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Abstract: A crucial factor in maintaining genome stability is establishing deoxynucleoside
triphosphate (ANTP) levels within a range that is optimal for chromosomal replication. Since DNA
replication is relevant to a wide range of other chromosomal activities, these may all be directly
or indirectly affected when dNTP concentrations deviate from a physiologically normal range.
The importance of understanding these consequences is relevant to genetic disorders that disturb
dNTP levels, and strategies that inhibit ANTP synthesis in cancer chemotherapy and for treatment of
other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the
consequences for genome stability.
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1. Introduction

Defects in genome maintenance, recognised as an enabling characteristic in cancer, contribute
to the development of some neurodegenerative conditions and may be a significant factor in normal
ageing. Genome instability may result from a wide range of defects affecting DNA replication, repair,
checkpoint pathway function, and chromosome segregation (summarised in recent reviews [1-9]) and
this review focuses on recent developments regarding one specific aspect, namely how abnormal levels
of dNTPs may compromise genome stability. A high dNTP concentration has long been recognised as
a factor reducing the fidelity of DNA polymerase proofreading, but recently it has become more widely
appreciated that cellular disturbances in dNTPs may affect genome integrity in diverse ways [10].
This reflects the fact that DNA replication impinges on many chromosomal activities, such as DNA
repair, recombination, and chromatin assembly (Figure 1) and thus derangements in ANTP levels may
impact on a wide range of processes. This review will also summarise the clinical and physiological
situations which may lead to derangement of ANTP levels in human cells (a broad survey of this area
is provided in [10-12]).

2. Overview of ANTP Levels and DNA Synthesis

Initiation of DNA replication in eukaryotes involves the assembly of pre-replicative complexes
(pre-RCs) on chromatin in late mitosis/G1, followed by initiation of DNA synthesis in S phase ([13],
reviewed in [14]). Pre-RC formation requires the origin recognition complex (ORC), a heterohexameric
complex of proteins which in Saccharomyces cerevisiae binds to DNA in a sequence-specific manner,
but in other eukaryotes shows little or no sequence specificity [15]. Two Mcm?2-7 hexamers are
assembled at ORC in a step involving Cdc6, which binds to the ORC complex on chromatin, and

Genes 2017, 8, 57; doi:10.3390/ genes8020057 www.mdpi.com/journal/genes


http://www.mdpi.com/journal/genes
http://www.mdpi.com
http://www.mdpi.com/journal/genes

Genes 2017, 8, 57 2of 14

Cdtl, which binds to Mcm2-7 and opens the hexameric complex to facilitate assembly onto DNA.
Following Mcm?2-7 assembly, both Cdtl and Cdcé6 are displaced in a step requiring ORC-mediated
ATPase activity. Subsequently, cyclin-dependent kinase (CDK) activation allows the association of
Cdc45, GINS, and DNA polymerase ¢ (Pol ¢) with pre-RCs, and activation of the Mcm2-7-GINS-Cdc45
helicase requires Mcm2-7 phosphorylation by Cdc7-Dbf4 (DDK) kinase. DNA unwinding allows
priming by Pol « followed by elongation, most probably by Pol ¢ on the leading strand and Pol  on
the lagging strand [16,17], although a recent controversial paper suggests that Pol 6 may execute both
leading and lagging strand synthesis [18].
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Figure 1. Overview of dNTP levels and impact on cellular processes. dNTP levels depend on
a balance between synthesis, consumption, and degradation. Consumption of dNTPs in DNA synthesis
influences a wide range of activities due to the relationship between DNA replication and other
chromosomal processes. As well as affecting DNA polymerase function, dNTPs may target other
proteins such as APAF1. (APAF1: Apoptotic protease activating factor 1; dNs: deoxyribonucleosides;
PPP: triphosphate; RNR: ribonucleotide reductase).

