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Abstract: Paraburkholderia phymatum belongs to the (3-subclass of proteobacteria. It has recently
been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and
papilionoid legumes. In contrast to the symbiosis of legumes with «-proteobacteria, very little is
known about the molecular determinants underlying the successful establishment of this mutualistic
relationship with (3-proteobacteria. In this study, we performed an RNA-sequencing (RNA-seq)
analysis of free-living P. phymatum growing under nitrogen-replete and -limited conditions, the latter
partially mimicking the situation in nitrogen-deprived soils. Among the genes upregulated under
nitrogen limitation, we found genes involved in exopolysaccharides production and in motility,
two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living
conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean) were generated
and compared. Among the genes highly upregulated during symbiosis, we identified—besides the
nif gene cluster—an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49).
Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen
fixation abilities, suggesting an important role of the cytochrome for respiration inside the nodule.
The analysis of mutant strains for the RNA polymerase transcription factor RpoN (c°4) and its
activator NifA indicated that—similar to the situation in a-rhizobia—P. phymatum RpoN and NifA
are key regulators during symbiosis with P. vulgaris.

Keywords: differential gene expression; rhizobia; infection; nitrogen fixation; nodulation; NifA;
cytochrome; sigma factor; exopolysaccharides; motility

1. Introduction

Symbiotic nitrogen fixation (SNF) by rhizobia in root nodules of several legumes accounts for
a fourth of the N fixed annually on Earth [1]. Legume-nodulating rhizobia are polyphyletic and
include hundreds of species from 14 genera of two bacterial classes: x-proteobacteria («x-rhizobia)
and p-proteobacteria (3-rhizobia). The fact that legumes could be nodulated also by (3-rhizobia
was discovered with the isolation of two Burkholderia strains (Burkholderia tuberum STM678T and
Burkholderia phymatum STM815T) from the root nodules of the South African legumes Aspalathus carnosa
and Cyclopia spp. [2,3] as well as from Mimosa spp. [4,5], and with the isolation of Cupriavidus taiwanensis
from the nodules of invasive Mimosa species in Taiwan [6]. Phylogenetic analyses based on
symbiotic genes, such as the nitrogen fixation (nif) and nodulation (nod) genes, suggested that
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B-rhizobia have existed as legume symbionts for approximately 50 million years, and that they
have evolved separately from «-rhizobia [7-9]. Although the South American and Asian 3-rhizobia
are associated with Mimosa, an increasing number of South African 3-rhizobia that are associated
with diverse papilionoid legumes have been described [3,10-16]. In addition, naturally occurring
symbioses between the papilionoid legumes from the genera Rhynchosia, Dipogon and Burkholderia
strains harboring South African-type nod genes have been reported [12,17,18]. Phylogenomics
approaches led to the proposal to reclassify nodulating and nitrogen-fixing Burkholderia species
into the new genus Paraburkholderia [19,20]. So far, 17 nodulating Paraburkholderia species have
been described: P. tuberum, P. phymatum [21], P. mimosarum [22], P. nodosa [23], P. sabiae [24],
P. caribensis [25], P. diazotrophica [26], P. caballeronis [27], P. phenoliruptrix [25], P. sprentiae [28],
P. rhynchosiae [29], P. dilworthii [30], P. aspalathi [31], P. kirstenboschensis [32], P. dipogonis [33], P. piptadeniae,
and P. ribeironis [34]. Currently, only one nodulating and nitrogen-fixing Burkholderia strain,
B. symbiotica, is not a member of the Paraburkholderia genus, but instead belongs to the so called
“P. rhizoxinica group” [35].

Nitrogen is the most often limiting nutrient for crop production worldwide, and the
Rhizobium-legume symbiosis plays a significant role in improving the fertility and productivity
of low-N soils. In unfertilized soils, free-living rhizobia developed mechanisms to facilitate Ny
scavenging from alternative nitrogen sources [36]. The nitrogen regulatory (Ntr) response plays a key
role and involves the action of signal transduction PII proteins and of the two-component regulatory
system NtrBC [36]. The transcriptional regulator NtrC, together with the alternative ofactor o>*
(or RpoN), activates the transcription of genes involved in nitrogen assimilation, such as the glutamine
synthetase (g/nA) and the ammonium transporter (amtB). Certain bacteria, such as Azotobacter, Klebsiella,
and P. phymatum have been shown to be able to convert atmospheric nitrogen (N;) into ammonia in
free-living conditions [4,37]. Inside legumes root nodules, rhizobia activate N fixation and generate
ammonia to meet the large needs of the plant. In a-rhizobia, the expression of the symbiotic nitrogen
fixation genes (nif, coding for the nitrogenase polypeptides, and fix, encoding nitrogenase cofactors) is
activated by a cascade of signals, which involves low oxygen-sensing regulators such as NifA [38] and
FixL] [39].

For the well-known a-rhizobial symbioses, the different steps leading to a functional root
nodule have been characterized in detail [36,40], while for 3-rhizobia, very little is known about
the molecular mechanisms required to establish and support a symbiosis with their respective
host plants. Previous comparative genomics analyses [41-43] indicated that, apart from the nod-nif
symbiotic modules, very few genes were specifically shared by the phyletic distinct «- and 3-rhizobia,
suggesting mechanistic differences between - and 3-rhizobial symbioses. As an example, the cbbs-type
cytochrome oxidase present in all «-rhizobia was not detected in any of the Paraburkholderia
genomes [44]. Our model system consists of P. phymatum STM815" as the rhizobial partner and
the agriculturally important legume Phaseolus vulgaris (common bean) as the host legume. P. phymatum
STMB815" was first shown to enter symbiosis with Mimosa spp. by Elliott and co-workers [4], and many
strains have been subsequently isolated from M. pudica in both its native and invasive range [4,45,46],
strongly suggesting that the original host of STM815T was a Mimosa species native to South America [5].
P. phymatum STM815T has since been shown to be highly promiscuous, capable of effectively nodulating
several Mimosa spp. and many other related mimosoid genera [47,48], as well as some legumes in the
papilionoid tribe Phaseoleae that are normally nodulated by South African Paraburkholderia [15,17].

The goal of this study was to gain a better understanding about the genetic basis underlying a
(-rhizobial, nitrogen-fixing symbiosis. More specifically, we investigated P. phymatum gene expression
profile (i) in cells underlying nitrogen starvation, a condition that partially resembles the one that
free-living rhizobia encounter in nitrogen-deprived soils before infecting the roots, and (ii) during
symbiosis with P. vulgaris.

