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Abstract: RNA editing by deamination of adenosine to inosine is an evolutionarily conserved process
involved in many cellular pathways, from alternative splicing to miRNA targeting. In humans, it is
carried out by no less than three major adenosine deaminases acting on RNA (ADARs): ADAR1-p150,
ADAR1-p110, and ADAR2. However, the first two derive from alternative splicing, so that it is
currently impossible to delete ADAR1-p110 without also knocking out ADAR1-p150 expression.
Furthermore, the expression levels of ADARs varies wildly among cell types, and no study has
systematically explored the effect of each of these isoforms on the cell transcriptome. In this study,
RNA immunoprecipitation (RIP)-sequencing on overexpressed ADAR isoforms tagged with green
fluorescent protein (GFP) shows that each ADAR is associated with a specific set of differentially
expressed genes, and that they each bind to distinct set of RNA targets. Our results show a good
overlap with known edited transcripts, establishing RIP-seq as a valid method for the investigation
of RNA editing biology.
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1. Introduction

The post-transcriptional modification of RNA is an evolutionarily conserved mechanism and a
factor contributing to transcriptome diversity. In particular, the deamination of adenosine to inosine
(A-to-I editing) on double-stranded RNA (dsRNA) was first identified for its ability to regulate the
activity of neurotransmitter receptors [1]. The reaction is catalyzed by members of the ADAR family of
dsRNA binding proteins (adenosine deaminases acting on RNA), which comprises of three constitutive
isoforms in human, labeled ADAR (ADAR1), ADARB1 (ADAR2), and ADARB2 (ADAR3). While the
deaminase domain of ADAR3 is not catalytically active, it is thought to act as a competitive inhibitor
of ADAR1 and ADAR2 in the brain [2]. The generation of knockout mice for ADAR1 and ADAR2
further revealed that ADAR1 plays an essential role in cell survival and development, as ADAR1−/−
embryos undergo massive apoptosis in early embryogenesis from E10.5 to E11.5 [3]. ADAR2−/− mice
on the other hand are viable, but prone to epilepsy and their lifespan is shorter than wild-type [4].
The ADAR1 locus codes for a constitutive 110 kDa isoform (ADAR1-p110), and the 150 kDa isoform
(ADAR1-p150) is generated from the same locus during the interferon response [5].

The conversion of adenosine to inosine in the coding region is biologically meaningful, as inosine
behaves as guanosine by favoring base-pairing with cytidine. In earlier years, studies on A-to-I
editing primarily focused on modifications within coding sequences, as editing in those regions is
susceptible to generate a protein product that differs by one amino-acid from the protein predicted
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by the original DNA sequence, which may modulate the protein activity [1]. Furthermore, the role of
inosine in the formation of tRNA wobble base pairs has been described as early as the mid-1960s [6].
RNA editing has the further potential to regulate RNA structure via the modulation of base-pairing
strength, which means it can virtually influence any cellular process requiring an interaction with
RNA. While adenosine (A) typically binds to uridine (U) forming A:U pairs, inosine (I) forms a wobble
interaction with cytosine (C), meaning that ADARs have the potential of either destabilizing (A:U
to I/U) or stabilizing (A/C to I:C) dsRNA. This dual ability positions them as potential core players
in the regulation of RNA activity. Meanwhile, the advent of RNA deep sequencing technologies
(RNA-seq) has revealed that the majority of editing events occur on non-coding RNA [7]. However,
there is presently no study that addresses the binding target preference of every ADAR active
isoform, due to a lack of antibodies specific enough to distinguish ADAR1-p110 from ADAR1-p150 [8].
The transcription of ADAR1-p150 and ADAR1-p110 initiates from two promoters at the same gene
locus: one interferon (IFN)-inducible promoter initiates the transcription of ADAR1-p150, while
another constitutive promoter drives ADAR1-p110 [9]. Alternative splicing of exon 1 results in two
sizes of ADAR1 proteins, approximately 150 kilodaltons (kDa) for IFN-inducible ADAR1-p150 and 110
kDa for the constitutively expressed ADAR1-p110. This makes it technically impossible to knock-out
ADAR1-p110 specifically without knocking out ADAR1-p150 expression. Furthermore, popular
methods for detecting genome-wide binding to RNA typically use UV crosslinking, which not only is
inefficient in stabilizing interactions with perfect double-stranded RNAs [10], but prevents downstream
analysis of editing sites due to the introduction of sequencing errors at the sites of crosslinking. Here,
we present an RNA immunoprecipitation deep sequencing (RIP-seq) strategy that identifies targets for
all known catalytically active ADAR isoforms: ADAR1-p150, ADAR1-p110, and ADAR2. We analyzed
the effect of overexpressing green fluorescent protein (GFP)-tagged ADAR isoforms on the expression
levels of size-selected long RNAs (>200 nt) in HeLa cells, and revealed ADAR isoform-specific binding
target preferences.