Activating the enzymes involved in DNA unwinding and DNA synthesis must be coordinated
with upregulation of the ANTP supply, as the dNTP pool in S phase is only sufficient for replicating
a small fraction of the genome [19,20]. This is achieved in part by upregulation of ribonucleotide
reductase (RNR) activity which occurs by various mechanisms, including allosteric activation,
increased levels of RNR expression, altered cellular localisation of RNR subunits, and proteolysis
of RNR inhibitory proteins (reviewed in [21-24]). Nucleotide salvage pathways also contribute to
dNTP replenishment and these are particularly important for neuronal cells [25]. In mammalian
cells, an additional factor regulating dNTP levels is SAMHD1 (SAM And HD Domain Containing
Deoxynucleoside Triphosphate Triphosphohydrolase 1), a dNTP hydrolase that maintains low levels
of dNTPs outside of S phase, but which is proteolysed in S phase ([26], reviewed in [27]). Maintaining
dNTP concentrations at levels optimum for replicative fidelity may also be assisted by temporal
regulation of initiation during S phase. Not all potential replication origins are used in S phase,
and activation of origins is temporally regulated, so that some initiate early and others late, thus
limiting the number of replication forks that are active at any one time and moderating the demand for
dNTPs (reviewed in [28]). The synthesis of deoxynucleotides in the cytoplasm is also important
for mitochondrial DNA (mtDNA) synthesis, and import of nucleosides/nucleotides via several
mitochondrial transporters, together with mitochondrial salvage pathways, provide a separate pool of
dNTPs for mtDNA replication and repair [10].

3. Effects of High dNTP Levels on Cell Cycle Progression, DNA Replication and Repair

High in vivo levels of dNTPs can be experimentally induced by inactivating dATP feedback
inhibition of RNR [29,30], deleting small protein RNR inhibitors [31,32], over-expressing RNR
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subunits [33], or by inactivating mammalian SAMHD1 [34]. In addition, DNA damage induces
upregulation of ANTP levels in bacteria [35] and also in yeast [30,36,37], although mammalian cells
show little change in ANTP levels on DNA damage induction [38]. High ANTP levels are detrimental to
the fidelity of DNA replication in bacteria [35], yeast [30,39] and mammalian cells [40,41]. This reflects,
at least in part, the propensity of DNA polymerases to extend a mismatched primer-template and
reduced efficiency of proofreading at high nucleotide levels [42,43]. In vivo, an additional factor
appears to be stimulation of DNA synthesis by inaccurate translesion synthesis (TLS) polymerases
(reviewed in [44]). The ability of TLS polymerases to take over from normal replicative polymerases
may be facilitated by high dNTP levels, since they have a higher K, for dNTPs than Pol § and
Pol ¢ [45,46] and accordingly, inactivating TLS polymerases reduces the mutation rate associated
with increased ANTP levels [35,39]. Consistent with increased efficiency of replication on damaged
templates, increased dNTP levels in yeast leads to improved resistance to DNA damage caused by UV
and 4NQO [30,39] which is primarily repaired by nucleotide excision repair (NER). Confusingly, in
Schizosaccharomyces pombe, high ANTP levels lead to increased sensitivity to DNA damage caused by
camptothecin and MMS [39]. Here, repair involves DNA synthesis in homologous recombination, but
it is not clear why this pathway should be adversely affected by high dNTP levels [47].

Thus, at least in yeasts, defects in DNA replication and repair factors can trigger increased dNTP
levels, and the consequent increased mutation rate may arise from a combined effect of the primary
replication/repair defect as well as the change in ANTP levels [37,48,49]. A “vicious-circle” scenario is
seen with error-prone Pol § and Pol ¢ mutants which trigger increases in dNTP pools via activation
of the S-phase checkpoint, and the mutation rate of the variant polymerases is subsequently further
enhanced by the higher dNTP levels [48,50].

Increasing dNTP levels also decreases the length of S phase under unstressed conditions, implying
that physiological nucleotide levels are limiting for DNA synthesis, a finding which is consistent with
analysis of DNA synthesis rates in vitro [51,52]. Direct analysis of fork rate in S. cerevisiaze shows that
elevating dANTP levels facilitates replication of damaged templates and may prevent activation of
the DNA damage checkpoint pathway [47]. It is not clear why S phase is longer than the minimum
necessary time (see [28]), but moderating the rate of DNA synthesis by limiting dNTP levels not only
provides a higher fidelity of synthesis [52] but may also facilitate other aspects of replisome function,
such as facilitating the propagation of epigenetic histone modifications in S phase (see below).

