Comparative Transcriptome Analysis of Male and Female Conelets and Development of Microsatellite Markers in *Pinus Bungeana*, an Endemic Conifer in China

Dong Duan #, Yun Jia #, Jie Yang, and Zhong-Hu Li*

Key Laboratory of Resource Biology and Biotechnology in Western China,

Ministry of Education, College of Life Sciences, Northwest University, Xi'an

710069, China

- [#] These two authors contributed equally to this work
- * Correspondence: lizhonghu@nwu.edu.cn; Tel: +86 29 88302411; Fax: +86 29 88302411

Figure legends

Figure S1. The geographical distributions of natural populations of *Pinus bungeana*.

Figure S2. Length distributions of *Pinus bungeana* transcripts and unigenes.

Figure S3. The number and distribution of homologous unigenes in *Pinus bungeana*.

Figure S4. Gene Ontology (GO) classification of Pinus bungeana unigenes.

Figure S5. KEGG functional classification of *Pinus bungeana* unigenes. The results are summarized in five main categories: A, Cellular Processes; B, Environmental Information Processing; C, Genetic Information Processing; D, Metabolism; E, Organismal Systerms.

Figure S6. Spearman correlation matrix of experimental replications of transcriptome sequencing datasets of *Pinus bungeana*. The numbers represent the correlation coefficients between the samples. Heat maps represents samples similarity of expression patterns with correlation coefficients.

Figure S7. Analysis of differential unigenes expression. In total, 12,073 unigenes were identified as differentially expressed between male and female conelets, which comprised 5,766 unigenes that were up-regulated and 6,307 unigenes that were down-regulated.

Figure S8. Venn diagram of differential expression unigenes within three biological replications from male and female conelets, respectively.

Figure S9. Analysis of differential unigenes expression. BP, MF and CC represent biological processes, molecular functions, and cellular component, respectively. In total, 12,073 unigenes were identified as differentially expressed between male and female conelets, which comprised 5,766 unigenes that were up-regulated and 6,307 unigenes that were down-regulated.

Figure S10. KEGG pathways enriched for differentially expressed genes of male and female conelets in *Pinus bungeana*.

Figure S11. Plant hormone signal transduction in *Pinus bungeana* was adapted from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway available online (http://www.genome.jp/kegg/pathway.html). A total of 113 differentially expressed genes in plant hormone signal transduction, encoding arabidopsis response regulators (*ARR*), small auxin-up RNA (SAUR), and ethylene response factor (*ERF*), participated in the regulation of several hormone homeostasis and reproductive processes. These DEGs were involved in

tryptophan metabolism (Ko00380), zeatin biosynthesis (Ko00908), cysteine and methionine (Ko00270). Red represents up-regulated genes in female *vs* males, green represents downregulation genes in female *vs* males, and yellow represents up-regulated and down regulated genes in female *vs* males.

Figure S12. Cysteine and Methionine metabolism pathway was adapted from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway available online (http://www.genome.jp/kegg/pathway.html). Many genes identified by KEGG as encoding cinnamoyl-CoA reductase 1 and 2 (*CRR1/CRR2*) (EC: 1.2.1.44) are enriched in *Pinus bungeana*. Red represents up-regulated genes in female *vs* males, green represents downregulation genes in female *vs* males, and yellow represents up-regulated and down-regulated genes in female *vs* males.

Figure S13. Results of the Bayesian assignment analysis of *Pinus bungeana* using the program STRUCTURE. The ΔK was plotted against various values of *K*, suggesting *K*= 2 as the most likely number of clusters.

Figure S14. Dendrogram for natural six populations of Pinus bungeana based on 17 SSR loci.