2. Materials and Methods

2.1. Plasmid Construction

Total RNA was isolated from HeLa cells and cDNA was prepared by reverse transcription
using random hexamers according to the manufacturer’s protocol (Transcriptor High Fidelity
cDNA Synthesis Kit, Roche Molecular Systems, Pleasanton, CA, USA). The genomic sequences for
ADAR1-p150 (NM_001111), ADAR1-p110 (NM_001193495), and ADAR2 (NM_001112) were amplified
by RT-PCR using the following primers (ADAR1-p150-F and ADAR1-R primers for ADAR1-p150,
ADAR1-p110-F and ADAR1-R for ADAR1-p110, and ADAR2-F and ADAR2-R for ADAR2), each
containing a restriction enzyme cleavage site (lower case letters):

ADAR1-p150-F: 5’-AAAGGGaagcttATGAATCCGCGGCAGGGGTATTCC-3’ (HindIII),
ADAR1-p110-F: 5’-AAAGGGaagcttATGGCCGAGATCAAGGAGAAAATC-3’ (HindIII),
ADAR1-R: 5’-AAAGGGtctagaCTATACTGGGCAGAGATAAAAGTTC-3’ (XbaI),
ADAR2-F: 5’-AAAGGGgaattcATGGATATAGAAGATGAAGAAAACATG-3’ (EcoRI),
ADAR2-R: 5’-AAAAGGAAAAgcggccgcTCAGGGCGTGAGTGAGAACTGGTC-3’ (NotI).

The amplified fragments were each digested with the appropriate mixture of restriction enzymes
(ADAR1-p150: HindIII+XbaI, ADAR1-p110: HindIII+XbaI, ADAR2: EcoRI+NotI). The pcDNA3.1(+)
vector carrying pm-GFP-TNRC6A [11] was digested with HindIII+XbaI to remove the TNRC6A
construct, and the digested ADAR1-p150 and -p110 fragments were inserted into pcDNA3.1(+) by
ligation. The ADAR2 fragment was inserted into pcDNA3.1(+) after digestion with EcoRI+NotI.
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2.2. Cell Culture and Transfection

HeLa cells (3 × 106) were inoculated on a 9-cm dish and incubated with Dulbecco’s modified
Eagle medium (DMEM) (Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat-inactivated
fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C overnight. Cells were transfected
at < 50% confluency with each construct (10 µg/dish) mixed with Lipofectamine 2000 (Invitrogen,
Carlsbad, CA, USA) in Opti-MEM I (Invitrogen). Media was changed after 4 h and cells were sampled
two days later.

2.3. RNA Immunoprecipitation and Illumina Library Preparation

HeLa cells transfected with expression constructs were washed with phosphate-buffered saline
(PBS) (−) five times. Total RNA purification and immunoprecipitation (IP) were performed with
the RiboCluster Profiler RIP-Assay Kit #RN1001 (MBL International Corporation, Woburn, MA,
USA). Immunoprecipitation was carried out using anti-GFP antibody (Clonetech Laboratories,
Mountain View, CA, USA) or normal rabbit immunoglobulin G (IgG) as a control. Total RNA was
purified with DNase (TURBO™ DNase (0.88 U) (Invitrogen)) and fragmented using mRNA-Seq
Sample Prep Kit (Illumina, San Diego, CA, USA). RNA sized 200–400 nt was excised from the
acrylamide gel and subject to library preparation. Cluster amplification and single-end sequencing
was performed using the Illumina TruSeq SBS Kit v5-GA #FC-104-5001 and Illumina Genome Analyzer
GAIIx according to the manufacturer’s protocol (read length: 36 nt). The sequence data was first
converted to qseq format by CASAVA v1.8.2 (Illumina), and further converted to FASTQ format using
the qseq2fastq converter provided by Kris Popendorf [12], and reads containing any base with a Phred
quality score of less than 20 were filtered out using FASTX toolkit 0.0.13 [13] and custom python code
to remove reads containing N’s and homo-polymers consisting solely of one type of nucleotide.