In addition to affecting the rate and fidelity of S phase, high ANTP levels can delay entry into S
phase. In S. cerevisiae, very high levels of dNTPs resulting from overexpression of an RNR variant not
subject to dATP inhibition (D57N mutation in the large subunit) causes a delay to S phase entry that
appears to act before the Cdc45 loading step at initiation [33]. The mechanism of this delay is unclear
but does not involve activation of DNA damage or replication checkpoints. High RNR activity may also
lead to increased dUTP incorporation into DNA which is potentially mutagenic [53,54]. This occurs
as overproduction of dUDP by RNR may overwhelm the pathway converting this nucleotide to
dTTP, with dUDP conversion to dUTP instead, allowing incorporation into DNA. In mammalian cells,
dNTP levels are downregulated outside of S phase by activation of the SAMHD1 dNTP hydrolase.
Inactivation of this enzyme also prevents S phase entry, presumably due to elevated dNTP levels, but
again the mechanistic link between high dNTPs and the block to DNA synthesis is obscure [34]. It is
not clear why dNTP levels are reduced outside of S phase. Plausibly this is a strategy to prevent viral
replication in nonproliferating cells, since a reduced SAMHDI level causes increased susceptibility to
lentiviral infection [26,55].

4. Effects of Low dNTP Levels on DNA Replication and Repair

Depletion of dNTPs, effected by hydroxyurea (HU)-mediated RNR inhibition for instance, results
in a global inhibition of DNA replication and fork stalling. Arrest of DNA synthesis may occur before
exhaustion of nucleotide pools, [56], and this could serve to preserve dNTPs for DNA damage repair,
or alternatively prevent DNA synthesis under suboptimal conditions. Alternatively, this could simply



Genes 2017, 8, 57 4 of 14

reflect the fact that global ANTP measurements may not give a good indication of nucleotide levels
available to polymerases due to cell-to-cell or subcellular variations in concentration. DNA helicase
is also paused by polymerase stalling [57], and ssDNA exposed at the fork [58] leads to checkpoint
activation (reviewed in [59,60]). Checkpoint activation may in part compensate for ANTP starvation
by upregulating the nucleotide supply [37,48], reducing initiation at late origins in S. cerevisiae [61],
and slowing the rate of elongation [62]. In mammalian cells, the origin response to lowering of ANTP
levels appears to be distinct from yeast, in that normally dormant origins are activated, with an overall
increase in the density of initiation events [63]. Arrested forks appear to be quite stable and replication
can resume when dNTP levels are restored, although checkpoint activation may itself lead to genome
instability as over-compensated high levels of dNTPs are mutagenic [37]. However, under some
circumstances, replisome components may be destabilised and recombination-mediated mechanisms
are thought to lead to fork restart. Such mechanisms have been extensively reviewed and are not
discussed here [64-67].

Paradoxically, checkpoint pathway activation has been reported to lead to downregulation
of dANTP availability in mammalian cells [68]. Downregulation of Chk1 leads to Mus81/Eme2/
Mrell-dependent DNA damage which, via activation of the ATM pathway, appears to limit dNTPs
available for replication and results in slower replication fork progression. Curiously, this seems to
depend on upregulation or changed subcellular localization of the p53R2 RNR subunit (see below) but
the details of this link are not clear.

Intermediate levels of ANTP starvation, while not imposing a global block to DNA synthesis, can
have a more pronounced effect on specific genomic regions such as hard-to-replicate sequences, fragile
sites, and regions of low sequence complexity [69,70]. For example, cells deficient in Pifl helicase are
sensitive to low dNTP conditions, possibly as Pifl plays a role in unwinding G-quadruplex (G4) motifs
under these conditions [71]. Under low dNTP conditions, the 5’-3" Chl1/DDX11 helicase appears to be
required to maintain fork progression, as does Ctf4, which plays a role in addition to its function in
recruiting Chl1 to the replication fork [72,73]. Under-replicated and intertwined DNA regions may
persist to mitosis and eventually lead to formation of anaphase bridges or to uneven chromosome
segregation [8]. A low level of ANTP also impacts on telomere length homeostasis, with levels of dGTP
positively correlating with telomere length [74]. dNTPs may act as prosurvival factors independently
of any effect on DNA polymerases. dNTPs inhibit apoptosome formation via an effect on APAF1, thus
preventing apoptosis [75].