Primers	Repeats unit	Sequence (5'-3')	Tm
1314	(GAGGAA)4	GAGGAGGCAAATGAGCAAAG	60.0
		TTAGTCGCTTCTTTTGCGGT	
5358	(CAACCT)4	GCATTCGAATTCCTCTCAGC	60.0
		TCGGATACTTCGGGTTCTTG	
7309	(CTG)6	TTGCTGCTGCTGTAACTGCT	60.0
		TGCAGCAGGTTCCCTCTAGT	
24177	(GGCTGC)4	CTGGGGAGTATGCACACCTT	60.0
		CAGTATCAACAGCAAGCCCA	
67970	(GAC)8	AGCGAACGGATGAAAGATTG	60.0
		GTGAGGAAGCCAAGTTGGAG	
10335	(TTGAT)4	CAACGTGGCCTCTGAGAAAT	60.0
		AGGGTTGCCTTCTTTCCAAT	
73317	(TAATCC)4	AACGACATCGACAACGACAA	58.0
		CCACGTGGTTTGTTGTGAAC	
72763	(AAAACC)4	GGCAATTCTGCAGTAGCCTC	58.0
		ATGGTCTGTCCATTTCGGTG	
66538	(GGGCGA)4	ATATTGATCAGGCGAGGCAG	58.0
		GGATTGTTGCAGGTTTTCGT	
60339	(ACATAT)4	TCTCAATTAAGCGGACAAGTTACA	58.0
		AGCCCTCTGTGATTGGACTC	
34533	(CTCACC)6	ATCTCGGCCAATTTGTCATC	58.0
		TTGGTCCACCTTTCATCCTC	
22642	(ATT)5(ATC)6	CCGTGTGCTTGATTGATCTG	58.0
		TCCTGTTTGTAATGGTTGCG	
33255	(AAGGC)5(GAG)5	TCAGCAACCAAACCATACCA	58.0
		TGCACTCGCTCCCTATCTTT	
10373	(GCAGGG)5	GGCTTGCATCCATCAATTCT	58.5
		GAGGCTGGAGCTCTGTGAAC	
11371	(AAATA)5	CAATTCGCGGTGTGATTATG	58.0
		TTCATCGAGCATGGAAACAG	
19808	(CTGTG)5	CTCATTCTTCCGCCATTGTT	58.0
		AGAGGCACAGAACAGCACAA	
7028	(TTC)8	AGCCATTTCTTCTGCTTCCA	58.0
		TTTTCACCCATTCTCCTTCG	
3534	(AT)12	AAGCATCTGCACCTATTGGG	58.0
		GTGGAATTGAGATCGGCTGT	
10962	(TA)11	CGGCCTTTCACTTCTGGTAG	58.0
		TGCTGACAAACAAACCGAGA	

 Table S1. Information of SSR Primers of Pinus bungeana used in this study.

Note: Tm = optimal annealing temperature

KEGG		Genes	Up-regulate genes (Female)	Down-regulated (female)
plant hormone signal				
transduction	Tryptophan metabolism	SAUR	Cluster-8494.0(Inf)	Cluster-2735.2887(-5.1571)
			Cluster-2735.18221(Inf)	Cluster-2735.14081(-5.5712)
			Cluster-2735.51357(4.6422)	Cluster-2735.56717(-8.4844)
			Cluster-2735.60733(Inf)	Cluster-2735.2956(-10.139)
			Cluster-2735.7773(3.8687)	Cluster-2735.56511(-7.4818)
			Cluster-2735.7774(Inf)	Cluster-2735.10750(-5.9766)
			Cluster-3801.0(Inf)	Cluster-2735.54045(-9.4224)
			Cluster-2735.57879(2.3789)	Cluster-2735.52807(-9.0952)
			Cluster-2735.22648(Inf)	Cluster-2735.52806(-Inf)
			Cluster-707.1(Inf)	Cluster-2735.61932(-Inf)
			Cluster-2735.56813(Inf)	Cluster-2735.7778(-6.803)
				Cluster-2735.7777(-Inf)
				Cluster-2735.12488(-7.926)
				Cluster-2735.2688(-2.584)
				Cluster-2735.52641(-11.003)
				Cluster-2735.53633(-Inf)
				Cluster-2735.12513(-2.6559)
				Cluster-2735.65134(-Inf)
				Cluster-2735.12180(-8.4152)
			Cluster-2735.59965(5.3644)	
		AUX1	Cluster-2735.16335(3.2832)	
		AUX/IAA	Cluster-2735.45441(4.2689)	Cluster-2735.18191(-2.2323)
			Cluster-2735.31633(3.2441)	Cluster-2735.18844(-5.7736)
			Cluster-2735.33273(3.8196)	
			Cluster-2735.28099(3.2635)	
			Cluster-2735.41715(2.8053)	
			Cluster-2735.53284(2.4338)	
			Cluster-2735.26404(4.1823)	
			Cluster-2735.26492(Inf)	
			Cluster-2735.26008(5.2944)	
			Cluster-2735.39031(3.1877)	
			Cluster-2735.32010(5.0073)	
		ARF	Cluster-2735.24659(2.3325)	
			Cluster-2735.22381(3.5426)	
			Cluster-2735.26026(3.2961)	
		GH3	Cluster-2735.13794(2.088)	Cluster-2735.62028(-7.7805)
	Zeatin biosynthesis	ARR-A	Cluster-2735.7083(5.4752)	Cluster-2735.57119(-Inf)
			Cluster-2735.44687(8.6534)	Cluster-2735.55866(-Inf)
				Cluster-2735.55867(-Inf)
				Cluster-2735.55864(-6.021)

Table S2. Differently expressed genes in plant hormone signal transduction and photosynthesis metabolism pathways.