2.4. DEG Analysis (Tuxedo Pipeline)

The latest version of the human genome (hg38) was downloaded in FASTA format from gencode
release 25. Since the reads were short (36 nt) and unstranded, we opted for mapping reads using
tophat 2.0.9 [14,15] in combination with bowtie 1.0.0 [16], and allowed up to one mismatch per read
while always favoring the best alignment. The gene transfer format (GTF) annotation files provided
with gencode release 25 (all genes + tRNAs) were supplied as one file to the tophat input to limit
the splicing junctions search to known splicing junctions. Furthermore, the coverage-search option
was activated as recommended for short (<45 nt) reads, with alignments reported exclusively across
“GT–AG” introns. All IP and input samples were processed similarly. The command line used for
mapping was as follows:

tophat -G annotation.gtf –no-novel-juncs –no-novel-indels -N 1 –read-gap-length 0
–read-edit-dist 1 –read-realign-edit-distance 0 –bowtie1 -o ./tophat_output_samplename/
–coverage-search bowtie_index input.fastq

For differential expression analysis, the four “input” samples were used as input to cuffdiff from
the cufflinks 2.1.1-4 package [14]. Equal dispersion and variance was assumed among all four samples
with the ‘blind’ dispersion method. Note that cuffdiff automatically switches to ‘blind’ mode if only
one replicate per sample is provided. This method is expected to give a conservative estimate of
the number of significant differentially expressed genes (DEGs). Results were visualized using R
3.3.1 “Bug in Your Hair” [17], Bioconductor 3.3 [18], cummeRbund 2.14.0 [14], as well as custom
code. The command line used for differential expression analysis was as follows, with C2, C4, C6,
C7, representing ADAR1-p150, ADAR1-p110, ADAR2, and GFP input samples, respectively. The
BAM alignment files (accepted_hits.bam) produced by the above tophat pipeline were used as input,
requiring prior installation of samtools 0.1.19-1 [19].
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cuffdiff -p 8 -o ./cuffdiff_output_folder -b genome_bowtie.fa -L C2,C4,C6,C7 -u
annotation.gtf ./tophat_output_C2/accepted_hits.bam ./tophat_output_C4/accepted_hits.bam
./tophat_output_C6/accepted_hits.bam ./tophat_output_C7/accepted_hits.bam

2.5. Identification of Binding Targets (RIPSeeker)

RIPSeeker is an R package that was designed specifically to detect significantly enriched peaks
in RIP-seq data [20]. Bin size was first optimized per chromosome by testing bins ranging from 200
to 400 bp in steps of 5. Chromosome X was not included in the initial test due to lack of memory
(when not using a fixed bin size, RIPSeeker may use up to several hundred gigabytes of RAM and
is unfortunately not optimized for multicore). The optimal bin size for all chromosomes tested was
between 200 and 250. We subsequently used a fixed bin size of 200 bp for all chromosomes to optimize
memory performance. For future reference, it took RIPSeeker 12 h on average to analyse one BAM
file containing approximately 100 million alignments (multiple hits are included). To run RIPSeeker,
the following R script was run from the terminal using a bash script, assuming that all necessary R
packages (BSgenome.Hsapiens.UCSC.hg38, biomaRt, RIPSeeker, among others) are loaded:

# read path to BAM files

hg38<-getBSgenome("hg38",masked=F) #load human genome version 38

extdata.dir<-system.file("tophat_out", package="RIPSeeker") #set location of tophat output

bamFiles<-list.files(extdata.dir, "
.bam$", recursive=T, full.names=T) #read filenames

outDir<-file.path("~/path/to/ripseeker_output") #set location of RIPSeeker output

file<-bamFiles[1] #set BAM file (replace 1 by number corresponding to desired file)

seqOut.file<-ripSeek(bamPath=file, genomeBuild="hg38", uniqueHit=T, assignMultihits=T,
rerunWithDisambiguatedMultihits=T, binSize=200, biomart="ensembl", biomaRt_dataset
="hsapiens_gene_ensembl", goAnno="org.Hs.eg.db", multicore=F, outDir=outDir)
#multicore should always be set to FALSE

2.6. Downstream Functional Analysis of Results

For the classification of ADAR-bound transcripts, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database [21] was used to identify possible functional pathways. PANTHER
overrepresentation test was performed on Gene Ontology (GO) biological processes with
default settings (Bonferroni correction for multiple testing, p < 0.05) with a tool from the GO
Consortium [22,23].