RNA-sequencing (RNA-seq) experiments showed that P. phymatum responded to nitrogen
limitation by activating genes involved in the assimilation of nitrogen sources, as well as genes
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involved in exopolysaccharides (EPS) biosynthesis and motility. These two characteristics were
shown in a-rhizobia to be important for the root infection process. The transcriptome of P. phymatum
inside bean root nodules revealed that—apart from genes involved in nitrogen fixation—other genes
potentially important for a symbiotic lifestyle were significantly upregulated in nodules. Mutant strain
analyses in planta suggested that a cytochrome o ubiquinol oxidase gene cluster (Bphy_3646-49) is
important for symbiosis with P. vulgaris. Moreover, we show here that two key regulators of nitrogenase
expression in o-rhizobia [38], the alternative o factor RpoN (or 6°*) and its activator NifA, are equally
important for 3-rhizobial symbiosis. Additionally, RpoN controls the utilization of nitrate and urea as
nitrogen sources, as well as EPS formation.

Finally, this study describes the characterization of three genes important for P. phymatum —
P. vulgaris symbiosis and provides a rich source of information for the discovery of new functions
potentially important for the establishment of the symbiotic interaction between (3-rhizobia and
papilionoid legumes.

2. Materials and Methods

2.1. Bacterial Strains, Media, and Cultivation

The bacterial strains, plasmids, and primers employed in this work are listed in Table S1.
Escherichia coli was grown in Luria-Bertani medium (LB [49]; 10 g of tryptone, 5 g of yeast extract
and 4 g NaCl per liter), whereas P. phymatum cells were cultivated under aerobic conditions in the
modified LB medium without salt. The following antibiotic concentrations were used: chloramphenicol
(20 ng/mL for E. coli and 80 pg/mL for P. phymatum), kanamycin (25 ug/mL for E. coli and 50 pg/mL for
P. phymatum), and nalidixic acid 50 ug/mL for P. phymatum. The bacterial cultures for the transcriptomic
studies were grown in defined buffered AB minimal medium [50] with 10 mM sodium citrate as the
carbon source, supplemented with trace elements [51]. Nitrogen-replete conditions (N) were achieved
with 30 mM ammonium chloride (NH,4Cl), whereas 0.5 mM NH4Cl was used to obtain nitrogen-limited
(S) conditions. The cultures of P. phymatum were grown in 250 mL Erlenmeyer flasks containing 100 mL
of medium that were incubated at 30 °C with shaking at 180 rpm for approximately 24 h. The microoxic
cultures in AB minimal medium were prepared and grown as previously described [52] in 50 mL
of medium in 500 mL rubber-stoppered serum bottles containing 0.5% oxygen (PanGas, Zurich,
Switzerland) and 99.5% nitrogen (PanGas, Zurich, Switzerland). The bottles were shaken at 80 rpm;
every 9-15 h, the gas phase was exchanged.

The growth of all P. phymatum strains (wild type (wt), rpoN mutant, and rpoN complemented)
was tested with three different nitrogen substrates: ammonium (30 mM), nitrate (30 mM), and urea
(15 mM). For each tested strain, the growth of at least two independent cultures was measured.

2.2. Plant Growth Conditions and Inoculation

Common bean seedlings (Phaseolus vulgaris, cv. Negro jamapa, kindly provided by Professor
Eulogio Bedmar, Granada, Spain) were surface-sterilized as previously described [53]. The seeds were
deposited on 0.8% agar plates and incubated in the dark at 30 °C. After two days, the germinated
seedlings were planted into autoclaved yoghurt jars containing vermiculite (VITT-Group, Muttenz,
Switzerland) and 170 mL diluted Jensen medium [54]. The cells were washed twice in AB minimal
medium without nitrogen, and 1 mL of the desired bacterial strains (10° bacterial cells) was
directly inoculated on the germinated seedling. The plants were grown in the following conditions:
the temperature was kept at 22 °C at night and 25 °C during the day; light was supplied for
approximately 16 h; humidity was 60%. The root nodules were harvested 21 days post infection
(dpi) for analysis.
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2.3. Determination of Symbiotic Properties

Several symbiotic properties (nodule number, nodule dry weight, nitrogenase activity, and
N content) were determined as described previously [55-57]. Bean plants inoculated with P. phymatum
were harvested 21 days post infection (dpi), and the number of nodules on each root was counted.
The nodules were dried at 65 °C overnight. The nitrogenase activity was determined by an acetylene
reduction assay (ARA). In detail, 1 mL of acetylene (PanGas, Zurich, Switzerland) was injected in a
50 mL tube (Infochroma AG, Zug, Switzerland) containing the root of interest. After co-incubation with
the root, 25 pL of the gas from the tube was injected into a gas chromatograph (Agilent, Santa Clara,
CA, USA) to analyze the nitrogenase activity, which is represented by the percentage of the ethylene
over the acetylene peak [56]. The results were normalized by the dry weight of all the nodules on
the plants and the incubation time. At least two independent experiments with five plants per strain
were performed. The N content of the shoot was calculated as described before, using the Dumas
method (combustion) [57]. Approximately 600 uL of flash-frozen nodules (corresponding roughly to
40 nodules) infected by P. phymatum wild type were used for a transcriptome experiment.

2.4. RNA-Sequencing and Data Processing

Total RNA from P. phymatum cells grown under free-living nitrogen-replete, nitrogen-limited,
or microoxic conditions (see Section 2.1) to the end of the exponential growth phase (optical density at
600 nm of 0.7, 0.4, or 0.5, respectively), and from 600 pL of flash-frozen root nodules was extracted using
a modified hot acid phenol protocol [58]. The nodule samples were subjected to an additional acid
phenol treatment. Three independent biological replicates were performed per sample. The verification
of the complete removal of genomic DNA and a quality check of the RNA were performed as previously
described [59]. After DNase treatment, the nodule sample was processed with the Ribo-zero™
Plant-Seed /Root kit (Epicentre, Madison, WI, USA) to remove plant ribosomal RNA (rRNA).
After RNA quantification, 100-350 ng were used for cDNA synthesis. Library preparations and
purifications were performed using the Encore Complete Prokaryotic RNA-Seq DR Muliplex System
(NuGEN, San Carlos, CA, USA), which uses a novel Insert-Dependent Adaptor Cleavage (InDAC)
technology for the removal of bacterial rRNA transcripts. Before sequencing, the cDNA libraries
were quantified by capillary electrophoresis using the Agilent D1000 Screen Tape System (Agilent,
Santa Clara, CA, USA). Illumina single-end sequencing was performed using the HiSeq2500 instrument.
Sequence reads were processed and mapped to the P. phymatum STM815T genome [48] using CLC
Genomics Workbench v7.0 (QIAGEN CLC bio, Aarhus, Denmark), allowing up to two mismatches
per read. The unique mapped reads were statistically analyzed for differential expression using the
DESeq R-package v1.26 [60]. For DESeq analysis, the top 200 and 500 significantly regulated genes
(ranked by ascending p-value) were taken into account for nitrogen-limited versus nitrogen-replete
(a small regulon was expected), and for symbiotic versus free-living conditions (substantial changes in
the expression were expected), respectively. The functional classification of the differentially expressed
genes was performed using eggNOG v3.0 [61]. The RNA-seq raw data files are accessible through the
GEO Series accession number GSE107381.