DNA replication under suboptimal dNTP levels may lead to increased incorporation of
ribonucleoside monophosphates (rNMPs). Under normal conditions, rates of misincorporation of
rNMPs by Pol «, 8, and ¢ in vitro are surprisingly high (one in 625, 5000, and 1250, respectively [76]) in
spite of efficient active site discrimination [77], and this is likely to be exacerbated by low dNTP levels.
rNMP incorporation is the most frequent replication lesion during DNA replication, with more than
1 million rNMPs incorporated during the replication of the mouse genome [78]. rNTPs can slow the
replication fork rate via competition with dNTPs, and are likely to increase the rate of mutagenesis as
a result [51,79]. Incorporated rNMPs are less well edited by proofreading than incorrect bases [80] and
are mainly removed post-replicatively by RNase H2-dependent repair [81,82]. However, an error-prone
pathway of INMP removal by topoisomerase I can lead to small deletions [83,84] and, if INMPs persist
in the template, they cause problems in subsequent DNA synthesis as DNA polymerases tend to stall
at such sites [79,85,86].

Propagation of histone modifications may also be affected by ANTP deficiency. Chromatin replication
is not just a matter of duplicating DNA sequences, but specific patterns of epigenetic marks on histones
affecting gene expression are maintained during the cell cycle [87]. Although mechanisms maintaining
histone marks are poorly understood, nucleosomes displaced during DNA replication are thought to be
disrupted into (H3-H4), tetramers and H2A-H2B dimers, and randomly deposited after passage of the
fork onto the daughter strands, thus retaining the original histone modifications after replication, albeit
diluted [88,89] (reviewed in [90]). However, low dNTPs will result in a slowing of DNA synthesis and



Genes 2017, 8, 57 5o0f 14

potentially extend the period between nucleosome displacement ahead of the helicase and reloading
of nucleosomes behind the replisome. This interference with histone recycling may lead to loss of
epigenetic inheritance and aberrant gene expression (reviewed in [91]). Evidence for this comes from
an assay in which replication fork progression is challenged by a G4 motif under conditions where
dNTP levels are reduced by HU. This led to the loss of chromatin marks normally associated with
active expression such as H3K4me3, and consequent repression of the reporter gene [92]. Epigenetic
instability may also occur by a distinct mechanism, where stalling of replication forks directly induces
repressive histone marks during repair of collapsed forks [93,94].

Understanding the consequences of low dNTP levels is important not least as RNR inhibiting
drugs such as HU and gemcitabine are used as anti-proliferative agents for treating chronic myeloid
leukemia, as well as cervical, bladder, ovarian and breast cancers (reviewed in [95]). The mode of action
of these drugs can be rationalised as being selectively toxic to cells having DNA repair or checkpoint
deficiencies, and they may also exacerbate oncogene-induced stress due to reduced dNTP levels.
There is probably considerable scope for improving the targeting of these therapies by identifying
tumours that are sensitive to dNTP starvation. Chronic use of HU in treatment of sickle cell disease,
where it stimulates fetal haemoglobin synthesis, allows assessment of the long-term effects of use of an
RNR inhibitor [96,97]. HU does not increase the rate of cancer, or the mutation rate of the HPRT gene,
but a small increase in illegitimate T-cell VDJ-joining events has been detected. These studies, however,
did not analyse the effect on ANTP levels in vivo. In cell culture, HU has been reported to increase copy
number variants [98] likely to be caused by to fork stalling and subsequent break-induced replication.