3. Results

3.1. RNA Immunoprecipitation (RIP)-Sequencing Experimental Setup

Catalytically-active members of the ADAR family comprise three major isoforms, the functional
domain organization of which are summarized in Figure 1A. Both the constitutive isoforms
ADAR1-p110 and ADAR2 are mostly nuclear and undergo shuttling in and out of the nucleolus,
while ADAR1-p110 also undergoes nucleocytoplasmic shuttling [24]. ADAR2 is the shortest and
possesses two dsRNA-binding domains; the activity of its deaminase domain is thought to be
less sequence-specific [25]. ADAR1-p110 possesses three dsRNA-binding domains and a Z-DNA
binding domain (β). Interferon-induced ADAR1-p150 comprises of the sequence of ADAR1-p110
with an additional Z-DNA binding domain (α), which is known to localize to cytoplasmic stress
granules [26]. Figure 1B illustrates the dsRNA-binding activity of ADARs by showing the crystal
structure of ADAR2 dsRNA binding domain in complex with a dsRNA helix [27]. In order to
identify differentially-expressed genes and preferentially-bound RNA species, each ADAR isoform
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was overexpressed in HeLa cells as a protein fusion construct with myc-GFP in the N-terminal region,
and myc-GFP alone was in turn expressed as a control. RNA immunoprecipitation (RNA-IP or RIP)
was carried out with a monoclonal antibody against GFP, and RNA from both the input and IP was
size-selected on an acrylamide gel for Illumina® library construction. For the study of mRNAs and
long non-coding RNAs, total RNA was fragmented and fragments sized 200-400 nt were purified
and subjected to next-generation sequencing by GAIIx (Figure 1C, Materials and Methods). In total,
seven datasets were generated: GFP input, ADAR1-p110 IP and input, ADAR2 IP and input, as well
as ADAR1-p150 IP and input. Each dataset was analyzed according to the computational workflow
presented in Figure 1D. First, raw reads were pre-processed by converting to the standard FASTQ
format and filtering out low-quality reads and artefacts. The quality filtering step yielded 22 to 30
million reads per sample, which were then mapped to the human genome. Differentially-expressed
genes (DEGs) were identified using the tuxedo pipeline (tophat–cuffdiff) [14,15] optimized for short
unstranded reads (Material and Methods) [28]. Finally, RNA binding targets were identified using
RIPseeker, which uses hidden Markov models to accurately identify enriched transcripts from RIP-seq
alignment files [20].

Genes 2017, 8, 68  5 of 12 

 

presented in Figure 1D. First, raw reads were pre-processed by converting to the standard FASTQ 
format and filtering out low-quality reads and artefacts. The quality filtering step yielded 22 to 30 
million reads per sample, which were then mapped to the human genome. Differentially-expressed 
genes (DEGs) were identified using the tuxedo pipeline (tophat–cuffdiff) [14,15] optimized for short 
unstranded reads (Material and Methods) [28]. Finally, RNA binding targets were identified using 
RIPseeker, which uses hidden Markov models to accurately identify enriched transcripts from  
RIP-seq alignment files [20]. 

 

Figure 1. Experimental and computational workflow for RNA immunoprecipitation (RIP)-sequencing. 
(A) Schematic representation of known domains within adenosine deaminase acting on RNA (ADAR) 
enzyme isoforms with a catalytically-active deaminase domain. The final fusion proteins used in this 
experiment all harbor myc-green fluorescent protein (GFP) (mGFP) in the N-terminal region (left side 
in this figure). The dots within the protein sequence do not represent any real protein sequence, they 
were added in order to align and visually compare similar domains. Purple: Z-DNA binding domains; 
red: double-stranded RNA (dsRNA)-binding domains; blue: deaminase domain; green: mGFP; (B) the 
crystal structure of ADAR2 dsRNA-binding domain dsRBM1 bound to the free gluR-B R/G lower stem-
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with expression vectors for each mGFP-ADAR fusion protein. Part of the whole cell lysate was used for 
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Figure 1. Experimental and computational workflow for RNA immunoprecipitation (RIP)-sequencing.
(A) Schematic representation of known domains within adenosine deaminase acting on RNA (ADAR)
enzyme isoforms with a catalytically-active deaminase domain. The final fusion proteins used in
this experiment all harbor myc-green fluorescent protein (GFP) (mGFP) in the N-terminal region (left
side in this figure). The dots within the protein sequence do not represent any real protein sequence,
they were added in order to align and visually compare similar domains. Purple: Z-DNA binding
domains; red: double-stranded RNA (dsRNA)-binding domains; blue: deaminase domain; green:
mGFP; (B) the crystal structure of ADAR2 dsRNA-binding domain dsRBM1 bound to the free gluR-B
R/G lower stem-loop (LSL) RNA rendered from PDB accession number (23LC). Different types of
structures are represented in separate colors; (C) the experimental workflow for RIP-seq. HeLa cells
are transfected with expression vectors for each mGFP-ADAR fusion protein. Part of the whole cell
lysate was used for IP using anti-GFP antibody attached to magnetic beads, while the other part was
used as a control (input). RNA was fragmented and material sized 200–400 nt was selected by gel
electrophoresis and subjected to library preparation using mRNA-Seq Sample Prep Kit for Illumina
GAIIx; and (D) the custom computational workflow used to obtain the results presented in this paper:
differentially-expressed genes (DEGs) and ADAR-bound RNA targets.
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3.2. Effect of ADAR Isoform Overexpression on Global Gene Expression