2.5. Quantitative Reverse Transcription PCR (qRT-PCR) Analysis

The differential expression of P. phymatum genes, namely, Bphy_0257 (amtB), Bphy_0326 (rpoN),
Bphy_1479 (ntrC), Bphy_1481 (glnA), Bphy_3648 (cyoB), Bphy_7728 (nifA), and Bphy_7753 (nifH) was
assessed as previously described [59] by quantitative reverse transcription-PCR (qRT-PCR) using the
Brilliant III Ultra-Fast SYBR green QPCR master mix (Agilent, Santa Clara, CA, USA) and a Mx3000P
instrument (Agilent). Samples of cDNAs were produced as previously described [52]. Three different
dilutions (15, 7.5 and 3.75 ng) of each cDNA were used as qRT-PCR templates, and each reaction was
done in triplicates. The AACT method was used to calculate the fold changes in expression [62] using
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the sigma factor rpoD (Bphy_3690) as a housekeeping gene for normalization. For all the primers pairs,
an annealing temperature between 55-58 °C was used.

2.6. Construction of Paraburkholderia phymatum STM815" Mutant Strains

The genomic DNA (gDNA) of P. phymatum was isolated using the DNeasy Blood & Tissue
kit (Qiagen, Hilden, Germany), whereas the plasmid DNA from E. coli strains was extracted with
the QIAprep Spin Miniprep kit (Qiagen). To generate mutant strains, a 300-500 bp-long internal
fragment of the genes of interest (nifA, cyoB and rpoN) was amplified with Phusion High-Fidelity DNA
polymerase (ThermoFischer, Waltham, MA, USA), using the primers listed in Table S1 (Bphy_x_IM_F
and R, where “x” is the gene name). The PCR products of nifA and rpoN were cloned into pGEM-T
Easy (Promega, Madison, WI, USA) and then subcloned into pSHAFT2 as EcoRI or NotI fragments
for nifA and rpoN. For cyoB, the PCR product was digested and directly cloned into the digested
PSHAFT?2 as EcoRI fragment. The resulting plasmids pPSHAFT-nifA, pPSHAFT-cyoB, and pSHAFT-rpoN
were then mobilized into wild-type P. phymatum by triparental mating using E. coli pRK2013 as a
helper strain, generating P. phymatum nifA mutant (nifA mt, STM815-nifAp;,), cyoB mutant (cyoB mt,
STM815-cyoBpp), and rpoN mutant (rpoN mt, STM815-rpoNp). The correct genomic integration
was verified by PCR using the external oligonucleotides Bphy_nifA_check_F, Bphy_cyoB_check_R,
or Bphy_rpoN_check_R in combination with pSHAFTseqFor (Table S1). To construct a cyoAB
deletional mutant strain, one 452 bp-long fragment (fragment 1), flanking upstream of the gene cyoA
(Bphy_3649), and one 448 bp-long fragment (fragment 2), flanking downstream of cyoB (Bphy_3648),
were chosen as recombination sites for deletion mutation. Fragment 1 was amplified with the
primers Bphy3649up_Xhol and Bphy3649up_Xbal and fragment 2 was amplified with the primers
Bphy3648down_Xbal and Bphy3648down_Notl, using the gDNA of P. phymatum as a template.
Both fragments were digested with Xbal and ligated together. The ligated DNA was amplified by PCR
using Bphy3649up_Xhol and Bphy3648down_Notl, then digested by Xhol and NotI, and subcloned
into pSHAFT2. A kanamycin cassette was cut out from pKD4 plasmid using Xbal and inserted
between the two fragments in pSHAFT2 vector. The resulting plasmid was mobilized into a
P. phymatum strain, spontaneously resistant to nalidixic acid (NAL, STM815y,)), that we generated
through spontaneous mutation. In details, 108 P. phymatum wild-type cells were plated onto a
Tryptone Yeast (TY) agar plate [63] containing nalidixic acid 100 pg/mL, and the survived clones
were subsequently purified onto a TY plate containing nalidixic acid 50 ng/mL. The cyoAB deletion
mutant (AcyoAB, STM815y, AcyoAB) was confirmed by PCR using the primers KM_F (annealing to
the kanamycin resistance cassette) and Bphy3648_out (annealing to the neighboring gene Bphy_3647).

To complement the rpoN mutant strain, the complete Bphy_0326 open reading frame (ORF)
was amplified using the Phusion High-Fidelity DNA polymerase (ThermoFischer), by using the
oligonucleotides Bphy_rpoN_c_F/R. The PCR product was digested with BamHI and Xbal and cloned
into the corresponding sites of pPBBRIMSC-2. The complementing plasmid was mobilized into the
corresponding P. phymatum mutant strain by triparental mating, resulting in the P. phymatum rpoN
complemented strain (rpoN comp). For all the primers pairs, an annealing temperature between
55-58 °C was employed.

2.7. Exopolysaccharides Production

Exopolysaccharides production was tested on modified YEM medium plates (1% mannitol,
0.06% yeast extract) as previously described [57,64]. The plates were incubated for 4 days at 30 °C.

2.8. Statistical Analysis

The symbiotic properties (nodule number per plant, dry weight per nodule,
relative nitrogenase activity, and N content) were analyzed statistically with ANOVA and
Tukey’s tests, using the Prism 7 software (version 7.0; La Jolla, CA, USA). For categories distribution,
the percentages of upregulated or downregulated genes in each category were calculated by dividing
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the number of up- and downregulated genes in each category by the total number of genes grouped in
the corresponding category. Fischer tests were carried out (online calculator of GraphPad) to assess a
possible over- or under-representation of the functional eggNOG categories.