5. Consequences of Imbalanced dNTP Levels

Not only are the overall levels of dNTPs important for genome stability, but also the balance
between individual dNTPs since distortions in dNTP ratios can lead to polymerase incorporation
errors [99]. Imbalanced dNTP pools seen in yeast cells expressing different mutant versions of
RNR can increase mutation frequencies but do not impede cell cycle progression and can escape
detection by the S-phase checkpoint [100,101]. Mismatch repair (MMR) may be saturated by a high
rate of misincorporation errors [102], but it is also possible that the accuracy of MMR is affected by
imbalanced dNTP pools. Imbalanced dNTP pools cause similar mutation rates on both leading and
lagging strands, and mutation rates are higher in coding and late-replicating regions for reasons that
are not clear [103]. In mammalian cells, an excess of cellular pyrimidine pool (ACTP) decreases PARP-1
activity and impairs Chk1 activation, leading to under-replicated DNA and ultrafine anaphase bridge
formation [104,105]. In contrast, imbalanced dNTP pools caused by depletion of dCTP and dTTP lead
to ATR-dependent p53 activation via MMR proteins [106] in advance of any direct effect of replication
fork progression. Moreover, incorrect cell cycle regulation of enzymes involved in dNTP synthesis
can also lead to deleterious nucleotide imbalances. Thymidine kinase I and thymidylate kinase are
involved in dTTP synthesis, and both enzymes are normally degraded by APC/C from mitosis to
G1 [107]. Interference with this degradation leads to growth retardation, probably via dTTP-mediated
dCTP depletion, abnormally high dTTP and dGTP levels, and an increased mutation rate.

6. Clinical and Physiological Aspects of Aberrant ANTP Levels

Aberrant levels of ANTPs can be caused by mutations that affect de novo or salvage dNTP
synthesis, or hydrolysis. Genetic syndromes have been described that interfere with RNR function.
RNR is composed of large (R1) and small (R2) subunits but in mammalian cells there is an additional
specialised R2 subunit, p53R2. This subunit is expressed at a lower level than the normal R2 subunit
and also differs in that it is not degraded in mitosis, and thus its level is constant during the cell cycle
and may provide dNTPs for repair [108]. However, mutations in the RR2MB gene encoding p53R2
cause mtDNA deficiency syndromes [101,109,110], indicating that an important function of R1/p53R2
is the provision of basal levels of deoxynucleotides outside of S phase which are imported from the
cytoplasm into mitochondria to support mtDNA replication.
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Nucleotide salvage pathways are also important for maintenance of mtDNA and defects in
dNTP salvage enzymes thymidine kinase 2 and deoxyguanosine kinase lead to mtDNA depletion
syndromes [111,112], reviewed in [113]. An additional mtDNA depletion syndrome, MNGIE, is caused
by mutations affecting function of the cytoplasmic enzyme thymidine phosphorylase (TP). This leads
to an elevated level of dTTP in mitochondria, which is not deleterious in itself but leads to secondary
dCTP depletion and inhibition of mtDNA replication [114]. Mutations in mtDNA replication enzymes
can also lead to dANTP level changes; mutations affecting the TWINKLE helicase derange cellular ANTP
levels, contributing to mtDNA mutagenesis [115]. Nuclear genome instability can also be affected by
mutations affecting salvage enzymes. BLM helicase deficiency is associated with cytidine deaminase
downregulation, pyrimidine pool disequilibrium, and reduced fork rate [116]. Loss of Fhit expression,
owing to FRA3B fragile site deletions, leads to downregulation of thymidine kinase I expression and
increased genetic instability [117].

Mutations affecting ANTP levels may also contribute to genetic instability and cancer development.
Overexpression of the R2 subunit of RNR (RRM2 or p53R2) but not the R1 subunit in mice leads to
an increase in the mutation frequency and lung neoplasms [118]. This may reflect the fact that the
R2 subunit is regulated by proteolysis, and its overexpression results in higher dNTP levels and
increased mutagenesis [119]. It has been additionally suggested that this phenotype may be due
to the ability of the R2 subunit to generate a tyrosyl radical that might lead to reactive oxygen
species (ROS) and oxidative DNA damage (reviewed in [95]). High levels of dNTPs can also arise
through defects in SAMHD1 and may lead to cancer development (reviewed in [120]). Colon cancer
is associated with mutations in MMR [121,122] and, less frequently, with proofreading mutations
in replicative polymerases [123], but an additional link has been reported with SAMHD1 [124].
Mutations that inactivate just one allele of SAMHDI1 can significantly increase dNTP pools and
may exacerbate the phenotype of MMR mutations [124]. Mutations in SAMHDI also cause the
autoimmune Aicardi-Goutieéres syndrome [125], possibly related to the nuclease activity of the
enzyme [126], allowing accumulation of interferon-stimulating ssDNAs in SAMHD1-deficient cells.
dCTP hydrolyzing enzymes have also been described that may have a role in regulating dNTP pools,
or sanitizing dCTP pools by eliminating modified nucleotides, and it will be interesting to determine if
defects in these enzymes have a role in tumour progression or other genome stability defects [127,128].

