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Abstract: Brain tumors are the second most common group of childhood cancers, accounting for
about 20%–25% of all pediatric tumors. Deregulated expression of the MYC family of transcription
factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their
expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and
drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition
of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of
MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of
childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic
approaches for pharmacological inhibition of MYC activity in these tumors.
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1. Introduction

Brain tumors are the leading cause of cancer-related deaths among children. Primary brain tumors
comprise a diverse group of neoplasms arising from different cells of the central nervous system (CNS)
that can be separated according to their glial or non-glial origins. MYC family proteins (c-MYC, MYCN,
and MYCL) are misregulated in various malignant brain tumors in children and adults [1,2].

The MYC family proteins are basic helix-loop-helix leucine zipper transcription factors with a crucial
role in proliferation, differentiation, cell cycle progression, metabolism, and cell survival/apoptosis [3,4].
The MYC transcription factors form heterodimers with their partner protein MAX and bind to DNA at
Enhancer box (E-box) sequences (the canonical CACGTG and other non-canonical sites) to activate the
transcription of target genes. By associating with a second transcription factor, MIZ-1, MYC can also
function as a transcriptional repressor [5].

In normal cells, MYC expression is tightly regulated (at the transcriptional and post-transcriptional
level) by developmental and mitogenic signals. MYC oncogene deregulation is observed in more
than half of human cancers as a consequence of gene amplification, overexpression, chromosomal
translocation, and/or protein stabilization [4,6]. The ensuing high MYC levels are not only able to
drive tumor initiation, progression, and recurrence, but are also necessary for tumor maintenance.
Targeted MYC inactivation in tumors that are dependent on MYC genes often leads to growth arrest,
apoptosis, and differentiation [7].

This review focuses on the role of MYC proteins and their regulatory network in malignant
brain tumors. We will also describe ways of modeling MYC-driven brain tumors and highlight recent
findings describing the attempts to target MYC proteins.
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2. Pediatric Brain Tumors and Clinical Features

Cancer is the second most common cause of death in children, surpassed only by accidents.
In children, CNS neoplasms are the most common solid tumor type and the second most common
childhood malignancy after leukemia [8]. In 2014, brain cancer surpassed leukemia to become the
leading cause of cancer-related deaths in children as a result of improved leukemia treatment [9].
Primary brain tumors can be categorized as either glial or non-glial tumors (see Figure 1).
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Figure 1. The most common brain tumors in pediatric patients. Brain tumors are a heterogeneous group
of neoplasms divided into two broad groups, glial and non-glial tumors. Entities with known MYC
dysregulation are highlighted in red. AT/RT: atypical teratoid/rhabdoid tumor. ETMR: embryonal
tumor with multilayered rosettes. GBM: glioblastoma. DIPG: diffuse intrinsic pontine glioma.

2.1. Non-Glial Tumors

Non-glial brain tumors include embryonal tumors, craniopharyngioma, germ cell tumors, and
other rare entities. Embryonal tumors are the most common malignant CNS neoplasms in children
(~15%) [10] and are composed of undifferentiated (small round) or poorly differentiated cells similar
to the ones in the developing embryo. Tumors within this group include medulloblastoma, atypical
teratoid/rhaboid tumors (AT/RT), ETMR (embryonal tumor with multilayered rosettes), and other
CNS embryonal tumors (previously known as CNS primitive neuroectodermal tumors (PNETs)).
Despite sharing a common histological pattern, embryonal tumors are biologically distinct.

Medulloblastoma is by far the most common form of embryonal tumors in children
(ages 0–14 years), accounting for 63% of all embryonal CNS neoplasms [10]. These tumors commonly
originate in the cerebellum or posterior fossa and tend to disseminate via the cerebrospinal fluid (CSF).
Amplification and overexpression of the MYC oncogene family, especially c-MYC and/or MYCN, have
been described in medulloblastoma. Patients whose tumors exhibit MYC gene family amplification
usually have a significantly worse prognosis [11].

CNS AT/RT are rare, but highly malignant embryonal tumors in infants [12]. AT/RTs represent
only 1%–2% of all pediatric CNS tumors, but account for up to 10%–20% of brain tumors in children
younger than three years of age. These tumors occur in both supratentorial and infratentorial brain
regions, but are predominantly observed in the supratentorial region.

Embryonal tumor with multilayered rosettes (ETMR) is a recently described entity of embryonal
tumors that encompass embryonal tumor with abundant neurophil and true rosettes (ETANTR),
medulloepithelioma, and ependymoblastoma. Despite presenting as distinct histological variants,
these tumors share a characteristic molecular signature (amplification of a large microRNA cluster
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on chromosome 19 known as C19MC) and are thus considered a single entity [13]. ETMRs arise
predominantly in children under four years of age and are associated with a dismal prognosis.

Another tumor type derived of non-glial origin is craniopharyngioma, which accounts for 4%
of all brain tumors in children [10]. These are benign (World Health Organization (WHO) grade I),
slow-growing, partially cystic epithelial tumors found in the sellar or suprasellar region surrounding
the pituitary gland in the brain.

Intracranial germ cell tumors are a heterogeneous group of rare neoplasms that constitute about 3%
of childhood brain tumors in the USA and Europe, but in Japan and other Asian countries an incidence
of up to 11% of pediatric CNS tumors has been reported [14]. These brain tumors are most commonly
found in the pineal and suprasellar region in the brain [14].