DEGs were identified by the expression levels in each ADAR input sample relative to the GFP
input sample. To this end, the standard tuxedo pipeline described by Trapnell et al. [14] was adapted
using available parameters most suitable for short unstranded reads (Materials and Methods). Second,
the cuffdiff implementation for identifying DEGs goes beyond a traditional Poisson model for RNA-seq
by providing several methods to estimate the dispersion present in a group of replicates. For instance,
it provides a useful option for dispersion estimation in the case of only one replicate per sample, as is
the case here. As shown in Supplementary Figure S1, the distribution of read counts and dispersion
was fairly similar among samples. Therefore, we assumed equal variance among all samples, and
treated all samples as replicates of a single condition. This trick is expected to produce a rather
conservative estimation of DEGs [28]. The final output contained the level of significance and false
discovery rate (FDR) for each gene. The overexpression of ADAR1-p150/-p110, and ADAR2 was
successfully detected in each sample, respectively, with FDRs of 6.5%, 6.5%, and 1.9%, respectively,
and levels of significance lower than 2.5 × 10−4 (Figure 2A). It has to be noted that, since DEG analysis
reports gene expression changes per gene unit, it groups together the expression of isoforms originating
from the same locus, such as ADAR1-p110 and –p150. Based on these results, DEGs that were up- or
down-regulated more than two-fold relative to GFP input were kept only if their FDR and p-values
were below the 6.5% and 2.5 × 10−4, respectively (Figure 2B). Detailed fold-change values and the
gene description for each DEG are presented in Supplementary Table S1.
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Figure 2. Differentially expressed genes upon specific ADAR isoform overexpression. (A) Coverage of
the ADAR (ADAR1), ADARB1 (ADAR2), and ACTB genes expressed in reads per kilobase per million
reads (RPKM). ADAR codes for both the ADAR1-p150 and ADAR1-p110 isoforms, ADARB1 codes
for ADAR2 isoform, and ACTB codes for Actin B. The p-value relative to GFP input is indicated in
bold and the corresponding false discovery rate (FDR) in brackets; (B) Fold-change relative to GFP
input for significant DEGs (FDR ≤ 6.5%; p ≤ 2.5 × 10−4) expressed on a logarithmic scale. The ADAR
and ADARB1 controls are highlighted with a red arrow. Black filled circles: DEGs common to all three
ADAR isoforms; purple filled circles: common to ADAR1-p150 and ADAR1-p110; blue filled circles:
common to ADAR1-p150 and ADAR2; yellow filled circles: common to ADAR1-p110 and ADAR2.
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MPP6 and SELO transcripts were downregulated in all cases, meaning they are likely nonspecific.
Few DEGs were in common between samples overexpressing different ADAR isoforms, except for
ADAR1-p150 and ADAR1-p110, which both resulted in the significant upregulation of five common
genes. Since ADAR1-p150 consists of the full amino acid sequence of ADAR1-p110 with an extension
of N-terminal 295 amino acids [29], some overlap in function is to be expected. This included the
up-regulation of two major phosphoinositide 3-kinases (PI3K)-Akt signaling pathway elements, cell
division cycle 37 (CDC37) and mammalian target of rapamycin (mTOR)C2 (CRTC2), which are known
to activate the RAC-alpha serine/threonine-protein kinase AKT by phosphorylation [30]. This pathway
is overactive in a multitude of cancers, suggesting a tumorigenic role of excess ADAR1 expression.
Consistent with this observation, strong inhibition of the mir-99a-let-7c cluster host gene MIR99AHG
guiding the expression of let-7c, miR-99a and miR-125b was also observed in the ADAR1-p110 input
sample compared to GFP input (Figure 2B, middle). Downregulation of this miRNA cluster was
recently shown to induce tumorigenesis due to a loss of inhibition of key inflammatory cytokines
involved in the IL-6/signal transducer and activator 3 (STAT3) pathway in cholangiocarcinoma [31].
An excess of ADAR1-p110 was also shown to be tumorigenic in the case of lung cancer [32]. The effect
of different ADAR isoforms on miRNA maturation and expression levels remains to be investigated in
an isoform-specific manner, and will be the subject of further study. Interestingly, the overexpression
of ADAR1-p110 resulted in the up-regulation of another deaminase, APOBEC3C, which is localized in
the nucleus and speculated to promote dC-to-dU DNA (and possibly also C-to-U RNA) editing [33].