3. Results

3.1. Transcript Profiling of P. phymatum STM815T in Response to Nitrogen Limitation

RNA-seq was employed to first investigate the molecular mechanisms underlying the response
to nitrogen limitation in P. phymatum, a condition which partially mimics the situation that
rhizobia encounter in nitrogen-starved soils. For this, wild-type cells were grown in minimal
medium supplemented with ammonium (among the best nitrogen sources used by P. phymatum
in a Biolog PM3 plate [65]) under nitrogen-replete (N, 30 mM NH4Cl) and nitrogen-starved
(S, 0.5 mM NH,4CI) conditions. From both conditions, three independent biological replicates were
processed and sequenced. Reads uniquely mapping to the genome were subjected to a statistical
and comparative analysis using DESeq [60]. A graphical visualization of the read intensity (mean of
the normalized reads) versus the logarithm (base 2) of the fold change (FC; nitrogen-limited versus
nitrogen-replete conditions) are illustrated in Figure 1A. The top 200 differentially expressed genes
under nitrogen-limited and -replete conditions are listed in Table 52 (p-value < 0.02 and absolute log,
(fold change) > 0.87). Out of these, 79 genes showed increased expression when the cells were grown
under nitrogen-limiting conditions.

To explore the functional relevance of the differentially expressed genes, the top
200 nitrogen-regulated genes were assigned to functional categories according to the eggNOG
classification system [61]. Certain categories were found to be significantly over-represented: category
E (amino acid transport and metabolism), category P (inorganic ion transport and metabolism),
and category T (signal transduction mechanisms) (Figure 1B). Among the top differentially
expressed genes, several belonged to category E including genes involved in urea transport
(Bphy_2251 to Bphy_2254) and ureA (Bphy_2258), coding for a urease. Some other genes known
to be relevant for nitrogen control in several other bacteria [66,67] were found in category P,
such as amtB (ammonium transporter, Bphy_0257) and an assimilatory nitrate reductase gene
(Bphy_5659-60) with its transporter gene (Bphy_3974-78, excluding Bphy_3975). Finally, a
substantial number of transcriptional regulators were classified in category T. These included the
nitrogen metabolism transcriptional regulatory gene ntrC (Bphy_1479) and the gene coding for a
methyl-accepting chemotaxis sensory transducer (Bphy_ 2338), which was the most significantly
upregulated gene in nitrogen starvation (Table S2). The gene belonging to a potential EPS cluster
(Bphy_1071, the BCAM1005 orthologue in B. cenocepacia J2315), as well as the genes coding for a
polyhydroxybutyrate (PHB)-associated protein (phasin, Bphy_1467) and for three depolymerases
potentially involved in polyhydroxyalkanoates (PHA) and PHB biosynthesis (Bphy_4313, Bphy_4407,
and Bphy_5512) also showed significantly enhanced expression under nitrogen-starving conditions.
To validate the expression changes observed in the RNA-seq data, several regulated genes important
for nitrogen utilization (amtB, ntrC, rpoN, and glnA) were subjected to quantitative reverse transcription
PCR (Table 1).
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Figure 1. Analysis of the Paraburkholderia phymatum transcriptome in response to nitrogen limitation.
The MA plot (M log ratios; A averages of normalized counts) displays the logarithm (base 2) of the fold
changes in transcripts expression of cells grown under nitrogen-limited (S) versus nitrogen-replete (N)
conditions, and the mean of the normalized reads (A). Functional categories of the top 200 differentially
expressed genes (genes induced in nitrogen starvation are in black, those repressed in grey) according
to the eggNOG annotation (B). The asterisks (*) indicate statistical significance for over-represented
genes in a particular category (p-value < 0.01). C, energy production and conversion; E, amino acid
transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and
metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; J, translation,
ribosomal structure, and biogenesis; K, transcription; L, replication, recombination, and repair;
M, cell wall, membrane, and envelope biogenesis; N, cell motility; O, post-translational modification,
protein turnover, and chaperon; P, inorganic ion transport and metabolism; Q, secondary metabolites
biosynthesis, transport, and catabolism; R, general function prediction only; S, function unknown;
T, signal transduction mechanisms; U, intracellular trafficking, secretion, and vesicular transport;
V, defense mechanisms.

Table 1. Quantitative reverse transcription PCR (qRT-PCR) and RNA-sequencing (RNA-seq) analysis
of genes with induced expression under nitrogen-starved conditions.

Locus ID 1 Description ! GeneName FC(Svs.N)2 FC(Svs.N)3
Bphy_0257 Ammonium transporter amtB 19.7 £ 4.6 10.9
Bphy_0326 RNA polymerase factor 0°* rpoN 14+0.1 0.7

Nitrogen metabolism
Bphy_1479 transcriptional regulator
Bphy_1481 Glutamine synthetase, type I glnA 40+£0.8 1.9

1 Locus identifier and description is given according to the GenBank files (NC_010622.1, NC_010623.1, NC_010625.1,
NC_010627.1); 2 fold change (FC) in qRT-PCR expression by comparing the wild-type strain grown under
nitrogen-limited (S) and nitrogen-replete conditions (N); 3 fold change (FC) determined by DESeq analysis
comparing the transcriptome profile of cells grown under nitrogen-limited (S) and nitrogen-replete conditions (N).

ntrC 88+£12 9.7
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3.2. Transcript Profiling of P. phymatum STM815" during Symbiosis with P. vulgaris