2.2. Glial Tumors

Glial tumors make up approximately 53% of all pediatric brain tumors [10] and include
astrocytoma, oligodendroglioma, glioblastoma, ependymoma, and a few rare histologies. Most of the
glial tumors in children are slow-growing pilocytic astrocytomas or other low-grade tumors (WHO
grade I and II), accounting for over 30% of CNS tumors in this age group. High-grade gliomas (HGGs),
in particular glioblastomas (GBMs), diffuse pontine gliomas, and other malignant astrocytomas account
for ~19% of pediatric brain tumors (≥14 years of age) [10]. Despite occurring less frequently than their
adult counterparts, pediatric HGGs nonetheless contribute substantially to childhood cancer mortality.
In addition, pediatric HGGs are clinically and biologically distinct from adult gliomas [15]. GBM, which
is the most common and most malignant (WHO grade IV) brain tumor in adults, comprises only 3%
of all brain and CNS tumors among children aged 0–14 years [10]. Patients diagnosed with GBM
face a dismal prognosis, with a median survival of only 12–15 months [16]. All HGGs share common
features of high mitotic activity, marked vascular endothelial proliferation, and focal necrosis.

Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive tumors that start growing in the
brainstem (pons) and infiltrate adjacent healthy tissue. DIPG account for 80% of pediatric brainstem
tumors and primarily affect young children with a median survival of less than one year [17,18].

Anaplastic astrocytoma (AA; WHO grade III) is a rare, malignant, diffusively infiltrating neoplasm
with nuclear atypia and increased mitotic activity, but lack vascular proliferation and necrosis, unlike
glioblastomas (WHO grade IV). These tumors occur rarely in pediatric patients, accounting for only
1.5% of childhood CNS tumors [10].

Ependymomas are glial tumors that arise from ependymal cells that line the ventricles of the
brain and the central canal of the spinal cord. In children, ependymal tumors account for 5.7% of
primary CNS neoplasms [10] with two-thirds arising in the infratentorial region and one-third within
the supratentorial compartment.

Mixed neuronal-glial tumors, which are characterized by proliferation of neoplastic cells
showing a mixture of neuronal and glial differentiation, and oligodendroglioma, which are derived
from oligodendrocytes, are glial brain tumors accounting for 5.7% and 0.8% of CNS neoplasm,
respectively [10].

3. Molecular Profiling and MYC Misregulation in Childhood Brain Tumors

In recent years, comprehensive molecular profiling studies have identified distinct biologically
and clinically relevant subgroups of different brain tumors entities. This section will focus on the
molecular profiling of various childhood brain tumors associated with MYC dysregulation.

Medulloblastoma was formerly thought of as a single histological entity, but is now known to
compromise four different subgroups with distinct biological and clinical features: Wingless (WNT),
Sonic Hedgehog (SHH), and the less well molecularly characterized Group 3 and Group 4 [11,19,20].
These molecular subgroups relate to differences in age and gender distribution, rates of metastatic
dissemination, and somatic alterations [20,21]. Further classification of a medulloblastoma into any
of these four subgroups will provide an improved prediction of clinical outcome. The MYC genes
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are often overexpressed or amplified in medulloblastoma, with differential expression of c-MYC
and MYCN among the four subgroups [1]. c-MYC is highly expressed in WNT tumors, which do
not have c-MYC gene amplification, whereas Group 3 medulloblastomas are often associated with
c-MYC amplification (~16%–17%) and the worst overall prognosis [1,22]. High-level expression and
amplification (~8%–9%) of MYCN occur in SHH medulloblastoma, with amplification being predictive
of a worse prognosis [1,11,22]. Moreover, some Group 4 tumors are also associated with MYCN
amplification (~6%–7%) despite generally exhibiting low c-MYC and MYCN expression levels [1,22].

The genetic hallmark of AT/RTs is the deletion and/or mutation of the tumor suppressor
gene SMARCB1 (INI1/hSNF5) present in the vast majority of these tumors, resulting in a loss of
nuclear SMARCB1/INI1 protein expression. Apart from these recurrent SMARCB1/INI1 alterations,
AT/RTs have a remarkably low mutation rate [23]. The rare cases of AT/RT tumors exhibiting
retained SMARCB1/INI1 expression have been associated with mutations and allelic loss of the
SMARCA4/BRG1 gene [24]. SMARCB1/INI1 and SMARCA4/BRG1 are essential components of the
ATP-dependent SWI/SNF chromatin-remodeling complex involved in the transcriptional regulation
of a variety of genes that control cellular proliferation or differentiation [25]. Recently, a study has
identified three epigenetically/molecular distinct subgroups of AT/RTs (tyrosinase (TYR), SHH, and
MYC) [2]. AT/RT-TYR tumors usually occur in patients younger than one year of age with preferential
infratentorial location. This subtype is characterized by large/broad SMARCB1/INI1 deletions and
overexpression of melanosomal genes, such as TYR, MITF, or DCT [2]. In the AT/RT-SHH subgroup,
tumors are characterized by focal SMARCB1/INI1 aberrations and overexpression of SHH pathway
genes, including MYCN and GLI2 overexpression [2]. These neoplasms occur in both supratentorial
and infratentorial locations. The AT/RT-MYC subtype is characterized by overexpression of the MYC
oncogene as well as HOX cluster genes and focal SMARCB1/INI1 deletions [2]. Clinically, these tumors
present in older children and occur mainly in supratentorial locations.