			Cluster-2735.55865(-Inf)
			Cluster-2735.55861(-Inf)
			Cluster-2735.4392(-2.9454)
			Cluster-2735.9026(-7.7336)
	ARR-B	Cluster-2735.42790(2.6023)	Cluster-2735.19108(-4.2748)
		Cluster-2735.42791(2.621)	Cluster-2735.19107(-4.1435)
			Cluster-2735.19106(-3.2426)
	CRE1	Cluster-2735.50860(5.7972)	
		Cluster-2735.22397(5.0003)	
		Cluster-2735.22398(6.2557)	
		Cluster-2735.33324(3.6499)	
	AHP	Cluster-2735.25394(7.0138)	Cluster-2735.313(-3.2911)
Diterpenoid biosynthersis	GID1	Cluster-2735.41544(4.7043)	Cluster-2735.53965(-4.278)
			Cluster-2735.36203(-1.9156)
			Cluster-2735.47107(-3.2955)
	GID2		Cluster-2735.64327(1.9978)
			Cluster-2735.21997(3.1149)
			Cluster-2735.60058(Inf)
			Cluster-4222.0(Inf)
Carotenoid biosynthesis	PYR/PYL	Cluster-2735.31046(1.5835)	Cluster-2735.52019(-11.2)
		Cluster-2735.30469(1.665)	Cluster-2735.52803(-8.8097)
			Cluster-2735.4089(-3.4894)
			Cluster-2735.2978(-5.3043)
			Cluster-2735.12137(-Inf)
	PP2C	Cluster-2735.41544(4.7043)	Cluster-2735.53965(-4.278)
			Cluster-2735.36203(-1.9156)
			Cluster-2735.47107(-3.2955)
	SnRK2		Cluster-2735.10678(-Inf)
			Cluster-2735.27776(-2.6752)
			Cluster-2735.46194(-3.6695)
			Cluster-2735.46192(-3.5798)
	ABF		Cluster-2735.40065(-2.2889)
			Cluster-2735.40066(-1.5581)
Cysteine and methionine			
piosynthesis	ERF		Cluster-12842.0(-4.7991)
	CTR1		Cluster-2735.8266(-1.8084)
	MPK6		Cluster-2735.39420(-1.7773)
	EIN3	Cluster-2735.31382(1.7214)	
-linolenic acid metobolism	MYC	Cluster-2735.41360(2.4305)	
	COI1	Cluster-2735.33185(1.9088)	Cluster-2735.27649(-2.4554)
		Cluster-2735.16735(1.7131)	
Brassinosteroid biosynthesis	BRI1	Cluster-2735.63413(2.7201)	
		Cluster-2735.44795(1.7374)	
	BSK		Cluster-2735 8266(-1 8084)

		BZR1/2	Cluster-2735.5826(4.1959)	
		YCYD3	Cluster-2735.35481(7.4523)	
			Cluster-2735.47801(9.5398)	
			Cluster-2735.42546(Inf)	
	Phenylalanine metabolism	NPR1	Cluster-8901.0(5.4807)	
		TGA	Cluster-2735.27941(2.3996)	
		PR-1		Cluster-2735.53111(-Inf)
Phenylpropanoid				
biosynthesis	phenylalanine ammonia-lyase	EC:4.3.1.24	Cluster-2735.35105(3.0094)	
			Cluster-2735.34706(3.6154)	
			Cluster-2735.7468(3.1837)	
	shikimate			
	O-hydroxycinnamoyltransferase	EC:2.3.1.133	Cluster-2735.61020(2.6755)	
	coniferyl-alcohol			
	glucosyltransferase	EC:2.4.1.111	Cluster-2735.39569(2.8803)	
			Cluster-2735.39572(3.3527)	
	caffeic acid			
	3-O-methyltransferase	EC:2.1.1.68	Cluster-2735.15861(4.595)	
			Cluster-2735.35895(3.5474)	
	caffeoyl-CoA			
	O-methyltransferase	EC:2.1.1.104	Cluster-2735.33118(7.7083)	
			Cluster-2735.14045(8.3986)	
	coniferyl-aldehyde			
	dehydrogenase	EC:1.2.1.68	Cluster-2735.46659(1.895)	
			Cluster-2735.46658(3.4776)	
			Cluster-2735.26219(5.8527)	
			Cluster-2735.40576(2.4474)	
	caffeoylshikimate esterase	EC:3.1.1		Cluster-2735.30970(-1.5252)
	ferulate-5-hydroxylase	F5H		Cluster-2735.14069(-3.2707)
				Cluster-2735.56444(-Inf)
	4-coumarateCoA ligase	EC:6.2.1.12	Cluster-2735.28638(2.0704)	Cluster-2735.52148(-10.858)
				Cluster-2735.52147(-5.4595)
				Cluster-2735.56633(-4.5347)
				Cluster-2735.28184(-5.1444)
	cinnamoyl-CoA reductase	EC:1.2.1.44	Cluster-2735.16349(3.6263)	Cluster-2735.43590(-7.7896)
			Cluster-2735.3517(5.2749)	
			Cluster-2735.3518(5.0161)	
			Cluster-2735.3519(4.6567)	
			Cluster-2735.44862(Inf)	
			Cluster-2735.43589(4.2987)	
	beta-glucosidase	EC:3.2.1.21	Cluster-2735.48092(Inf)	Cluster-2735.12289(-3.4774)
			Cluster-2735.48710(Inf)	Cluster-2735.12285(-3.8595)
			Cluster-2735.48716(Inf)	Cluster-2735.48711(-5.1313)
			Cluster-2735.48709(4.5295)	Cluster-2735.16562(-2.0926)