Next, we investigated the whole transcript profile of P. phymatum during symbiosis. For this,
bean root nodules induced by P. phymatum wild-type were processed 21 days after infection
for a RNA-seq analysis. The RNA from P. phymatum cells grown in minimal medium under
aerobic conditions was used to provide a gene expression baseline for comparison. Among three
independent biological replicates per condition, we obtained—per nodule sample—between 4.2
and 5.3 million reads uniquely mapping to the P. phymatum genome. The transcript profiles of
P. phymatum grown under symbiotic and free-living conditions were compared by DESeq analysis.
Among the top 500 differentially expressed genes (DESeq analysis p-value < 0.01 and absolute
log, (Fold change) > 1.6) (Table S3), 322 were significantly upregulated. Out of these 322, 32% are
located on the symbiotic plasmid (0.59 Mb), 28% on chromosome 1 (3.48 Mb), 22% on chromosome
2 (2.7 Mb), and 18% on plasmid 1 (1.9 Mb) (Figure 2B). This indicated a strong enrichment of
regulated genes on the symbiotic plasmid that otherwise harbors only 6% of the genes of the
whole genome (Figure 2A). Furthermore, the top 500 differentially regulated genes were assigned
to functional categories (Figure 2C). Among these, 178 showed significant decreased expression
in nodules. As displayed in Figure 2C, the eggNOG category N (cell motility) comprised 21% of the
genes downregulated inside the nodule. A couple of them were involved in flagellar biosynthesis
(Bphy_2940-41, fliOP; Bphy_2962, fIgF). In addition, category U (intracellular trafficking, secretion,
and vesicular transport), which contains a partial cluster for a type IV secretion system (Bphy_7525
to Bphy_7536), was significantly over-represented among the genes with reduced expression inside
the nodule. Analysis of the 322 genes significantly upregulated in nodules, indicated that category C
(energy production and conversion) was over-represented, among which were the genes known
to be important for symbiotic functions such as nitrogen fixation (nif cluster) and hydrogenase
(Figure 3A,B). We also found a gene coding for an isocitrate lyase (Bphy_1368) and a potential
cytochrome o ubiquinol oxidase cluster (Bphy_3646-49), which may play a role for respiration inside
the nodule (Figure 3C). In the over-represented functional category P (inorganic ion transport and
metabolism) we identified several ATP-binding cassette (ABC)-transporters for sulfate (Bphy_1627 and
Bphy_1629), nitrate/sulphonate/bicarbonate (Bphy_3603), phosphate (Bphy_3120 and Bphy_4622),
aliphatic sulphonate (Bphy_5226), taurine (Bphy_6080), and urea (Bphy_2251-52). In addition,
two interesting genes displayed increased expression in nodules: Bphy_1467, coding for a phasin-like
protein potentially involved in PHB stability, and a PHB depolymerase (Bphy_4407). In order to
mimic the transition towards conditions of extremely low oxygen inside the nodules, we additionally
grew P. phymatum under microoxic conditions (supplemented with 0.5% oxygen) and performed
a transcriptome analysis [68]. As expected, under microoxic conditions the genes coding for
the nitrogenase were highly expressed and upregulated (Table 2). The cytochrome o ubiquinol
oxidase cluster (Bphy_3646-49) that was upregulated in symbiosis also showed increased expression
under reduced oxygen availability (Table 2). The upregulated genes belonging to several of the
over-represented categories discussed above are listed in Table 3.
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Figure 2. Analysis of the transcripts differentially expressed during symbiosis of P. phymatum with
P. vulgaris. Percentages of the gene distribution among the two chromosomes and two plasmids
of the P. phymatum genome (A), and percentages of the 322 genes significantly induced during
symbiosis with respect to their encoding chromosomes or plasmids (B). Functional categories of
the 500 differentially expressed genes (genes induced in bacteroids shown in black, genes repressed
shown in grey) according to the eggNOG annotation (C). The 322 genes used for the calculation of the
percentages distribution in (B) were obtained from the analysis performed with the R package DESeq
(p-value < 0.01, logy(FC) > 1.6). Asterisks (*) indicate statistical significance for over-represented genes
in a particular category (p-value < 0.01).

Table 2. qRT-PCR and RNA-seq analysis of genes with induced expression during symbiosis and

microoxic conditions.

FC (Bacteroids vs.

LocusID ! Description ! Gene Name F ) FC (MO vs. 0) 3
ree-Living)

Bphy_0326  RNA polymerase factor o>* rpoN 21+05 1.6

Bphy_1479  Nitrogen metabolism transcriptional regulator ntrC 6.6+ 1.6 0.9

Bphy_3648  Cytochrome o ubiquinol oxidase, subunit I cyoB 201.8 +44.0 68.3

Bphy_7728  Transcriptional regulator nifA 191+24 42

Bphy_7753  Nitrogenase reductase nifH 898.4 +174.2 567.0

1 Locus identifier and description is given according to the GenBank files (NC_010622.1, NC_010623.1, NC_010625.1,
NC_010627.1); 2 fold change (FC) in qRT-PCR expression for the wild-type strain grown in symbiotic conditions
(bacteroids) compared to free-living conditions; 5 fold change (FC) determined by DESeq analysis comparing the
transcriptome profile of cells grown in microoxic conditions (MO) with that of cells grown under oxic conditions (O).

(A) nif cluster

m@wv N aaea @mmuww .

3764 6.1 7.8 89 83 . 12.3 8.4

(B) Hydrogenase cluster

hypE hypC/hupF hypB hupK hupHhyaE  Bphy7264 Bphy7266 hypE

hypD Bphy7254  hypA hypC/hupF  hydA
1.5 4135 4 5157 6.16.7 3.9 6.6 6.7 52
42 56

(C) Potential oxidase cluster

2 MCTD D

7.3 5.4 66 36 dkb

Figure 3. Selected P. phymatum gene clusters showing statistically significant upregulation under
symbiotic compared to free-living conditions. The following gene clusters are represented:
nitrogen fixation (nif) (A), hydrogenase (B), and a potential cytochrome o ubiquinol oxidase cluster (C).
Gene names are indicated in italic, and the logarithm (base 2) of the fold changes is shown underneath.
Genes listed within the top 500 regulated genes (Table S3) are colored in grey.
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Table 3. List of 68 genes showing increased expression in bacteroids compared to free-living conditions

and belonging to an over-represented eggNOG category (Fischer test p-value < 0.01).