Other CNS embryonal tumors (previously known as CNS-PNETs) account for only 2%–3% of all
childhood brain tumors [26]. These tumors show an aggressive clinical behavior and a poor outcome
with 50%–60% overall survival [27]. Sturm et al. recently performed an integrated genomic analysis
of 323 CNS-PNETs cases and were able to cluster these tumors into non CNS-PNET tumors [28].
For example, 9% of the CNS-PNETs where clustered to HGG-MYCN tumors [28]. Moreover, the
CNS-PNET cases further clustered to other types of HGGs, ETMRs, AT/RTs, and medulloblastoma as
well. Interestingly, when sorting these tumors out a number of new molecular entities emerged, which
could be identified as “CNS neuroblastoma with FOXR2 activation” (CNS NB-FOXR2), “CNS Ewing
sarcoma family tumor with CIC alteration” (CNS EFT-CIC), “CNS high-grade neuroepithelial tumor
with MN1 alteration” (CNS HGNET-MN1), and “CNS high-grade neuroepithelial tumor with BCOR
alteration” (CNS HGNET-BCOR) tumors [28].

The major insights into GBM molecular subtypes originate from classifications studies on adult
patients, which suggest two major disease entities reflecting IDH1 mutation status [26,29,30] and
a total of 3–7 molecular subtypes based on expression or methylation data [29–34]. However, pediatric
GBMs have been shown to present with distinct histopathological features [35–37], and less is known
about their molecular subtypes. Nevertheless, recent studies suggest a substantial overlap with the
most robust adult expression subtypes, termed proneural and mesenchymal [15,34,37], as well as
with signature mutation derived subtypes defined by the status of IDH1 or the histone H3.3 variant
encoding H3F3A gene [33,37], the latter of which presents a frequent phenotype reported to account
for 30%–50% of pediatric GBMs [33,38]. Interestingly, a subset of proneural GBMs have previously
been demonstrated to be enriched for MYC amplifications [31], while mutations in histone H3.3 have
been suggested to be driving tumorigenesis via stimulation of MYCN overexpression, especially in
pediatric GBMs [16]. In addition, one of the marked differences between pediatric and adult mutational
landscapes is an increased focal amplification rate of both c-MYC and MYCN [15,37]. Together with the
observation that the expression of a stabilized variant of MYCN in forebrain-derived NSCs can induce
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malignant glioma in mice [39], these observations suggest a role for MYC genes in tumorigenesis of
pediatric GBM.

The genomic landscape of DIPGs has previously been shown to harbor focal amplifications
of both c-MYC and MYCN [40]. Recent efforts have clustered these tumors into three predominant
molecular subgroups referred to as “MYCN”, “Silent”, and “H3-K27M” [17], the last of which can be
further dissected into a subset of cases harboring a K27M mutation in histone H3.3 or histone H3.1,
respectively [17,41]. While the MYCN group was characterized by an amplification and accompanying
overexpression of MYCN, the H3-K27M also exhibited an exclusive enrichment of focal amplifications
of PVT-1/MYC [17,42], suggesting differential roles of MYCN and c-MYC in DIPG tumorigenesis.

Due to their rarity, less is known about molecular subtypes of anaplastic astrocytoma. Instead,
these tumors are often classified in combination with low-grade gliomas [43], or in the general context
of anaplastic gliomas [44] or HGGs [32,35]. Currently, anaplastic astrocytomas are separated into
subsets based on mutations in IDH1, ATRX and TP53, as well as codeletion of chromosomes 1p and
19q [45]; however, the role of MYC in these subtypes is largely unexplored. Screens including either
grade II and grade III gliomas [43] or pediatric HGGs [35–37,46] have demonstrated amplifications
of both c-MYC as well as MYCN, and in the context of pediatric HGG a clear association of MYCN
amplifications with anaplastic astrocytomas was reported [46]. Additionally, a recent mouse model
has demonstrated the potential of MYC to induce gliomagenesis in mature astrocytes [47], while
a comparison of paired grade II and grade III gliomas has suggested a role of MYC in driving glioma
progression [48]. Further, Trp53 mutations contribute to gliomagenesis by allowing the overexpression
of c-Myc through downregulation of its post-translational regulator, the ubiquitin ligase Fbxw7.
Expression of Trp53 mutants or knockdown of Fbxw7 in Pten−/−;Cdkn2a−/− neural stem cells resulted
in re-expression of c-Myc with enhanced tumorigenicity [49].

4. Mechanisms Involved in MYC-Driven Brain Tumor Initiation

MYC is one of the key oncogenes implicated in the pathogenesis of human tumors.
However, surprisingly, MYC activation alone is not sufficient to induce tumorigenesis. Instead, MYC
overexpression in normal cells can have destructive outcomes, such as proliferative arrest [50],
apoptosis [51–53], and cellular senescence [54]. In the early 1980s, an in vitro study of c-MYC revealed
its potential to transform primary rat embryonic fibroblasts only in cooperation with other oncogenes
(e.g., RAS) [55]. In the following 20 years, several studies confirmed that deregulated c-MYC/MYCN
expression collaborates with other genetic alterations to circumvent multiple intrinsic tumor-suppressing
mechanisms (which inherently prevent MYC activation from initiating tumorigenesis) in order to start
forming tumors in vivo.

