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Abstract: Small interfering RNA (siRNA) duplexes are short (usually 21 to 24 bp) double-stranded
RNAs (dsRNAs) with several overhanging nucleotides at both 5′- and 3′-ends. It has been found that
siRNA duplexes bind the RNA-induced silencing complex (RISC) and cleave the sense strands with
endonucleases. In this study, for the first time, we detected siRNA duplexes induced by plant viruses
on a large scale using next-generation sequencing (NGS) data. In addition, we used the detected 21
nucleotide (nt) siRNA duplexes with 2 nt overhangs to construct a dataset for future data mining.
The analytical results of the features in the detected siRNA duplexes were consistent with those from
previous studies. The investigation of siRNA duplexes is useful for a better understanding of the RNA
interference (RNAi) mechanism. It can also help to improve the virus detection based on the small
RNA sequencing (sRNA-seq) technologies and to rationally design siRNAs for RNAi experiments.
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1. Introduction

RNA interference (RNAi) is a cytoplasmic cell surveillance system that recognizes double stranded
RNAs (dsRNAs) and specifically destroys single and double stranded RNA molecules homologous
to the dsRNA inducers, using small interfering RNAs (siRNAs) as guides [1]. The abundant siRNAs
accumulated during the RNAi process can be captured by the small RNA sequencing (sRNA-seq)
technology that has been used for virus detection in plants [2–4] and invertebrates [5,6]. However,
the detection of viruses in somatic mammalian cells using sRNA-seq is hampered by the presence of
a number of dsRNA-triggered nonspecific responses such as the type I interferon (IFN) synthesis [7],
although it is well known that antiviral RNAi functions in mammalian germ cells and embryonic stem
cells (ESCs), as well as some carcinoma cell lines [8]. In 2016, Wang et al. first used big data from the
National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to prove
that sRNA-seq can be used to detect and identify human viruses [1], but the detection results were
not as good as those of plant viruses. The genome coverages and average depths of detected mammal
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viruses were much lower than those of detected plant viruses. The study of RNA fragments related to
RNAi could help to find some featured RNA fragments to improve the virus detection in mammals.

One important class of RNA fragments related to RNAi is siRNA duplexes, which contain
perfectly base-paired regions with 2 nucleotide (nt) 3′-end overhangs. Previous studies have shown
that siRNA duplexes of 21–23 nt are the sequence-specific mediators of RNAi and post-transcriptional
gene silencing (PTGS) [9]. The activity of siRNA duplexes in RNAi is largely dependent on their
binding ability to the RNA-induced silencing complex (RISC). Binding of siRNA duplexes to RISC
is followed by unwinding and cleavage of the sense strands in siRNA duplexes with endonucleases.
RISC then uses the remaining antisense strands to target mRNAs and initiate transcriptional silencing.
It has also been reported that siRNA duplexes with 3′-end overhangs of 2 or 3 nt more efficiently result
in RNA degradation compared with blunt-ended duplexes, and the most potent siRNA duplexes
are 21 nt long [9]. Although previous studies have revealed some biological principles from the
generation of siRNA duplexes to their silencing effects, these results are mainly based on the data
from the conventional technologies (e.g., Northern blot) and thus cannot provide information that is as
comprehensive as those based on the next-generation sequencing (NGS) data.

Since plant RNAi produces abundant siRNA duplexes and the mechanism of plant RNAi is
comparatively clear, in this study we detected siRNA duplexes induced by plant viruses and analyzed
their features. As far as we know, this is the first time siRNA duplexes have been detected and
analyzed on a large scale using NGS data. This study aims to provide useful information for a better
understanding of the RNAi mechanism. The analysis of siRNA duplexes can be used to improve the
virus detection using sRNA-seq data and to rationally design siRNAs for RNAi experiments [10].

2. Materials and Methods

Fourteen complete viral genomes including 17 nucleic acid sequences under the NCBI GenBank
accession numbers JQ314457 [3], JQ314458 [3], JQ314459 [3], JQ314460 [3], JQ314461 [3], JQ314462 [3],
JQ314463 [3], KT438549 [11], KT634055 [12], KT810183 [13], KM504246 [14], KM504247 [14], KM504248 [14],
KR094068 [15], KP772568 [16], KP223323 [17] and KP223324 [17] were used in this study. These 14 viruses
had been detected from sRNA-seq data using VirusDetect [4] and their genome sequences were confirmed
using reverse transcription PCR (RT-PCR) with Sanger sequencing. Finally, 5′ and 3′ rapid amplification
of cDNA ends (5′ RACE-PCR and 3′ RACE-PCR) were used to obtain the complete sequences.