Locus ID 1 Description ! IEI; :Ir:lee LongFrSe(_]];;‘C,ti:;“zis v
Energy production and conversion
Bphy_1368 isocitrate lyase 3.1
Bphy_1649  alkanesulfonate monooxygenase 6.0
Bphy_1848  2-oxoacid dehydrogenase subunit E1 2.9
Bphy_2272  FAD linked oxidase domain-containing protein 29
Bphy_3647  cytochrome o ubiquinol oxidase, subunit ITI cyoC 6.6
Bphy_3648  cytochrome o ubiquinol oxidase, subunit I cyoB 5.4
Bphy_3649  ubiquinol oxidase, subunit I cyoA 7.3
Bphy_3685  phosphate acetyltransferase 2.0
Bphy_4116  rubrerythrin 19
Bphy_4949  aldehyde dehydrogenase 2.6
Bphy_5235  alkanesulfonate monooxygenase 6.2
Bphy_5817  putative flavodoxin 3.6
Bphy_6055  hypothetical protein INF
Bphy_6505 formylmethanofuran dehydrogenase subunit A 1.9
Bphy_6506  formylmethanofuran-tetrahydromethanopterin formyltransferase 3.9
Bphy_6671  2Fe-2S iron-sulfur cluster binding domain-containing protein INF
Bphy_6672  carbon-monoxide dehydrogenase (acceptor) 37
Bphy_6673  aldehyde oxidase and xanthine dehydrogenase molybdopterin binding 4.5
Bphy_7231  cytochrome ce class I 2.8
Bphy_7232  xenobiotic (desulfurization)monooxygenase subunit A 5.3
Bphy_7262  hydrogenase expression/formation protein 5.6
Bphy_7263  Ni/Fe-hydrogenase, b-type cytochrome subunit 3.9
Bphy_7264  nickel-dependent hydrogenase large subunit 6.4
Bphy_7265  hydrogenase (NiFe) small subunit hydA 6.6
Bphy_7406  aldehyde dehydrogenase 7.3
Bphy_7729  nitrogenase MoFe cofactor biosynthesis protein nifE 6.8
Bphy_7730  nitrogenase molybdenum-cofactor biosynthesis protein nifN 3.7
Bphy_7733  ferredoxin III, nif-specific 6.3
Bphy_7737  electron-transferring-flavoprotein dehydrogenase fixC 6.8
Bphy_7738  electron transfer flavoprotein &/ 3-subunit fixB 7.1
Bphy_7739  electron transfer flavoprotein «/B-subunit fixA 7.8
Bphy_7754  nitrogenase molybdenum-iron protein « chain nifD 8.4
Bphy_7755  nitrogenase molybdenum-iron protein 3 chain nifK 8.3
Bphy_7804 electron transfer flavoprotein «/B-subunit 3.9
Inorganic ion transport and metabolism
Bphy_0882  phosphate ABC transporter, periplasmic protein 43
Bphy_0883  phosphate transporter permease subunit pstC 2.5
Bphy_0885  phosphate transporter ATP-binding protein 2.6
Bphy_1627  sulfate ABC transporter inner membrane subunit cysW 2.2
Bphy_1629  sulfate ABC transporter, periplasmic protein 5.2
Bphy_1647  ABC transporter-like protein 5.9
Bphy_1648  binding-protein-dependent transport systems 3.3
Bphy_2231  sulfate adenylyltransferase large subunit 2.3
Bphy_2521  catalase 49
Bphy_3120  phosphate ABC transporter, periplasmic protein 4.2
Bphy_3602  ABC transporter related 4.0
Bphy_3603  nitrate/sulfonate/bicarbonate ABC transporter, periplasmic protein 2.6
Bphy_3854  phosphate transporter 2.7
Bphy_4233  Rieske (2Fe-2S) domain-containing protein 29
Bphy_4622  phosphonate ABC transporter binding protein 6.7
Bphy_5040  lipoprotein 7.8
Bphy_5065  2-aminoethylphosphonate ABC transporter, 2-aminoethylphosphonate binding protein 2.0
Bphy_5226  aliphatic sulfonate ABC transporter, periplasmic protein 4.0
Bphy_5227  substrate-binding region of ABC-type glycine betaine transport system 9.0
Bphy_5229  aliphatic sulfonate ABC transporter, periplasmic protein 5.8
Bphy_5232  rhodanese domain-containing protein 5.6
Bphy_6080  taurine ABC transporter, periplasmic binding protein 7.5
Bphy_6081  ABC transporter related 42
Bphy_6550  metallophosphoesterase 35
Bphy_7233  ABC transporter related 3.7
Bphy_7234  binding-protein-dependent transport systems 4.6
Bphy_7235  binding-protein-dependent transport systems 4.8
Bphy_7236  ABC sulfate ester transporter, periplasmic protein 4.3
Bphy_7645  binding-protein-dependent transport systems 3.2
Bphy_7646  binding-protein-dependent transport systems 4.4
Bphy_7647  ABC transporter related 49
Bphy_7753  nitrogenase reductase nifH 123
Bphy_7808  nitrogenase reductase nifH INF
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Table 3. Cont.

Gene  Log;FC (Bacteroids vs.

1 < tion 1
Locus ID Description Name Free-Living) 2

Translation, ribosomal structure and biogenesis
Bphy_2864 GCNBb5-like N-acetyltransferase 42

1 Locus identifier and description is given according to the GenBank files (NC_010622.1, NC_010623.1, NC_010625.1,
NC_010627.1); 2 logarithm (base 2) of the fold change (FC) in expression for the wild-type strain grown in symbiotic
conditions (bacteroids) compared with free-living conditions: INF, not computable because the read number for
the wild type grown under free-living conditions was 0; FAD, Flavin Adenine Dinucleotide; ABC, ATP-Binding
Cassette; ATP, Adenosine TriPhospate.

We observed an overlap of 38 genes with increased expression in both nitrogen-limited growth
conditions (Table S2) and during symbiosis with bean (Table S3). Among those, we found two genes
involved in PHB production: phaP (Bphy_1467), encoding a phasin regulating PHB stability by binding
to PHB-granula [69], and a PHB depolymerase (Bphy_4407). The regulatory gene ntrC, which is part of
the two-component regulatory system (2CRS) NtrB/NtrC, known to be important for nitrogen control
in other organisms [64], also showed significantly higher expression under nitrogen-limited conditions
and during symbiosis.

A complete list with all P. phymatum genes and logarithm (base 2) of the fold changes in expression
in nitrogen-starved versus -replete conditions, as well as during symbiosis is shown in Table 54.

3.3. Role of nifA, rpoN, and cyoB Genes during Symbiosis

The transcription of the nif genes in «-rhizobia is regulated by the key regulator NifA [38,70],
which works together with the o factor RpoN (c°*). Remarkably, P. phymatum lacks the typical
high-oxygen-affinity cbbs-type cytochrome oxidase present in wa-rhizobia [44], but a potential
cytochrome o ubiquinol oxidase cluster (Bphy_3646-49) was found among the significantly and
highly upregulated genes inside the nodule (Table 3). To investigate the role of the nifA, rpoN,
and cyoB genes during symbiosis in our 3-rhizobial model system, P. phymatum nifA (Bphy_7728),
rpoN (Bphy_0326), and cyoB (Bphy_3648) mutant strains were constructed, as well as a AcyoAB
deletion mutant. The deletion mutant was generated using a strain resistant to nalidixic acid (NAL) as
a baseline (see Section 2.6).

First, the growth of the four mutant strains (nifA, rpoN, cyoB, and AcyoAB), as well as of the wild
type (wt) and of the nalidixic acid-resistant wild-type (NAL) was monitored in microaerobic conditions
(0.5% O5), i.e., in conditions that mimic those inside the nodules. In general, a slight growth delay of
the mutant strains (nifA, cyoB, and AcyoAB) compared to the wild-type was observed. On the contrary,
the rpoN mutant strain displayed faster growth in the exponential phase, but finally reached a similar
final optical density at A = 600 nm (ODgqp) (Figure 4).