Tumorigenesis requires the ability to disable the MYC-mediated apoptotic program.
MYC overexpression leads to p53-dependent or p53-independent apoptosis. MYC has been shown to
rapidly induce p14ARF [56] which, in turn, effectively stabilizes p53 thereby activating the p53 pathway
by binding to and inhibiting the MDM2 oncogene. A loss of either of these tumor suppressors accelerates
tumorigenesis in MYC-driven mouse models (for more details see the next section) [57,58]. For example,
human MYC-driven medulloblastoma often exhibit monoallelic loss of TP53 typically as the result of the
formation of an isochromosome 17q [19,59]. Furthermore, MYC also promotes apoptosis by disrupting
the balance of pro-apoptotic and anti-apoptotic factors. High levels of MYC suppress the expression
of the anti-apoptotic BCL-2 and BCL-XL [60], while at the same time inducing pro-apoptotic proteins
like BIM and BAX [61,62]. For example, enforced BCL-2 oncogene expression inhibits MYC-induced
apoptosis and cooperates with MYC to induce neoplastic transformation in murine lymphomas and
medulloblastomas [60,63].

In the absence of a functional apoptotic response, the strong proliferative signal caused by MYC
deregulation can further trigger tumor formation. MYC mRNA and protein expression levels strongly
correlate with the cell proliferation rate: The MYC protein is a so-called “immediate early” gene product
that can be rapidly induced in response growth factor stimulation. Ectopic c-MYC overexpression can
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prompt quiescent cells to re-enter the cell cycle independent of any growth stimulus [64]. MYC can
stimulate cell cycle progression through several mechanisms. Firstly, MYC induces the expression of
several cyclins, cyclin-dependent kinases (CDKs), and E2F transcription factors, which are involved in
S phase entry. These factors are essential cell cycle regulatory proteins whose deregulation often occurs
during the development of tumors. For example, cyclin D2 (CCND2) expression has been shown to be
directly regulated by MYC [65]. Secondly, MYC counteracts the activity of p21CIP1 and p27KIP1 CDK
inhibitors by different mechanisms, thus overcoming actions from the growth-inhibitory signal TGF-β.
Lastly, MYC induces transcription of factors related to DNA replication and directly interacts with the
pre-replicative complex, controlling the initiation of DNA replication and origin activity [66].

Furthermore, MYC over-activation can induce genomic instability, a process linked to tumor
initiation. In vivo and in vitro models have shown that c-MYC overexpression can initiate karyotypic
(chromosomal) instability [67–69] or locus-specific genomic instability [69,70]. The latter was first
described for the dihydrofolate reductase (DHFR) gene, which was amplified as a result of inducible
c-MYC overexpression [70]. As will be discussed in a later section, upon MYC inactivation in
conditional mice models most tumors undergo proliferative arrest, differentiation, and apoptosis [7].
However, some tumors can become independent of MYC overexpression by acquiring additional
genetic events such as chromosomal aberrations [67,68,71].

MYC is also linked to all key aspects of metabolic reprogramming in tumorigenesis, including the
induction of glycolysis, enhanced glutamine metabolism, and lipogenesis, as well as mitochondrial
biogenesis [72,73]. In addition, MYC directly regulates ribosomal biogenesis and function and
consequently causes enhanced protein synthesis [72,73]. Together, these MYC-induced metabolic
alterations lead to rapid cell mass expansion and hence to tumor growth. The importance of enhanced
ribosome function and protein synthesis during MYC-induced tumorigenesis has been demonstrated
by a study showing that diminished expression of the ribosomal protein RPL24 in transgenic mice
markedly decreases MYC-induced lymphomagenesis [74].

Finally, MYC influences the tumor microenvironment, including the activation of angiogenesis
and suppression of the host immune response. MYC induces the expression of the proangiogenic
factors vascular endothelial growth factor (VEGF) and angiopoietin-2 (ANG-2) and downregulates
anti-angiogenic factors like thrombospondin-1 (TSP-1) [75–77]. For example, in a MYC mouse model
of pancreatic cancer, sustained activation of c-Myc in β cells triggers increases the expression of the
inflammatory cytokine interleukin-1β (IL-1β). Secretion of IL-1β leads to the release of VEGF sequestered
in the extracellular matrix, presumably via the activation of matrix metalloproteases. VEGF-A localizes
to its cognate receptor on the adjacent endothelial cells, promoting their proliferation [78].

As we will discuss in more detail later, MYC inactivation results in tumor regression in most
mouse models. It has been shown that complete tumor clearance following the inactivation of MYC
oncogene requires the secretion of thrombospondin-1 [79] and the recruitment of CD4+ T cells [80].
Recent evidence suggests that MYC regulates the expression of CD47 and PD-L1, two important
immune checkpoint proteins on the tumor cell surface [81]. By downregulating these checkpoint
proteins MYC inhibition enhanced the antitumor immune response, but upon enforced expression of
CD47 or PD-L1 tumors continued to grow.

5. MYC-Driven Models of Brain Tumors

Genetically engineered mouse models (GEMMs) as well as Patient-Derived Xenograft (PDX)
models are indispensable tools for studying human brain tumors. These animal models are important
to validate the genetic events and molecular mechanisms that contribute to oncogenesis within the
CNS and to evaluate potential therapeutic strategies.

