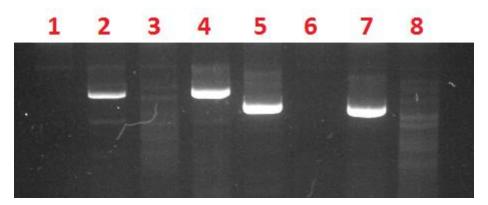

Supplementary Materials

Target 5000: Target Capture Sequencing for Inherited Retinal Degenerations


Adrian Dockery ^{1,*}, Kirk Stephenson ², David Keegan ², Niamh Wynne ³, Giuliana Silvestri ^{4,5}, Peter Humphries ¹, Paul F. Kenna ^{1,3}, Matthew Carrigan ^{1,+} and G. Jane Farrar ^{1,+}

Α	BBS9	CNGB3	GNAT1	К	NEK2	PEX1	RDH12	Т	WFS1
ADIPOR1	BEST1	CNNM4	GNAT2	KCNJ13	NEUROD1	PEX2	RDH5	TEAD1	WFS1
ABCA4	С	COL11A1	GNB3	KCNV2	NMNAT1	PEX7	RGR	TIMM8A	WHRN
ABCC6	C12orf65	COL2A1	GNPTG	KIAA1549	NPHP1	PGK1	RGS9	TIMP3	Z
ABHD12	C1QTNF5	COL9A1	GPR179	KIF11	NPHP3	РНҮН	RGS9BP	TMEM126A	ZNF408
ACBD5	C21orf2	CRB1	GRK1	KIZ	NPHP4	PITPNM3	RHO	TMEM216	ZNF423
ADAM9	C2orf71	CRX	GRM6	KLHL7	NR2E3	PLA2G5	RIMS1	TMEM237	ZNF513
ADAMTS18	C8orf37	CSPP1	GUCA1A	L	NR2F1	PLK4	RLBP1	TOPORS	
ADGRA3	CA4	CTBP2	GUCA1B	LAMA1	NRL	PNPLA6	ROM1	TREX1	
ADGRV1	CABP4	CTNNA1	GUCY2D	LCA5	NYX	POC1B	RP1	TRIM32	
ADIPOR1	CACNA1F	CYP4V2	Н	LRAT	0	POMGNT1	RP1L1	TRNT1	
AGBL5	CACNA2D4	D	HARS	LRIT3	OAT	PRCD	RP2	TRPM1	
AHI1	CAPN5	DHDDS	HGSNAT	LRP5	OFD1	PRDM13	RP9	TSPAN12	
AIPL1	CC2D2A	DHX38	HK1	LZTFL1	OPA1	PROM1	RPE65	TTC8	
ALMS1	CDH23	DMD	HMCN1	М	OPA3	PRPF3	RPGR	TTLL5	
ARL2BP	CDH3	DRAM2	HMX1	MAK	OPN1LW	PRPF31	RPGR	TTPA	
ARL3	CDHR1	DTHD1	Ι	МАРКАРКЗ	OPN1MW	PRPF4	RPGRIP1	ТИВ	
ARL6	CEP164	E	IDH3B	MERTK	OPN1SW	PRPF6	RPGRIP1L	TUBGCP4	
ASRGL1	CEP250	EFEMP1	IFT140	MFN2	OTX2	PRPF8	RS1	TUBGCP6	
ATF6	CEP290	ELOVL4	IFT172	MFRP	Р	PRPH2	RTN4IP1	TULP1	
ATXN7	CERKL	EMC1	IFT27	MFSD8	PANK2	PRPS1	S	U	
В	CFH	EXOSC2	IMPDH1	MIR204	PAX2	R	SAG	UNC119	
BBIP1	СНМ	EYS	IMPG1	MKKS	PCDH15	RAB28	SDCCAG8	USH1C	
BBS1	CIB2	F	IMPG2	MKS1	РСҮТ1А	RAX2	SEMA4A	USH1G	
BBS10	CLN3	FAM161A	INPP5E	МТТР	PDE6A	RB1	SLC24A1	USH2A	
BBS12	CLRN1	FLVCR1	INVS	MVK	PDE6B	RBP3	SLC25A46	V	
BBS2	CLUAP1	FSCN2	IQCB1	МҮО7А	PDE6C	RBP4	SLC7A14	VCAN	
BBS4	CNGA1	FZD4	ITM2B	Ν	PDE6G	RCBTB1	SNRNP200	W	
BBS5	CNGA3	G	J	NBAS	PDE6H	RD3	SPATA7	WDPCP	
BBS7	CNGB1	GDF6	JAG1	NDP	PDZD7	RDH11	SPP2	WDR19	