Cluster-2735.48708(4.6121) Cluster-2735.18467(4.3727) Cluster-2735.20117(4.6681) Cluster-2735.39063(3.3729) Cluster-2735.24053(3.4006) Cluster-7549.0(Inf) Cluster-2735.16565(-1.9024) Cluster-2735.7471(-3.3184) Cluster-2735.7472(-3.0623) Cluster-2884.0(-Inf) Cluster-2735.54999(-3.3195) Cluster-2735.46840(-3.8689) Cluster-2735.33766(-3.3962) Cluster-2735.19013(-3.5056) Cluster-2735.24889(-3.575) Cluster-2735.49092(-1.8759)

Cluster-2735.53408(-11.06) Cluster-2735.29307(-5.0014) Cluster-2735.22902(-4.0135) Cluster-2735.11953(-4.8292) Cluster-2735.52377(-2.0749) Cluster-2735.13100(-3.8592) Cluster-2735.56922(-1.9681) Cluster-2735.55038(-4.4426) Cluster-2735.9670(-3.6483) Cluster-2735.19010(-1.7626) Cluster-2735.13099(-3.8453) Cluster-2735.55356(-5.9941) Cluster-2735.20112(-2.9545) Cluster-7981.0(-3.9003) Cluster-2735.13163(-9.2919) Cluster-2735.42980(-3.3465) Cluster-2735.53738(-4.801) Cluster-2735.52083(-3.1864) Cluster-2735.34943(-3.9301) Cluster-2735.38427(-2.6209) Cluster-2735.41274(-1.9998) Cluster-2735.53836(-5.2696) Cluster-2735.53835(-5.938) Cluster-2735.53064(-3.4249) Cluster-2735.39377(-3.1439) Cluster-2735.23099(-4.5331) Cluster-2735.51772(-7.3556) Cluster-2735.12776(-10.003)

coumaroylquinate

3'-monooxygenase

EC:1.14.1336

Cluster-2735.6467(3.8941)

Cluster-2735.26780(Inf)

Cluster-2735.42626(4.59)

Cluster-2735.35774(-1.8139)

cinnamyl-alcohol

dehydrogenase

peroxidase

EC:1.11.1.7

EC:1.1.1.195

Cluster-2735.23731(2.2707) Cluster-2735.35167(3.6415) Cluster-2735.49646(Inf) Cluster-3813.0(2.2003) Cluster-2735.36245(7.4857) Cluster-2735.28475(4.5868) Cluster-2735.30400(4.0282) Cluster-14289.2(Inf) Cluster-2735.15604(2.9501) Cluster-2735.38913(3.1316) Cluster-2735.31424(6.7848) Cluster-2735.27224(9.3383) Cluster-2735.34472(6.3871) Cluster-2735.32061(6.6137) Cluster-2735.32060(5.8883) Cluster-2735.29950(3.307) Cluster-2735.29573(9.3576) Cluster-2735.28697(2.3461) Cluster-2735.26177(Inf) Cluster-2735.22743(3.7294) Cluster-2735.38619(2.0294) Cluster-2735.37249(6.9364) Cluster-2735.44735(6.9387) Cluster-2735.37494(Inf) Cluster-2735.15412(Inf)

Table S3. Results of the analysis of molecular variance (AMOVA) performed on six populations in *Pinus bungeana* using 17 microsatellite markers.

Source of variation	Sum of squares	Variance components	variation (%)	Fixation index
Among Populations	154.56	1.308	25.185	$F_{\rm ST} = 0.252^{***}$
Among Individuals	474.042	3.886	74.815	
Total	628.602	5.194	100	

*P < 0.05, ** P < 0.01 and ***P < 0.001, 1000 permutations; F_{ST} , differentiation among populations within *Pinus bungeana*

Figure S1

Figure S2

Species distribution

Figure S3

Figure S4

Figure S5

Spearman correlation between samples

Figure S6

Figure S7

Figure S8

Figure S9

Figure S10

Figure S11

Figure S12

Figure S13

Figure S14