In contrast, the genes influenced by ADAR2 overexpression were less well documented. We
observed up-regulation of MOK mitogen-activated protein (MAP)-kinase, and differential expression
of proteins involved in vesicular and intracellular trafficking (SLC9A6, SNX1, GBAS) and metabolic
enzymes (LAP3, UAP1). Notably, ADAR2 overexpression led to the down-regulation of spliceosomal
core component CTNNBL1, consistent with a recent report showing a negative correlation between
splicing and editing by ADAR2 [34]. Finally, we also observed down-regulation of DNA repair factors
ERCC6L2 (Snf2 family of helicase-like proteins) and BRCA1-associated RING domain 1 (BARD1),
a factor involved in the early steps of homologous recombination. Therefore, ADAR2 overexpression
may also affect the ability of cells to repair DNA.

3.3. ADAR Isoforms Bind to Distinct Targets Genome-Wide

RIP-seq analysis is typically carried out by simply comparing the coverage in the IP fraction with
that of input samples, which gives an idea of the relative enrichment without providing confidence
estimates. Quantification remains difficult for genomes containing a high number of repeats, as reads
mapping to those regions may not be assigned accurately, and IP and input samples are not always
directly comparable due to potentially divergent coverage of these repeat regions between IP and
input. One solution is to perform peak calling on the IP sample, but many peak callers were designed
for chromatin immunoprecipitation (ChIP-seq) data and, therefore, assume the presence of tandem
peaks. RIPSeeker was designed specifically for RIP-seq, and uses machine learning on an alignment
file to first model peak enrichment within the IP sample while taking into account only unique hits.
Then, it reassigns multiple hits to their most likely location based on posterior probability, according to
a “rich gets richer” model. Peak calling is then performed again on the unique and disambiguated
multihits. Although computationally intensive, this method performs extremely well compared to
other methods even when given an IP sample alignment file as sole input [20]. The parameters were
optimized as described in Materials and Methods.

Peak calling with RIPSeeker was performed on each IP alignment file, which produced a list of
peaks and their corresponding candidate bound transcripts for each ADAR isoform (Supplementary
Table S2). Although RIPSeeker outputs neighboring gene features in the case a peak does not completely
overlap with a gene annotation, we filtered these out and only kept peaks that were fully included
inside a given annotation. This yielded 23, 890, and 290 unique gene identifiers (IDs) for candidate
transcripts bound by ADAR1-p150, ADAR1-p110, and ADAR2, respectively. Although ADAR1-p150
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bound relatively fewer targets, most of which were also bound by other ADAR isoforms, the general
overlap was minimal, with only 11 transcripts out of 1144 (less than 1% of all candidates) bound by all
three ADARs (Figure 3A). ADAR1-p110 and ADAR2 targets were especially clearly divided.
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Figure 3. Identification of ADAR isoform-specific binding targets by RIPSeeker. (A) Venn diagram
showing the overlap between the unique gene IDs of ADAR1-p150-, ADAR1-p110- and ADAR2-bound
transcripts. (B) Overlap between unique gene IDs for each ADAR and unique gene IDs registered
in the RADAR A-to-I editing site database (grey), compared to the mean overlap of 10,000 datasets
chosen randomly from the human gene annotation file. Each random data set was similar in size to
the corresponding ADAR; and (C) pie charts representing the proportion of RNA categories found
in each ADAR-bound sample, respectively. Blue: coding transcripts; other colors: non-coding or
uncharacterized transcripts.

ADAR binding does not necessarily entail A-to-I editing, but one may expect that ADAR-bound
transcripts are more frequently edited than unbound transcripts. Indeed, as shown in Figure 3B, the
transcripts detected in our study highly overlapped with those registered in the Rigorously Annotated
Database of A-to-I RNA editing (RADAR) database (v2), that lists previously published A-to-I editing
sites [35]. However, since this database currently lists more than 20,000 unique gene IDs, and the
human genome annotation file contains a little above 60,000 entries, we needed to make sure that this
high overlap was not merely due to chance. This was tested by generating 10,000 sets of gene IDs picked
randomly from the gene annotation file, and calculating the percentage of overlap with transcripts in
the RADAR database for each random set. The mean and standard deviation of this bootstrapping
are presented as black bars in Figure 3B. Overall, these results show that the ADAR1-p110 and
ADAR2-bound targets identified by this study are significantly enriched in edited transcripts.