Table S1. Full list of genes captured in NGS panel.

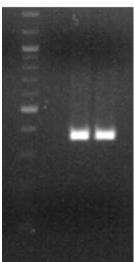
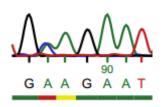
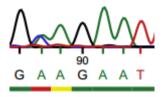


Figure S1. An illustration of the PCR strategy designed to detect a large homozygous inversion. Primers are indicated by colour; OAT-1 (**black**), OAT-2 (**red**), OAT-3 (**green**) and OAT-4 (**purple**). Broken lines indicate genomic breakpoints. Circular arrows indicate an inversion event. The top illustration depicts how primers would anneal around the breakpoints in a control sample. The bottom illustration shows how the internal primers (OAT-2 and OAT-3) are shuffled in an inversion event to form new primer pairings, detectable by PCR analysis.




Figure S2. Confirmation of an *OAT* inversion using strategic PCR design. If the wildtype *OAT* sequence is present, the primer sets 1 + 2 and 3 + 4 can be used to generate a PCR product. If the inversion has occurred primer sets 1 + 3 and 2 + 4 can be used to generate of a PCR product. Unaffected patients is positive for products of a wildtype sequence. Patient H58 is positive only for inversion-specific products. Lane 1: Patient H58 Primers 1 and 2; Lane 2: Patient H58 Primers 3 and 4; Lane 3: Patient H58 Primers 1 and 3; Lane 4: Patient H58 Primers 2 and 4; Lane 5: Unaffected Patient Primers 1 and 2; Lane 6: Unaffected Patient Primers 3 and 4; Lane 7: Unaffected Patient Primers 1 and 3; Lane 8: Unaffected Patient Primers 2 and 4.

1234

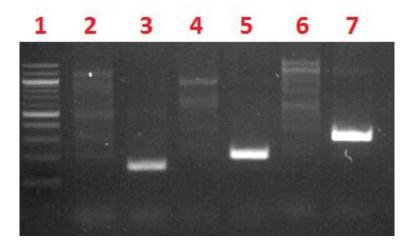


Figure S3. Gel confirmation of *USH2A* deletion. Primers were designed to target the region of deletion in affected patients C41 and E15. A product of the desired size (~300bp) would only be formed if the deletion was present. The sample from the unaffected sibling in the same pedigree, P36, did not form a product. A product was formed from the samples of C41 and E15. Lane 1: 100 bp Ladder; Lane 2: Unaffected Patient P36; Lane 3: Affected Patient C41; Lane 4: Affected Patient E15.

Figure S4. Sanger sequencing trace of *USH2A* mutation, p.Cys759Phe. The top trace is unaffected patient P36 and the bottom trace is affected patient E15. It is clear that both patients share the same heterozygous point mutation.

Figure S5. Analysis of *USH1C* deletion by use of PCR products. Primers were designed to amplify each exon believed to be deleted in Patient 1363. If the sequence for the exon was present a product would be formed. Exons 3 and 4 were designed as a single amplicon due to their proximity. The unaffected individual is positive for all of the *USH1C* exons. Patient 1363 is negative for all *USH1C* exons. Lane 1: 100 bp Ladder; Lane 2: Patient 1363 with primers for exon 1; Lane 3: Unaffected Patient with primers for exon 1; Lane 4: Patient 1363 with primers for exon 2; Lane 5: Unaffected Patient with primers for exon 2; Lane 6: Patient 1363 with primers for exons 3 + 4; Lane 7: Unaffected Patient with primers for exons 3 + 4.