As discussed in the previous section, MYC overexpression alone is not sufficient to induce
tumorigenesis in vivo. Using the RCAS-TVA system to model medulloblastoma, Fults et al. showed
that c-MYC overexpression in Nestin-expressing cells was insufficient to induce medulloblastoma
formation, but that it generated nests of undifferentiated cells instead [82]. However, ectopic expression
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of either human c-MYC or MYCN (mutationally stabilized and wild-type) in conjunction with SHH
expression in Nestin-expression progenitor cells generated SHH medulloblastoma at a significantly
increased incidence compared with infection with RCAS-SHH alone [83,84]. Furthermore, somatic
gene transfer of c-MYC and antiapoptoic Bcl-2 induces large cell/anaplastic (LCA) medulloblastoma
in Nestin-TVA mice [63]. Ectopic expression of c-MYC could also, in collaboration with RE1-silencing
transcription factor/neuron-restrictive silencer factor (REST/NRSF), block the neuronal differentiation
of granule progenitor cells and drive medulloblastoma in mice [85]. In addition, enforced expression of
N-Myc in cerebellar granule neuron precursors (CGNPs) collaborates with the loss of Trp53 and Cdkn2c
(p18Ink4c) [86], as well as the loss of Ptch1 [87] to accelerate SHH medulloblastoma development in mice.

Additionally, forced expression of wild-type MYCN can promote SHH-independent
medulloblastoma development when driven from the brain-specific Glutamate transporter 1 (Glt1)
promoter in the Tet-inducible Glt1-tTA;TRE-MYCN/Luciferase (GTML) transgenic model [88].
The GTML model gives rise to tumors that mostly (>80%) resemble Group 3 medulloblastoma
but also smaller sets of WNT, SHH, and Group 4 tumors accentuating MYCN as a pleiotropic
transcription factor in medulloblastoma tumorigenesis [88–90]. Most GTML tumors displayed
classic or LCA histology and were Atoh1/Math1-negative. Atoh1/Math1 is a bHLH transcription
factor required for SHH medulloblastoma development. Later, by using the RCAS-TVA system,
we showed that specific Atoh1-negative/glial fibrillary acidic protein (GFAP)-positive brain stem cells
could generate MYCN-driven medulloblastoma by using a mutationally stabilized MYCNT58A viral
construct. Interestingly, MYCN drives either SHH-dependent or SHH-independent medulloblastoma
as a consequence of the timing of its oncogenic expression from embryonic or postnatal cerebellar stem
cells, respectively [39]. It was also evident that MYCN could promote the formation of glioma from
GFAP-positive stem cells isolated from the forebrain ventricular zone (VZ). The glioma formation is in
line with previous results showing how transgenic c-MYC expression from GFAP positive forebrain
cells give rise to gliomas [91] and further argue for a window of vulnerability during astrocyte
development where c-MYC or MYCN overexpression is sufficient to trigger this neoplastic process.

In 2012, two groups described other mouse models that recapitulate many features of human
Group 3 medulloblastoma. Pei et al. introduced a mutationally stabilized c-Myc (c-MycT58A) and
dominant negative Trp53 (DNp53) in postnatal stem cells expressing Prominin-1 (CD133) but lacking
expression of lineage-specific markers defining CGNPs [57].Using c-MycWT constructs also induced
tumor formation in conjunction with DNp53, but with reduced penetrance and increased latency.
Immunocompromised mice injected with transduced cells developed (largely undifferentiated) tumors
that resembled human LCA medulloblastoma histology and gene expression profiles, different from
SHH-based mouse models. MYC withdrawal caused complete tumor regression, proposing a strong
MYC oncogene addiction in this tumor model. In contrast, Kawauchi et al. retrovirally introduced
c-Myc into Trp53−/−;Cdkn2c−/− GNPs prior to orthotopic injection into cerebral cortices of naive
recipient mice [58]. The Myc-induced tumors were distinct from WNT and SHH models. Although the
neuronal lineage marker Atoh1 was used to sort for CGNPs, the resulting tumor cells had lost Atoh1
expression and instead displayed increased expression of Prominin1 and other stem cell factors.
The Group 3 medulloblastoma mouse models from both these studies demonstrate that the MYC
oncogene has to be activated either in stem cells or that the progenitor cell has to be reprogrammed by
MYC for transformation to occur.

Remarkably, enforced expression of MycN in GNPs from Trp53−/−;Cdkn2c−/− mice induce SHH
medulloblastoma, whereas expression of Myc in the same GNPs induces Group 3 medulloblastoma [58].
Recently, a subsequent study using different genetically engineered mice showed that the MYC’s
binding partner MIZ-1 protein plays a pivotal role in determining the tumor identity [92]. C-MYC and
MYCN are distinguished by their ability to bind MIZ-1, which shows a strong binding affinity for
c-MYC but not MYCN [92]. The strong c-Myc/Miz-1 complex drives Group 3 tumors by repressing
expression of genes involved in neuronal differentiation, ciliogenesis (genes responsible for assembling
primary cilia) and the TGF-β pathway, thereby maintaining a stem cell-like gene expression profile [92].
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In experiments employing a c-Myc mutant (MycV384D) specifically impaired in Miz-1 binding,
fewer mice developed brain tumors and tumor formation took longer [92]. In contrast, the weaker
MycN/Miz-1 complex plays a role in SHH tumor development since inhibition of MycN/Miz1 binding
blocked development of SHH medulloblastoma [92]. These data suggest that targeting the Myc–Miz1
complex may provide an alternative strategy for targeting MYC-dependent (Group 3) tumors.