Finally, the candidate ADAR-bound transcripts were manually curated into the following gene
type categories based on information available on the Ensembl website: (1) coding, for protein-coding;
(2) coding/antisense, when RIPSeeker could not determine which strand was relevant and both a
coding transcript and its overlapping antisense RNA were detected ; (3) lincRNA, for long intergenic
non-coding RNAs ; (4) non-coding, for any other type of long non-coding RNA, most of which
were antisense RNAs; (5) processed, for transcripts indicated as such in the Ensembl database;
(6) pseudogene, including known and unprocessed pseudogenes ; (7) TEC, for “to be experimentally
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confirmed”, again when indicated as such (Figure 3C). Notably, ADAR1-p110 non-coding targets
included small nucleolar RNA C/D box 3C (SNORD3C) and the miRNA precursor MIR568, which are
both associated with the long non-coding RNA class (4). ADAR2 bound to a slightly higher proportion
of non-coding transcripts than ADAR1-p110, although the difference was not quite significant (2 × 2
contingency table Fisher’s exact test two-tailed p-value: 0.0738). When interpreting these results, one
should keep in mind that coding transcripts might be overrepresented, as the genome annotation
file available at GENCODE does not contain annotations for repeat elements such as Alu, short
interspersed nuclear elements (SINEs), or long interspersed elements (LINEs). The proportion of
non-coding transcripts bound by ADARs is expected to be much higher in reality than represented
in Figure 3C, as Alu elements are heavily targeted by ADARs [36]. The question is open whether
the reassignment of reads with multiple hits by RIPSeeker would be suitable for heavily repeated
sequences, since there would be few unique reads available to perform the initial peak modeling step
on those regions.

KEGG pathway analysis seem to indicate that ADAR1-p110 binds a great number of transcripts
involved in Pathways in Cancer (ko05200), to which 14 genes corresponded out of the 159
ADAR1-p110-bound candidates currently registered (Table 1). The KEGG pathway search did not
yield any convincing results for the transcripts bound by either of the other two ADAR isoforms,
probably due to poor overlap with KEGG-registered genes. To increase functional prediction efficacy,
GO enrichment for biological processes was performed using default parameters (Materials and
Methods), and statistically significant results with an enrichment of more than two-fold relative to the
expected number of genes are summarized in Table 2. Nothing statistically significant was found for
ADAR2-bound targets, but both ADAR1 isoforms seemed to target more transcripts involved in the
regulation of translation, mRNA degradation, and viral metabolism.

Table 1. ADAR1-p110-bound transcripts present in KEGG Pathways in Cancer (ko05200).

Gene ID KEGG Name KEGG ID Description

APPL1 APPL K08733 DCC-interacting protein 13 alpha
CTNNB1 β-catenin K02105 Catenin beta 1
RHOA Rho, Rac/Rho K04513 Ras homolog gene family, member A
GSK3B GSK-3β K03083 Glycogen synthase kinase 3 beta
ITGB1 ITGB K05719 integrin beta 1
GNB1 βγ K04536 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1
VHL VHL K03871 von Hippel-Lindau disease tumor suppressor

MLH1 hMLH1 K08734 DNA mismatch repair protein MutL homolog 1
TGFBR2 TGFβRII K04388 Transforming growth factor (TGF)-beta receptor type 2

MITF MITF K09455 Melanogenesis associated transcription factor
RAF1 Raf K04366 RAF proto-oncogene serine/threonine-protein kinase
TFG TRK K09292 Tyrosine kinase receptor (TRK)-fused gene

NCOA4 RET/PTC K09289 Nuclear receptor coactivator 4
NFKB1 NFκB K02580 Nuclear factor NF-kappa-B p105 subunit

Table 2. Positively enriched gene ontology (GO) biological processes for ADAR-bound transcripts.

Bound
Isoform GO Biological Process Hits Expected Fold-Enrichment p-Value

ADAR1-p150

SRP-dependent cotranslational protein targeting to membrane 4 0.09 45.99 1.34 × 10−2

Viral transcription 4 0.1 38.39 2.73 × 10−2

Nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 4 0.11 36.79 3.23 × 10−2

rRNA processing 5 0.24 20.91 2.64 × 10−2

ADAR1-p110

Nuclear-transcribed mRNA catabolic process 25 6.95 3.6 6.34 × 10−2

SRP-dependent cotranslational protein targeting to membrane 15 3.39 4.43 2.21 × 10−2

Viral life cycle 33 10.59 3.12 1.63 × 10−4

Translation 37 16.09 2.3 3.47 × 10−2

ADAR2 No significantly enriched GO biological process
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4. Discussion

