this is the exception, not the rule [23,35–37].
Most intrachromosomal rearrangements were identified according to the localization of different types
of region-specific probes such as cloned DNA, microdissected probes, and bioinformatic approaches.

In mammals, the most thoroughly studied intrachromosomal rearrangements are those in
primates, but data are available for some hoofed mammals, for which fine-scale comparative genomic
data are available [38]. For example, the application of region-specific painting and BAC probes
delineated the orientation of evolutionarily conserved segments with respect to centromere positions
in Equidae [9,15,39]. FISH cohybridization experiments with BAC clones and bioinformatic methods
clarified the mechanisms of karyotype evolution in the taxon, showing that the centromere indeed
changed its position during evolution [40–42]. Extensive investigations of primates allowed researchers
to identify a significant number of cryptic intrachromosomal rearrangements differentiating the
karyotypes of monkeys and humans [6,43–45]. The mapping of mouse complementary DNA clones
of X-linked genes showed that the X chromosomes of two species of Ryukyu spiny rat differed by
centromere repositioning [46].

Microdissected derived probes showed that intrachromosomal rearrangements distinguished
the X chromosomes of two African antelope species [47]. Investigations using microdissected probes
also showed that the X chromosome of five Microtus species differed due to intrachromosomal
rearrangements [48]. Cross-species comparative multicolor banding with probes obtained from mouse
chromosomes allowed cytogeneticists to detect inversions and evolutionary new centromeres in nine
muroid species [7]. It is important to note that in some cases, intrachromosomal rearrangements have
provided important phylogenetic information, as for example in Bovidae [47,49].

The Arvicolinae present one of the best models to investigate intrachromosomal rearrangements.
First of all, molecular data have recently resolved the main phylogenetic branches and eliminated long
standing taxonomic problems in the subfamily [16,17,50]. Secondly, there are karyotypes for almost all
species, conserved segments have been identified, and an ancestral karyotype of Arvicolinae has been
reconstructed [20,22,25]. Finally, the presence of sibling species (morphologically similar, but with
distinct karyotypes) makes cytogenetic data particularly important for the identification of some
arvicoline species, particularly in voles [51]. However, cladistic analysis of chromosomal characters,
in spite of the great karyotype variability between species, has not yet resolved phylogenomic
relationships between some species. This lack of resolution was probably due to the predominance of
Robertsonian rearrangements, which are prone to convergence [20,22]. To resolve this problem, it was
proposed that documenting intrachromosomal rearrangements within large conserved syntenic blocks
might help to resolve at least some of these complex relationships [20]. Further, the identification
and description of rearrangements inside conserved segments may well contribute to a better
understanding of the mechanisms of karyotype evolution.

AAK7 is a large ancestral segment that was preserved intact in the genomes of all arvicoline
studied, and has similar G-banding patterns, but different centromere positions [20,25]. To identify
rearrangements in the conserved syntenic block, we generated a set of region-specific probes from the
p-arm of A. oeconomus chromosome 1 (AOEC1 = AAK7) by microdissection. This species was selected
because its low chromosome number allows easy chromosome identification on a metaphase plate
for microdissection. For analysis, we chose four species representing different arvicoline genera and
tribes: (1) D. torquatus (tribe Dicrostonychini), (2) M. rutilus belonging to tribe Myodini, (3) M. agrestis,
and (4) M. arvalis, which both belong to the Microtus subgenus inside the Arvicolini tribe. Genus
Dicrostonyx is one of the most basal arvicolines, it diverged about 6.4 million years ago (MYA). The tribe
Myodini diverged about 3.2. MYA. Probes were obtained from A. oeconomus, which belong to the
Alexandromys subgenus (1.9 MYA) of the Arvicolini tribe and diverged earlier than the Microtus
subgenus (1.4 MYA) which is part of the same tribe [16,17,50].

The considerable number of intrachromosomal rearrangements that were detected in the
karyotypes of these four species supports the hypothesis that inversions and centromere shifts are
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frequent in the karyotype evolution of animals. The results also support the conclusion that the
frequency and importance of intrachromosomal rearrangements is often significantly underestimated,
especially in some groups of species [52–54].

5. Conclusions

Previously, it was proposed that intrachromosomal rearrangements may be up to four times
more frequent than other chromosomal rearrangements; however, chromosome painting—the most
commonly used molecular cytogenetic method—leaves almost all inversions undetected [20,55].
The application of region-specific probes has, up to now, been limited. Here, we investigated the
so-called evolutionarily conserved syntenic autosomal elements in Arvicolinae by using region-specific
paints. We were able to document numerous intrachromosomal rearrangements, and found that
chromosomes have been subject to significant reshuffling in at least two of the four species studied.
It is clear that inversions and centromere repositioning in mammalian species still remains poorly
documented. A reliable evaluation of the importance of these types of rearrangements for karyotype
evolution and their utility for phylogenomics will require further investigations involving a broader
array of species, and wider application of region-specific probes.

Unfortunately, it is not yet possible to make broad bioinformatic comparisons of arvicoline
genomes because of limited whole-genome sequencing data for the taxon. However, we need to
stress that in some cases, it is very difficult to identify intrachromosomal rearrangements, even with
the use of bioinformatics. This requires not only the data from full genome sequencing, but also a
high quality and full chromosome assembly based on physical or optical mapping. Assemblies
based on a reference genome are not sufficient. Furthermore, detection and investigation of
intrachromosomal rearrangements in Arvicolinae with microdissection-derived or other region-specific
probes will be useful not only for resolving complex phylogenetic relationships, but also for uncovering
the mechanisms of chromosome evolution, and for the clarification of the role of chromosome
rearrangements in the speciation of this spectacularly diverse taxon.
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