Other Group 3 animal models were generated by overexpression of Gfi or Gfi1B and c-Myc in
neural stem cells. Using whole genome sequencing (WGS) of primary medulloblastoma, Northcott et al.
had identified a series of diverse genomic structural variants that lead to specific and mutually exclusive
oncogenic activation of GFI1B and GFI1 by repositioning these next to super-enhancers (a process
called ‘enhancer-hijacking’) [93]. These structural variants are restricted to Group 3 and Group 4
tumors [93]. Growth factor-independent 1b (GFI1B) and its paralog GFI1 are transcriptional repressors
that function as key regulators of hematopoiesis [94] and were suggested to recruit histone-modifying
enzymes to promoters and enhancers of target genes. In an orthotopic xenograft model, Gfi1/Gfi1b
cooperates with c-MYC to drive medulloblastoma, despite the fact that neither alone is sufficient to
promote tumorigenesis [93]. The resulting tumors are highly proliferative and metastatic, and exhibit
histological and molecular characteristics consistent with human Group 3 medulloblastoma. In human
tumors, only GFI1 activation, but not GFI1B, significantly correlates with MYC expression, despite the
fact that both genes cooperate with MYC in the in vivo model [93]. Although a smaller set of tumors
from the GTML model shows a resemblance to Group 4 medulloblastoma and MYCN-driven postnatal
stem cells give rise to tumor cells that are positive for the Group 4 KCNA1 marker [20], there are as
yet no reliable Group 4 models for medulloblastoma. However, most recently Lin et al. described the
nature of the regulatory landscape in a set of human medulloblastoma samples [95]. Using this screen,
they could identify master regulators like LMX1A, EOMES, and LHX2, which where differentially
regulated active enhancers in Group 4 medulloblastoma [95]. It is suggested that these genes could be
used in the search for finding the cellular origin of Group 4 medulloblastoma, which would be useful
when generating novel Group 4 models.

To our knowledge there are no mouse models that recapitulate the other MYC-driven childhood
brain tumors, e.g., MYC-driven DIPGs. Still, with the use of PDX models, brain tumor entities not
described in this section can be further studied and maintained in vivo. PDX models are particularly
useful in modeling slow-growing or otherwise hard-to-culture brain tumor cells and are very useful
when evaluating novel drugs in vivo.

6. MYC Target Genes Involved in Tumor Maintenance and Recurrence

MYC-driven tumors are maintained by MYC expression and often show dependence on a continued
activity of MYC proteins, a process commonly referred to as oncogene addiction. Such an addiction
is neatly illustrated in chronic myeloid leukemia (CML) patients carrying BCR-ABL chimeric genes
caused by translocations that can be effectively inhibited with BCR-ABL tyrosine kinase inhibitors like
imatinib [96]. The process of oncogene addiction could be observed in the large set of inducible MYC
and MYCN-models generated [6].

In normal embryonic stem cells, a pluripotent dormant state is induced upon MYC depletion [97].
Similarly, only highly quiescent, dormant hematopoietic stem cells survive the depletion of both c-MYC
and MYCN genes, while committed hematopoietic progenitors are lost due to impaired proliferation,
differentiation, and apoptosis [98]. By contrast, neural stem cells in c-MYC/MYCN double-knockouts are
decreased in number, showing suppressed cell cycling capability and migration [99]. Dormant tumor
cells are also found when depleting MYC in some tumor types, including epithelial mammary and
hepatocellular tumors [100,101]. Here these dormant tumor cells later give rise to tumors that are
independent of MYC or have become refractory to MYC inhibition. By contrast, in some models
of lymphoma [71,102] and papillomatosis [103], MYC depletion instead gives rise to cell cycle
arrest, apoptosis, and complete regression. In osteogenic carcinomas [104], MYC depletion gave
rise to differentiation into normal bone. Interestingly, upon MYC reactivation in this model, such
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differentiated bone cells were rapidly forced into apoptotic cell death [104]. Similarly, MYCN-driven
GTML brain tumors display a rapid onset of senescence and regression of tumor proliferation upon
MYCN depletion [88]. In cured animals only smaller remnants of differentiated tumor cells could be
found, even after several months of MYCN reactivation.

This variation in response to oncogenic depletion is not straightforward and therefore hard to
explain. One possible mechanism for the variation is that some tumor models are clonal but others are
polyclonal. This suggests that during the massive overexpression of MYC genes over a long period,
multiple clones arise with various sets of additional genetic and epigenetic mutations. During this
selective process it is possible that MYC-independent clusters might arise. Another mechanism could
be related to the cellular context and the fact that certain cells of tumor origin have a certain set
of collaborating genetic and epigenetic alterations that either promote or inhibit tumor cell death
upon MYC gene depletion. As previously mentioned, MYC can partner up with RAS in driving
tumorigenesis [55]. The variation can also be explained by the fact that MYC amplifies the output of
activated gene expression programs in a cell, which thus depends on the set of genes that are active
in a particular cell type or a certain stage in development [105,106]. Despite these differences, there
are, as previously discussed, a few particularly important genes that control cell cycle checkpoints,
apoptosis, and/or senescence, including p53, p14ARF, and BCL-2 [56,107,108], which can interfere with
MYC depletion in various MYC-driven tumor models.

Apart from tumor cell-intrinsic effects, alterations in the immune surveillance can affect tumor
maintenance and the response to MYC depletion. Host-dependent mechanisms can cause lymphoma
regression from MYC inactivation but only in immunocompetent hosts [80]. Suppression of MYC
via Omomyc further induced changes in the microenvironment of pancreatic tumor cells [109].
Interestingly, from a perspective of oncogene addiction, MYC can make non-MYC-driven tumors
dependent on MYC signaling as Omomyc can inhibit RAS-driven lung tumors [110,111].