In addition to mutations affecting dNTP supply directly, genomic instability may result from
oncogenic mutations that upregulate proliferation without compensatory changes that also increase
nucleotide supply, and such instability may further contribute to evolution of cancer cells. Mutations in
proto-oncogenes may cause S phase stress via stalling and collapse of replication forks [129], leading
potentially to senescence or apoptosis via p53 activation. The high frequency of p53 inactivation found
in tumours could allow such oncogene-induced stress to contribute to ongoing genomic instability
necessary for tumour development. More insight into the cause of oncogene-induced replication
stress comes from the observation that induction of the Rb-E2F pathway causes dNTP depletion in
transformed cells and, intriguingly, exogenously supplied nucleosides can rescue the replication stress
and reduce transformation [130]. Evidence for S phase problems in this situation additionally comes
from poor processivity of the replication fork, and there may be enhanced defects at hard-to-replicate
sites [130].

Cell-type differences may also be an important physiological factor in ANTP-mediated replication
stress. During development, rates of cell proliferation or S phase duration may vary considerably
between different progenitor cell types and as a result some lineages may be exposed to more replication
stress. Nervous system development appears to be acutely sensitive to defects in DNA repair, in
part reflecting replication-associated DNA damage (reviewed in [131,132]), and it is possible that
dNTP-imposed replication stress is a significant factor in neurogenic lineages. Cell-type differences
in metabolic pathways that feed into dNTP synthesis may also be a factor in replication stress.
For instance, fatty acid oxidation is important for ANTP synthesis in endothelial cells, and blocking fatty
acid oxidation may thus present a therapeutic strategy for impairing pathogenic angiogenesis [133].
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At the cellular level, local reductions in nuclear dNTPs may not be adequately balanced by
diffusion of nucleotides from the cytoplasm, where active RNR is situated, leading to replication
stress. Replication of simple sequences, such as repeats of complementary nucleotides, may cause
local starvation of specific ANTPs [134]. Thus consumption of, for instance, dATP and dTTP from
replicating AT-rich DNA may lead to local imbalance of dNTP levels, resulting in polymerase stalling,
potentially leading to microsatellite instability [135].

7. Future Directions

It is clear that maintenance of physiological ANTP levels is critical for genome stability and
the consequences of altered nucleotide levels are complex (summarised in Figure 2). These can be
investigated with precision in model organisms such as yeasts, and the mechanistic insights gained
can be tested in mammalian cells to determine evolutionary conservation. One controversial issue that
has not been resolved by current methodologies is the relevance of the site of ANTP synthesis to the
sites of nuclear ANTP consumption. A wide body of evidence indicates that ANTP synthesis by RNR
is cytoplasmic and it is assumed that rates of ANTP diffusion are sufficient to provide for nuclear DNA
synthesis ([136] and references cited within). However, a number of recent findings indicate that at
least for DNA repair, RNR is targeted to sites of DNA damage [54,108,119,137,138]. One interpretation
of these findings is that ANTP diffusion may be potentially limiting for DNA synthesis and under
some circumstances it may be advantageous to synthesize dNTPs at the site where they are needed.
However, it is difficult to critically assess this issue due to limitations in accurately determining dNTP
concentrations. Currently measurements are made on cell populations, and even with synchronized
cells this may not give an accurate indication of levels of dNTPs available to polymerases (e.g., see
reference [68]). Measurements of dANTP levels in single cells would clarify the degree of cell-to-cell
variation in nucleotide homeostasis. Fluorescence methods could allow monitoring of how subcellular
variations in dANTP levels are affected by nuclearly-targeted RNR, and other factors such as replication
of simple repeat sequences [134,135], high density of replication forks, and nuclear positioning of
chromosomal segments. Micro-inhomogeneities in ANTP levels could be another factor promoting
genomic instability in the absence of global perturbations in nucleotide supply.
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Figure 2. Summary of consequences of abnormal dNTP levels.
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