The cleaning and quality control of sRNA-seq data were conducted using the pipeline
Fastq_clean [18] that has been optimized to clean the raw reads from Illumina platforms [19–25].
Using the software Bowtie v.0.12.7 [26] with one mismatch, we aligned all the cleaned sRNA-seq
reads to the 17 viral genome sequences and calculated the average depths and the genome coverages.
The average depth is calculated as the total number of nucleotides of the aligned reads divided by the
read-covered positions on the reference genome. The genome coverage represents the proportion of
read-covered positions against the genome length. The x–nt duplex (x represents the duplex length)
proportion is calculated as the read count of x–nt siRNA duplexes with 2 nt overhangs divided by the
count of viral reads. The program duplexfinder was developed to detect siRNA duplexes [27]. Statistics
and plotting were conducted using the software R v2.15.3 with the Bioconductor packages [28].

3. Results and Discussion

All 17 viral genome sequences had genome coverages of more than 99% and average depths
(Section 2) varied from 13.61 to 4515.53 (Table 1). Seven of the 17 viral sequences (KM504246,
KM504247, KM504248, KR094068, KP772568, KP223323, and KP223324) had average depths above 2000,
which were significantly higher than the average depths of the other ten viral sequences. However,
the sRNA-seq data that contained the seven viral sequences with higher average depths did not have
higher sequencing depths than the sRNA-seq data that contained the other ten viral sequences with
lower average depths. This suggested that the sequencing depth determines the genome coverage and
the average depth for virus detection, but it cannot yield additional information over a threshold.
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Table 1. Viral sequences used in this study.

ID Description Viral Read Depth (bp) Coverage Proportion

JQ314457 Pepino mosaic virus strain EU_CAHN8, complete genome 8349 28.39 98.27% 0.57%
JQ314458 Pepino mosaic virus strain US1_CAHN8, complete genome 11,651 39.28 99.50% 0.89%
JQ314459 Pepino mosaic virus strain EU_EF09_58, complete genome 90,569 298.61 99.95% 6.97%
JQ314460 Pepino mosaic virus strain US1_EF09_58, complete genome 21,374 71.95 99.84% 0.51%
JQ314461 Pepino mosaic virus strain EU_EF09_60, complete genome 36,002 120.81 99.94% 2.01%
JQ314462 Pepino mosaic virus strain US1_EF09_60, complete genome 47,776 160.46 99.92% 4.60%
JQ314463 Tomato necrotic stunt virus strain MX9354, complete genome 207,553 439.85 100.00% 12.72%
KT438549 Southern tomato virus isolate CN-12, complete genome 4508 27.93 99.10% 0.64%
KT634055 Southern tomato virus BD-13, complete genome 2161 13.61 100.00% 0.00%
KT810183 Tomato mottle mosaic virus isolate NY-13, complete genome 89,061 292.25 100.00% 26.75%

KM504246 * Tobacco streak virus isolate FL13-07 segment RNA1, complete sequence 1,141,881 4515.53 100.00% 21.77%
KM504247 * Tobacco streak virus isolate FL13-07 segment RNA2, complete sequence 635,836 3864.01 100.00% 21.23%
KM504248 * Tobacco streak virus isolate FL13-07 segment RNA3, complete sequence 499,308 4252.48 100.00% 21.67%
KR094068 * Melon necrotic spot virus isolate ABCA13-01, complete genome 969,376 4380.00 100.00% 39.32%
KP772568 * Cucumber green mottle mosaic virus isolate ABCA13-01, complete genome 635,907 2113.00 100.00% 33.50%
KP223323 * Squash mosaic virus segment RNA-1, complete sequence 1,340,402 4454.95 100.00% 47.06%
KP223324 * Squash mosaic virus segment RNA-2, complete sequence 638,694 3808.92 100.00% 48.22%