MYC genes often emerge as late events in tumor progression and at tumor recurrence.
Moreover, MYC gene amplification or increased MYC activity is often correlated with aggressive tumor
phenotypes and poor outcomes in many cancers [112]. Just to give a few examples, MYC alterations
and amplifications are poor prognostic markers or late events in our three most common types of
cancer, lung cancer [113], prostate cancer [114], and breast cancer [115]. MYC gene mis-expression
also often arises after failed therapies and then presumably promotes tumor recurrence. For example,
MYCN amplifications in combination with AURKA amplifications commonly (~40% of cases) arise
in relapsed neuroendocrine prostate cancer after hormonal therapy [116]. In addition, c-MYC is
a radiosensitive locus that is altered by translocations or amplifications following radiation therapy of
breast cancer cells, emphasizing its role in radiogenic breast cancer progression and recurrence [117].
Although the examples above are mostly in adult cancers, a recent report showed by studying matched
primary and recurrent patient samples that c-MYC and MYCN amplifications in combination with p53
defects could also frequently emerge during medulloblastoma recurrence in children [89].

7. Pharmacological Inhibition of MYC Proteins and Their Transcriptional Targets

Transcription factors (TFs), such as the MYC family, are notorious for their involvement in
several key cellular processes and extensive undruggability. Due to the pleiotropic nature and obscure
biophysical properties of TFs, direct-target drug development has been stagnant over the past decades.
Generally speaking, it is difficult to target intracellular proteins that lack enzymatic activity, which is
why targeting kinases and cell surface proteins has long been the primary goal of therapy development.

The recent focus on genomic and epigenomic drug targets has opened up important alternative
ways of targeting TFs, without the need for direct protein interference (Figure 2). Instead, efforts
are directed at disrupting the transcriptional regulatory units essential for transcription of TFs.
Epigenetic bromodomain inhibition emerged as an effective way to target oncogenic drivers
such as MYC, by disrupting BET (bromodomain and extra-terminal) bromodomain interaction with
polyacetylated histone tails [118]. JQ1 and iBET were the first line of inhibitors that proved efficacious



Genes 2017, 8, 107 10 of 19

in targeting MYC and its transcriptional output [118,119] by disrupting RNA polymerase II activity at
the enhancer and superenhancer regions of MYC genes. However, these compounds resulted in toxicity
in vivo and thus are not suitable for clinical use. Fortunately, modified BET bromodomain inhibitors
such as TEN-010 and OTX105 are currently evaluated in clinical trials (NCT01987362, NCT02259114).
Moreover, targeting histone deacetylase (HDAC), responsible for histone hypoacetylation and gene
silencing, has proven fruitful in models of Group 3 medulloblastoma [120].

Interestingly, targeting heterodimeric MYC complexes has once again become an area of intense
focus. MYC and MAX heterodimers are essential for transcriptional activation and oncogenic
transformation of cells. A study from Wang et al. showed that celastrol triterpenoid derivatives selectively
bind to MYC dimers and prevent them binding to DNA [121]. These derivatives inhibit the proliferation
of a number of human cancer cell lines, including those resistant to bromodomain inhibition, and show
low in vivo toxicity. Moreover, MYC–MIZ-1 complexes have been shown to repress genes important
for neuronal differentiation in MYC-dependent Group 3 medulloblastoma, thus allowing tumor cells to
retain a stem-like state, so targeting this complex would also be of therapeutic interest [92].

MYC protein stability facilitates uncontrolled induction of cellular proliferation and growth of
cancer cells. Finding and exploiting targets important for MYC protein stability would allow us to
control MYC activity. Several key players are investigated for their use as therapeutic targets, among
them CDKs, Aurora kinase A, and PI3K/Akt. CDK and cyclin complexes are good candidates for
therapeutic targeting due to their regulatory role in the cell cycle. Similarly to many chemotherapy
drugs, CDK inhibitors halt cell proliferation by disrupting progression in the cell cycle. Moreover, CDKs
also play an important part in regulating the protein stability of MYC proteins. CDK1 inhibition induces
MYC-dependent apoptosis in various tumor cells [122] and the overexpression of MYC activates
CDK2 and increases cyclin A/E gene expression [123,124]. Similarly, CDK2 suppresses the cellular
senescence that is induced by c-MYC [125]. These interactions exemplify the intricate relationship
between MYC and CDKs, and demonstrate a potential benefit from disrupting these feedback loops
therapeutically, since CDK/cyclin complexes are also found frequently deregulated in cancers [126].
Palbociclib, a CDK4/CDK6 inhibitor, is currently evaluated in clinical trials for different solid tumors
and has been approved for the treatment of breast cancer [127]. Several studies have shown that
Palbociclib targeted neoplastic cells in breast cancer [128,129] and glioma [130,131], and that treatment
resulted in an increased sensitivity to radiotherapy in medulloblastoma [132]. Another CDK inhibitor,
Milciclib, which targets CDK2, has shown great promise in a phase I clinical trial on solid tumors [133];
whether this inhibits MYC function is, however, not yet known. Molenaar et al. demonstrated that
the inactivation of CDK2 leads to synthetic lethality in MYCN-overexpressing neuroblastomas [134],
thereby re-establishing CDK2 as a viable therapeutic target in MYC-dependent malignancies.