1_

z - wt
= -©- nifA mt
% rpoN mt
o
o cyoB mt
= -~ NAL
- o AcyoAB
T T T T T T 1
0 10 20 30 40 50 60 70

Time (h)

Figure 4. Growth of P. phymatum wild-type (wt), nalidixic acid-resistant wild-type (NAL),
and mutant (mt) strains (nifA, rpoN, cyoB, and AcyoAB) under microoxic conditions (see Section 2.1).
Whiskers indicate standard deviation (SD), n > 2. ODgq, Optical density at A = 600 nm.
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The relevance of these genes during symbiotic life was then tested using our host legume
P. vulgaris (bean). The same amount of colony forming units (CFU; 10°) of wild-type and mutant
strain cells was inoculated on bean seedlings. After 3 weeks of growth in the green house,
several key symbiotic parameters of the nodules, such as their number, the dry weight, their relative
nitrogenase activity, as well as their N content were determined. At 21 days post infection (dpi),
the roots inoculated with the nifA mutant strain had significantly more nodules compared to bean
plants inoculated with the other strains (Figure 5A). No significant difference in the overall nodule
number was observed for the other mutant strains compared to their respective wild type. However, the
dry weight per nodule of plants infected by the nifA mutant strain was comparable to that of
plants inoculated with either the wild type or the rpoN mutant strains (Figure 5B). In contrast to
the nodules induced by the wild-type strain, those induced by the nifA and rpoN mutant strains
showed no nitrogenase activity (Figure 5C). The nodules induced by the cyoB and the AcyoAB mutants
showed a 65% and 75% reduction in the relative nitrogenase activity compared to their wild-type
strain, respectively. In line with the results for the nitrogenase activity, plants infected with a nifA
or an rpoN mutant had an N-content comparable with that of uninfected bean plants. This was
significantly lower than the N-content measured in plants containing P. phymatum wild type (Figure 5D).
Plants infected by the cyoB mutant and the AcyoAB strains displayed an N-content that was similar to
the one of uninoculated plants. Together, these results suggest that, besides nifA and rpoN, also cyoB
plays an important role for an efficient establishment of a symbiosis with bean.
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Figure 5. Comparison of the symbiotic properties of P. vulgaris (bean) plants inoculated with different
P. phymatum wild-type and mutant strains: wild-type (wt) and the respective nifA, rpoN, cyoB mutants,
as well as a nalidixic acid-resistant wild-type strain (NAL) and the respective AcyoAB mutant.
Number of nodules per plant (A), dry weight per nodule (B), relative nitrogenase activity (C),
and nitrogen content (D) were quantified 21 dpi. Here, the combined results of at least two independent
experiments are shown. Error bars indicate the standard error of the mean (SEM). For each histogram,
values with the same letter are not significantly different (as assessed with ANOVA, Tukey’s test with
p-value < 0.05). Histograms after the grey dashed line were analyzed by an unpaired student f-test
(p-value < 0.05); the values with the same letter are not statistically significant.

3.4. Role of RpoN in Free-Living Conditions

It is known from several bacteria that RpoN (6°*) is involved in the assimilation of nitrogen
sources [59,71,72]. To investigate if c>* has a similar role in P. phymatum, we examined the ability of
the wild-type, the rpoN mutant, and the complemented rpoN strains to grow in minimal medium in
the presence of different nitrogen sources. We found that the rpoN mutant strain was unable to utilize
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nitrate (NO3 ™) and urea (CH4N;O) as sole nitrogen sources, and that this defect could be restored
in the rpoN complemented strain (Table 4). As expected, the nifA mutant strain was not impaired in
the utilization of the tested nitrogen sources. Taken together, these results suggested that RpoN is
involved in the regulation of nitrite and urea assimilation in P. phymatum.

Table 4. Utilization of various nitrogen sources by P. phymatum wild type, nifA, rpoN mutant, and rpoN

complemented strains !.

Utilization of Nitrogen

Nitrogen Source (s) -
wt nifA mt rpoN mt rpoN complemented

30 mM NH4CI + + + +
0.5 mM NH,Cl + + + +
30 mM NO3~ + + - +
15 mM CH4N,O + + - +

! Growth was assessed with at least two independent replicates by measuring the optical density at 600 nm after
incubation in ABC minimal medium supplemented with several nitrogen sources for 30 h at 30 °C and 220 rpm.
The “+” sign corresponds to ODgyy > 0.6 for ammonium, > 0.3 for nitrate, and > 0.6 for urea; the “+” sign
corresponds to ODggp > 0.4 for ammonium.

Since EPS production has been shown to be dependent on the availability of nitrogen sources
and on the presence of RpoN [59,73], EPS production by the wild-type, the rpoN mutant, and the
complemented strains, as well as by the nifA strain (as control), was examined on Yeast Extract Mannitol
medium (YEM) plates containing 1% mannitol and 0.06% yeast extract. While the rpoN mutant strain
(Figure 6) displayed a reduced amount of EPS compared to the wild type, the nifA mutant and the
rpoN complemented strain produced wild-type levels of EPS. Interestingly, when YEM medium was
supplemented with 0.6% of yeast extract, there was nearly no visible difference between the rpoN
mutant strain and the wild-type strain in EPS production (data not shown), suggesting that rpoN
controls EPS production under nitrogen starvation.

nifA mt rpoN comp

KPR

Figure 6. Exopolysaccharide (EPS) production of the nifA mutant, the rpoN mutant, and the
complemented strains tested on plates supplemented with 0.06% of yeast extract. Plates were incubated

for four days. At least three independent replicates were performed per strain.

4. Discussion

Members of the 3-proteobacterial have been discovered in 2001 to be able to enter a nitrogen-fixing
symbiosis with legumes [4]. In contrast to the x-rhizobial symbiosis with host legumes, where the
different steps leading to the establishment of a successful symbiosis are well studied, very little is
known about the molecular mechanisms that are relevant for these steps in (3-rhizobial symbioses.
Here, we used an RNA-sequencing approach to provide a comprehensive view on the gene expression
profile of P. phymatum grown in either normal or nitrogen-limited free-living conditions, and as
bacteroids in symbiosis with P. vulgaris. To the best of our knowledge, this is the first transcriptome
study from root nodules formed by a -rhizobial strain. By testing the gene expression profile in
nitrogen-limited conditions, we aimed to partially mimic the conditions that rhizobia encounter
in soils lacking nitrogen and in our laboratory settings before colonizing the roots of legumes.
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Apart from genes involved in nitrogen metabolism, a gene cluster potentially involved in EPS
biosynthesis (Bhy_1056-Bphy_1077) showed increased expression when nitrogen became limited.
Exopolysaccharides were shown in several rhizobia to be required for root hairs attachment [74] and
infection [75], the first two steps of the cascade. The gene that showed the most significant and the
second highest upregulation during nitrogen starvation encodes for a potential methyl-accepting
chemotaxis sensory transducer (Bphy_2338). The presence of another gene involved in motility among
the top regulated genes (the flagellar gene fliL) suggests that the cells react to a nitrogen-limited
environment by changing their movement behavior, which is a crucial trait for the successful
colonization and infection of host legume roots [76]. The future construction and characterization of
mutant strains will shed light on the importance of EPS and flagella in a nitrogen-starved environment.
The expression of nod genes, encoding the P. phymatum Nod factor required for the recognition
of the symbiotic partner, changed only slightly in response to nitrogen starvation (Figure S1).
The expression of genes in the nif cluster did not significantly change when the cells were grown
under nitrogen limitation, suggesting that—similar to the situation in «-rhizobia—the presence of a
reduced amount of nitrogen is not sufficient to activate the expression of the nif cluster. In contrast,
a low-oxygen environment highly induced the expression of the genes coding for the nitrogenase
(Table 2). Among the 38 genes commonly upregulated, we found ntrC, which codes for a transcriptional
regulators known to be important for nitrogen control (Ntr) in other organisms [64]. While the Ntr
system is usually switched off during nitrogen fixation in symbiotic «-rhizobia [36], in free-living
diazotrophs such as Azospirillum brasilense the two-component regulatory system NtrB/NtrC has been
shown to be involved in the regulation of nitrogenase activity [77]. Two genes coding for a urea ABC
transporter (Bphy_2251-52) were also among the genes commonly induced under nitrogen-starving
and symbiotic conditions. This may suggest that this organic compound serves an important role in
free-living and symbiotic metabolism.