ID are the GenBank accession numbers. Viral read represents the number of reads that can be aligned to this viral sequence using Bowtie software, allowing one mismatch. Depth (average
depth) is calculated as the total number of nucleotides of the aligned reads divided by the read-covered positions on the reference genome. Coverage (genome coverage) represents the
proportion of read-covered positions against the genome length. Proportion (21 nt duplex proportion) is calculated as the read count of 21 nt siRNA duplexes with 2 nt overhangs divided
by the count of viral reads. * Seven sequences with higher average depths from four viruses were used to detect and analyze siRNA duplexes.
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To reduce the statistical bias, we used seven nucleic acid sequences with higher average depths
from four viruses to detect and analyze siRNA duplexes. The duplex lengths from 15 to 50 nt and the
overhang lengths from 0 to 6 nt were used as parameters to count the duplex reads in the sRNA-seq
data (Figure 1A). The results showed that the duplex length was the principal factor to determine the
read count. The 21 nt siRNA duplexes with 2 nt overhangs were the most abundant duplexes, followed
by the 22 nt siRNA duplexes with 2 nt overhangs. This finding is consistent with that in a previous
study, which proved that 21 nt siRNA duplexes with 2 nt overhangs were the most efficient triggers
of mRNA degradation in Drosophila melanogaster embryo lysates [9]. Among the seven sequences,
KP223323 had the highest 21 and 22 nt duplex proportion (Section 2) of 47.06% (630,858/1,340,402)
and 27.68% (371,047/1,340,402), respectively, which were very close to the highest duplex proportion
45% and 28% estimated in the Drosophila in vitro system [29]. These results suggested that plants and
invertebrates could share common mechanisms in the RNAi process.
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Figure 1. Read-count distribution of small interfering RNA (siRNA) duplexes. (A) The read count of
siRNA duplexes varies with the duplex length and the overhang length, using KP772568 as an example.
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nt overhangs from seven viral sequences.

In this study, we also found genome coverages of the seven viral sequences calculated using
aligned 21 nt siRNA duplexes with 2 nt overhangs were close to the genome coverages calculated
using all aligned reads (Supplementary File 1). Identical to the distribution of all aligned reads,
the distribution of 21 nt siRNA duplexes with 2 nt overhangs along the plant viral genomes was also
not even (Figure 2). The 21 nt duplex proportions and the average depths of the seven viral sequences
were above 20% and 100×, respectively. From Table 1, it can be understood that the count of viral
reads, the average depth, and the duplex proportion had positive correlations. This finding suggested
that the efficient virus detection required the capture of adequate 21 nt siRNA duplexes with 2 nt
overhangs and these duplexes could play a more important role in the plant RNAi process.
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Figure 2. Distribution of viral reads along the reference genomes. The genome coverages of seven
viral sequences calculated using aligned 21 nt siRNA duplexes with 2 nt overhangs are close to the
genome coverages calculated using all aligned reads, using KP772568 as an example. The results of all
14 sequences can be seen in Supplementary File 1.

Based on the detection results from the seven viral sequences, we constructed a dataset including
20,415 pairs of 21 nt siRNA duplexes with 2 nt overhangs for further analysis (Supplementary File 2).
Using this dataset, we found that the read-count distribution of 21 nt siRNA duplexes was associated
with GC contents of 19 nt internal base pairs. The highest medians of read counts in KM504248,
KR094068, and KP772568 were associated with the internal GC content of 42.11% (8/19), and the
highest medians in KM504246, KP223323 and KP223324 and the highest median in KM504247 were
associated with internal GC contents of 47.37% (9/19) and 52.63% (10/19), respectively (Figure 1B).
Since previous studies have shown that siRNA duplexes with internal GC contents of 36.84%, 42.11%,
47.37%, and 52.63% resulted in the best RNAi effects in mammals, our results suggested that 21 nt
siRNA duplexes with 2 nt overhangs and internal GC contents of 42.11% and 47.37% could be used
as the criteria to design siRNAs for gene targeting. Additionally, previous studies have shown that
the 2 nt 3′ overhangs are critical to RNAi function, and the most efficient siRNA duplexes have the
overhang quadmer type NN/UG, NN/UU, NN/TdG, and NN/TT (dG represents 2′-deoxyguanosine
and N represents any nucleotide) [9]. In this study, we investigated the abundance of 256 possible
quadmer types (NN/NN) in the siRNA duplex dataset. Among the 16 appeared quadmer types with
internal GC contents of 42.11% or 47.37%, CC/CC was the most abundant type and AA/AA was the
least abundant type.

Another controversial topic in RNAi studies is whether the RISC contains single- or
double-stranded siRNAs. Previous studies have introduced a debate on the symmetry between sense
and antisense strands of siRNAs [29]. Using the dataset of the seven viral sequences, we investigated
the distribution of viral reads aligned on the positive and negative strands (Supplementary File 3).
The seven viral sequences showed two different patterns in the distribution of positive- and
negative-stranded counts. One pattern from the sequences KM504246, KM504247, KM504248,
KP223323, and KP223324 had symmetric read-count distribution of positive and negative strands
(Figure 3A), while the other pattern from the sequences KR094068 and KP772568 had a read-count
distribution biased to positive strands (Figure 3B). Although the two patterns were different, this result
still confirmed our previous study that positive single-stranded RNA viruses usually had siRNAs
from both strands and double-stranded DNA viruses had siRNAs from sense strands.
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