Other targets of interest are Aurora kinases, which are serine/threonine-protein kinases known
to be involved in essential processes of mitosis. It has been shown that MYC upregulates expression
of Aurora kinases A and B in neoplasms [135], and that Aurora kinase A is known to stabilize MYCN
protein in neuroblastoma [136]. Interestingly, here Aurora kinase A interacts with MYCN but also with
FBXW7, which ubiquitinylates MYCN, leading to suppressed degradation of the protein. Aurora kinase
A inhibition has been shown to further increase the chemosensitivity of medulloblastoma cells [137],
leading to a potential for reducing the dose of damaging chemotherapy. Ahmad et al. demonstrated that
inhibition of Aurora kinase A, using MLN8237, converts MYCN-addicted GTML neurospheres to resemble
non-MYCN expressors and that in vivo treatment significantly prolongs the survival of allografted
mice [138]. In a Trp53-deficient liver cancer model, Dauch et al. showed that MYC directly binds to Aurora
kinase A, and inhibition of their interaction by MLN8237 results in MYC degradation and cell death [139].
Highlights of the available literature suggest that targeting Aurora kinase A is an effective way of
disrupting MYC stability in c-MYC/MYCN-dependent malignancies including medulloblastoma.

Excessive PI3K pathway signaling in cancer cells has displayed a modulation of Akt downstream
target GSK-3β activity. MYC activity is dependent on phosphorylation of the S62 residue, which is
negatively regulated by GSK-3β and mTOR. Aberrant PI3K signaling thus results in an increased
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half-life of MYC proteins, suggesting that restoration of GSK-3β activity using inhibitors directed
toward PI3K signaling will disrupt tumor growth. The PI3K/mTOR inhibitor NVP-BEZ235 selectively
killed MYCN-expressing neuroblastoma tumor cells through apoptosis and concomitantly eliminated
MYCN protein in vivo [140]. OSU03012 is another PI3K/Akt inhibitor that leads to activation
of GSK-3β. Targeting the PI3K/Akt pathway using OSU03012 has proven advantageous in both
neuroblastomas [141] and medulloblastomas [142], showing a reduced MYC transcriptional output as
well as affecting the stability of MYC proteins.

An evolving strategy to target MYC is to stabilize G-quadruplex DNA structures using small
molecules. G-quadruplexes are four-stranded nucleic acid structures that may form in guanine-rich
areas and can adopt various topologies. They can be stabilized in specific topologies that disrupt
certain biological processes [143]. G-quadruplex sequences have been found in promoter regions
of, for example, MYC. Today, scaffolds based on an indolylmethyleneindanone pharmacophore,
which specifically stabilizes the parallel topology of promoter quadruplex DNAs, have demonstrated
a specific disruption of c-MYC and c-Kit promoter regions [143]. Further studies on these small
molecules are however needed to properly evaluate their applicability in biological systems.

Reiterating what several studies have concluded, due to the strong oncogenic potential and elusive
nature of MYC proteins, combination therapy or dual targeting is probably the best way to target
MYC-driven tumors. Sun et al. recently showed that a dual HDAC and PI3K inhibitor, CUDC-907,
downregulated MYC and suppressed the growth of MYC-dependent neoplasms [144]. Another study
by Pei et al. showed a synergistic killing of MYC-dependent medulloblastoma cells when combining
HDAC and PI3K inhibitors [145], an effect partly ascribed to the induction of the tumor suppressor
FOXO1. As a final point, despite the many ways to effectively target MYC-driven tumors by indirect
MYC drug targeting (Figure 2), the exact mechanism behind this targeting is not always evident.
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Figure 2. Schematic representation of ways of targeting MYC and its transcriptional output
using specific signaling pathway, BET bromodomain, and complex inhibitors in MYC-dependent
malignancies. Pathway inhibitors (top) target key proteins important for MYC-protein stability and
activity. BET bromodomain inhibitors (lower left) compete with BRD4 in binding acetylated histone
residues and thus halt the initiation of MYC transcription and subsequent regulation of MYC target
genes. Complex inhibitors (lower right) disrupt complex formation and interaction with complex
binding sites. MYC/MAX heterodimers bind to enhancer regions (E-BOX elements) and stimulate
gene activation. Interaction of MYC/MAX together with MIZ-1, binding to the initiator (INR) region,
promotes gene repression [146]. Disruption of these interactions would diminish gene target regulation
and hence tumor progression in MYC-dependent malignancies.
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8. Conclusions

In this review, we highlighted the mechanisms behind MYC-driven tumor initiation, maintenance
and recurrence with a focus on malignant childhood brain tumors. Despite numerous articles on the
subject, it is still not clear how MYC and its regulatory network are promoting such entirely different
processes in cancer. By summarizing the data reported from quite a few sophisticated MYC-driven brain
tumor models, it is increasingly evident how context-dependent these various cancer processes are.

Dysregulated MYC proteins cannot alone drive and promote cancer. Instead, these transcription
factors are part of and coordinate a network of various sets of substrates or putative partners that are
active during MYC-driven initiation, maintenance, and recurrence. It is also clear that better targeting
of MYC-dependent tumors with more direct MYC-targeting compounds or novel combinations of
drugs suppressing MYC proteins synergistically would help to achieve better therapeutic responses.
However, although not discussed in this review, better MYC drugs would still meet an unavoidable
obstacle in brain tumor therapy—the blood–brain barrier (BBB) [147]. Interestingly, the BBB is disrupted
in certain types of WNT-driven medulloblastomas, a subgroup that generally expresses high levels of
MYC [148]. In these brain tumors, BBB disruption is maintained by WNT inhibition. It is therefore
tempting to suggest combining WNT antagonists to open up the BBB with MYC therapy in order to
more effectively deplete MYC-dependent brain tumors and block their recurrence.
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