As expected, the expression of the nif gene cluster (including genes from Bphy_7728 to Bphy_7755,
Figure 3A), was found significantly upregulated inside nodules induced by P. phymatum. Unlike most
a-rhizobia [78], P. phymatum contains a nifV homolog in the genome (upstream of nifB), which is
also highly induced during symbiosis. This gene encodes a homocitrate synthase that synthesizes
homocitrate—a component of the Fe-Mo cofactor of the nitrogenase—which has been shown to be
important in diazotrophs to reduce Nj in free-living conditions [79-81]. The presence of nifV in
P. phymatum may explain the ability of this bacterium to fix nitrogen in free-living conditions [4].
Among the upregulated genes in symbiosis, we found a potential four-component oxidase cluster
also annotated as a cytochrome o ubiquinol oxidase complex. This cluster (Bphy_3646-49, cyoABCD)
was also significantly upregulated in a preliminary transcriptome analysis performed on free-living
cells grown in microaerobic conditions compared to cells growing aerobically, suggesting that this
heme-copper respiratory oxidase could be used by P. phymatum to respire inside root nodules.
Indeed, the classical cbbs-oxidase crucial for symbiosis in o-rhizobia was detected neither in the
P. phymatum genome nor in other symbiotic Paraburkholderia species [44]. The construction of a
cyoB insertion mutant and a cyoAB deletion mutant provided proof that this cluster is indeed
important for an efficient symbiotic interaction. Bean plants inoculated with these mutants
showed a significantly reduced nitrogenase activity and a lower N content compared to plants
infected with the wild type. In previous studies [82,83], three genes were shown to be important
during symbiosis with M. pudica: Bphy_0456, involved in the biosynthesis of branched-chain
amino acids, Bphy_0685, coding for a fructose 1,6-bisphosphatase, and Bphy_0266 (gpmA), coding for
a phosphoglycerate mutase. The expression of these three genes was not regulated in bean root
nodules compared to free-living conditions, suggesting that P. phymatum may upregulate a different
set of genes in its natural host plant Mimosa. Interestingly, and in contrast to the situation in
a-rhizobia [84,85], a gene coding for an isocitrate lyase (Bphy_1368) was found inside the top
500 regulated genes in P. phymatum bacteroids, suggesting that the glyoxylate shunt pathway
is active during [-rhizobial symbiosis. In previous studies on Bradyrhizobium sp. ORS278, the
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ccbL1 gene, which codes for a ribulose 1,5 bis-phosphate carboxylase oxygenase (RuBisCO) needed for
carbon fixation, was proven to have a critical role in symbiotic nitrogen fixation [86]. We noticed here
that the P. phymatum gene coding for ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO;
Bphy_6497, 77% amino acid identity to cchL1 or BRADO1659 of Bradyrhizobium sp. ORS278) was also
upregulated inside root nodules, suggesting a possible role of this enzyme also in 3-rhizobial symbiosis.
The mutation of two P. phymatum regulatory genes known to play a key role for «-rhizobial
symbiosis [38]—the alternative sigma factor RpoN and its activator Nif A—showed that both regulators
are also important for the regulation of nitrogenase activity (Figure 5C). Nodules infected by a
nifA mutant strain were impaired in nitrogen fixation, even 28 dpi [87]. An increased number
of nodules in grape-like structures were produced in plants infected with the P. phymatum nifA
mutant strain. A similar phenotype was observed in the nodules of another legume, soybean, that were
induced by a Bradyrhizobium diazoefficiens nifA mutant [88]. Using a metabolomics approach on
Bradyrhizobium diazoefficiens nodules, we previously speculated that such a phenotype could be due
to a defense reaction of the legume evoked by the nifA mutant, involving an increased production
of phytoalexins [89]. Since NifA is an activator protein of the alternative sigma factor c>* (RpoN),
we constructed an rpoN mutant, which indeed did not show any nitrogenase activity. In addition,
the rpoN gene was found highly expressed in all conditions tested, i.e., nitrogen-replete and -limited
conditions and during symbiosis, suggesting that RpoN may play an important role not only in
symbiosis but also in free-living conditions. In fact, the utilization of nitrogen sources as well as the
EPS production were affected in this strain. In a closely related Burkholderia strain belonging to the
pathogenic clade, RpoN was shown to play a role in free-living conditions and also in vivo, where a
mutant showed reduced virulence in the Caenorhabditis elegans infection model [59].

In summary, this first analysis of bacterial gene expression in symbiotic bean root nodules induced
by a (3-rhizobial strain revealed new insights into this recently discovered symbiosis. It provides a rich
basis for a further dissection of the molecular mechanisms underlying this symbiotic association and for
the elucidation of the mechanistic differences between (3-rhizobial and the much better characterized
a-rhizobial symbioses.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/12/389/s1.
Figure S1: P. phymatum nodulation (nod) gene cluster. Gene names are indicated in italic, whereas the logarithm
(base 2) of the fold changes in transcript expression of the genes under nitrogen-limiting conditions are
shown underneath. The upregulated genes (log,FC > 0.5) are colored in grey, Table S1: bacterial strains,
plasmids, and oligonucleotides used in this study; Table S2: list of the top 200 differentially regulated
genes in nitrogen-starved (S) versus nitrogen-repleted (N) conditions (DESeq analysis; p-value < 0.02,
absolute logy[FC] > 0.87); Table S3: list of the top 500 differentially regulated genes in bacteroids compared
to free-living conditions (DESeq analysis; p-value < 0.01 and absolute logy(Fold change) > 1.6); Table S4:
list of all P. phymatum genes with the logarithm (base 2) of the fold changes in expression, and the p-values
in nitrogen-starved (S) versus -replete (N) conditions, as well as during symbiosis versus free-living conditions,
as calculated by DESeq analysis.
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