Enzyme isoforms in higher eukaryotes tend to specialize in their function, yet they can be
difficult to distinguish experimentally, especially when these isoforms derive from alternative splicing.
For instance, one can design ADAR1-p150-specific antibodies, but antibodies targeting ADAR1-p110
will inevitably target both ADAR1-p110 and -p150. This study attempts to address this issue of ADAR
isoform specificity by overexpressing each major ADAR isoform with a GFP-tag in the N-terminal.
Although the overexpression of a given gene may have secondary effects on global gene expression,
at least the global distribution of gene expression values (RPKM) did not significantly change between
samples (ADAR1-p150, -110, ADAR2, GFP inputs) (Supplementary Figure S1). One other issue that
is specific to RNA editing is to preserve the ability to detect RNA editing sites on target transcripts.
Other studies have tried crosslinking immunoprecipitation (CLIP)-seq, a method that stabilizes the
interaction between a protein and its target RNA by UV-crosslinking [37]. Although this prevents the
dissociation and re-association of ADAR on its target RNA, this introduces sequencing errors at the
binding site due to irreversible effects of crosslinking, so that CLIP-seq can identify binding but not
editing. Furthermore, traditional UV crosslinking is notably inefficient in the case of extended dsRNA
targets [10], as is the case for ADARs, meaning that current CLIP-seq methods may introduce a bias for
RNA targets containing more bulges and loops. One of the main goals of this paper was to present a
crosslinking-free alternative by applying RIP-seq to the detection of ADAR-bound transcripts. The fact
that we got a very significant overlap between ADAR-bound targets and transcripts registered in
the major A-to-I editing database suggests that crosslinking is not absolutely necessary for the study
of ADAR targets. The absence of crosslinking makes it theoretically possible to detect actual RNA
editing sites within the IP samples. However, our current study was tentatively done on unstranded
short reads from total RNA, which is not optimal for downstream detection of RNA editing sites.
To this end, we would like to recommend (1) filtering out ribosomal RNA to maximize coverage;
and (2) using strand-specific data with a longer read length to enable the study of bidirectional loci,
as well as enhance signal-to-background ratio when detecting editing sites. Another challenge that
arose was that the small number of candidate targets bound by ADAR1-p150 compared to other
ADARs. Although this might reflect biological function, because ADAR1-p150 is the longest isoform,
we speculate that the addition of a myc-GFP tag resulted in a protein so large that it may not have been
overexpressed as efficiently as the other ADARs. We plan to address these issues in the near future.
Meanwhile, the RIP-seq method presented here may be readily applied to other cell lines and various
populations RNA may be enriched for the targeted study of longer mRNAs and lncRNAs, or smaller
RNAs such as miRNAs.

Previously, ADAR1 overexpression was shown to have an inhibitory effect on iPS cell (iPSC)
reprogramming, and the expression of ADAR1 in human embryonic stem cells (hESCs) resulted in the
induction of differentiation-related genes [38]. Another study was unable to achieve overexpression of
ADAR1-p110 in hESCs by traditional methods, suggesting that ADAR1 expression is tightly regulated
in development [39]. Furthermore, it was also reported that iPSCs derived from cells in which
ADAR1 was down-regulated exhibited the characteristics of cancer cells shortly after iPSC colony
formation [38]. A-to-I editing is also reported to be altered in several cancers [31,39], and the results
presented here are consistent with other studies suggesting a role of ADAR1 in cancer formation [40].
Indeed, the overexpression of ADAR1-p110 resulted in the up-regulation of CDC37 and mTORC2,
which are involved in the PI3K-Akt signaling pathway (Figure 2C, Table 1). Furthermore, RIP-seq
analysis revealed the binding by ADAR1-p110 of many transcripts involved in cancer, including major
players such as β-catenin, transforming growth factor-beta (TGF-β) receptor, Raf, Rho, and nuclear
factor-kappa B (NFκB) (Table 2). Further experimental validation is expected to confirm the molecular
mechanism of ADAR oncogenicity.
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5. Conclusions

This study is the first to present RIP-seq as a method to analyze the target specificity of all three
major ADAR isoforms. We found that the overexpression of each ADAR isoform induces differential
expression of distinct sets of genes, and that the genome-wide binding preferences of each isoform
are clearly distinct, and in particular hint towards the mechanism of ADAR1-p110 in tumorigenesis.
Furthermore, ADAR-bound targets substantially overlapped with transcripts for which at least one
editing site is registered in the database of A-to-I editing sites. This shows that, contrary to current
methods, such as CLIP-seq, RIP-seq may be more suitable for downstream detection of editing sites
due to the absence of crosslinking.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/2/68/s1,
Figure S1: Statistics on the RNA-seq data sets for differential expression analysis, Table S1: List of differentially
expressed genes, Table S2: List of ADAR-bound candidates detected by RIPSeeker.
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