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Abstract:



Xeroderma pigmentosum group C (XPC) is a key component of the nucleotide excision repair (NER) pathway. Dysfunctional XPC protein may impair NER-mediated DNA repair capacity and further lead to genomic instability and carcinogenesis. Two common nonsynonymous polymorphisms in the XPC gene, Lys939Gln (rs2228001 A > C) and Ala499Val (rs2228000 C > T), have been investigated in various types of cancer. We genotyped these two polymorphisms in 1141 cases with histologically confirmed colorectal cancer (CRC) and 1173 healthy controls to explore their causative association with CRC susceptibility. Overall, no association was observed between these two variants and the risk of CRC. Our meta-analysis also confirmed a lack of overall association. Stratified analyses were performed by age, gender, smoking status, pack-year, drinking status, tumor sites, and Duke’s stages. We found that XPC Lys939Gln polymorphism was significantly associated with an increased CRC risk in subjects at 57 years of age or younger (adjusted odds ratio (OR) = 1.37, 95% confidence interval (CI) = 1.004–1.86, p = 0.047) and non-drinkers (adjusted OR = 1.53, 95% CI = 1.10–2.12, p = 0.011). Our results indicated that XPC Lys939Gln may be a low-penetrance CRC susceptibility polymorphism. Our findings warrant further validation.






Keywords:


colorectal cancer; XPC; polymorphism; DNA repair; genetic susceptibility








1. Introduction


DNA damage constantly occurs because of the exposure to endogenous and exogenous mutagens. There are several DNA repair mechanisms that extensively eliminate genetic errors to maintain genome integrity, including base excision repair, mismatch repair, double-strand break repair, and nucleotide excision repair (NER). Among these DNA repair pathways, NER is in charge of repairing bulky DNA lesions, such as pyrimidine dimers, UV-induced DNA damage, chemical adducts, and crosslinks [1,2]. There are at least four critical steps involved in the NER pathway: (a) recognition of damaged DNA via a protein complex containing xeroderma pigmentosum group C (XPC); (b) uncoiling of DNA mediated by the transcription factor II human (TFIIH) complex; (c) excision of the damaged single-stranded fragment; (d) gap-filling DNA synthesis and DNA ligation [2,3].



XPC is an important protein in the NER pathway; it enables DNA repair by complexing with RAD23 homolog B (RAD23B) to facilitate the recognition of DNA damage and the initiation of DNA repair [4,5,6]. The detection of damaged DNA is the rate-limiting step in the NER pathway [5]. Therefore, the function of XPC is critical for proper DNA repair. Polymorphisms in the XPC gene may influence the function of the protein and an individual’s DNA repair capacity, and thereby affect genetic instability and modify individual predisposition to cancer.



The XPC gene, located on chromosome 3p25, is highly polymorphic. To date, at least 102 single nucleotide polymorphisms (SNPs) have been reported in the coding region of this gene [7]. Of these coding region SNPs, XPC Lys939Gln (rs2228001 A > C) and Ala499Val (rs2228000 C > T) polymorphisms have been foci of interest for their potential function, as well as association with the risk of various types of cancer, including breast cancer, lung cancer, bladder cancer, and colorectal cancer (CRC) [8]. A number of studies have been conducted to explore the association between these two polymorphisms and CRC susceptibility in different ethnicities which have shown some promising results [9,10,11]. However, apart from one study with 1028 cases [12] and the current study (1141 cases), the number of cases in the included studies was relatively small, ranging from 133 to 665. These studies might be limited by low statistical power; as a result, their conclusions might not be convincing. Moreover, such an association has not been evaluated in the southern Chinese population. With this in mind, we genotyped the two SNPs and assessed their association with CRC susceptibility in 1141 CRC cases and 1173 controls recruited from southern China.




2. Results


2.1. Characteristics of Study Subjects


We analyzed in total 1141 CRC cases and 1173 healthy controls in the present study (Table 1). There was no significant difference between cases and controls (p = 0.518) when compared by the matching factor, gender. However, cases were significantly older than controls (55.7 ± 13.7 vs. 45.2 ± 11.6). The percentage of ever smokers in cases (27.3%) was significantly lower than that in controls (43.6%). The pack-years also differed significantly between cases and controls. Moreover, there were significantly fewer drinkers in cases than in controls. In this study, 44.3% (505) of cases had colon cancer, while 55.7% (636) had rectal cancer. In terms of the clinical stage, 130 (11.4%), 363 (31.8%), 359 (31.5%), and 289 (25.3%) patients were diagnosed with Duke’s stage A, B, C, and D colorectal carcinoma, respectively.



Table 1. Clinical and demographic characteristics of colorectal cancer patients and cancer-free controls.







	
Variables

	
Cases No. (%)

	
Controls No. (%)

	
p a






	
All subjects

	
1141 (100.0)

	
1173 (100.0)

	




	
Gender

	

	

	




	
Males

	
753 (66.0)

	
789 (67.3)

	
0.518




	
Females

	
388 (34.0)

	
384 (32.7)

	




	
Age, year

	
13–89

	
16–80

	




	
Mean b

	
55.7 ± 13.7

	
45.2 ± 11.6

	
<0.0001




	
≤50

	
367 (32.2)

	
789 (67.3)

	




	
51–60

	
342 (30.0)

	
285 (24.3)

	




	
61–70

	
273 (23.9)

	
73 (6.2)

	




	
>70

	
159 (13.9)

	
26 (2.2)

	




	
Smoking status

	

	

	




	
Never

	
830 (72.7)

	
662 (56.4)

	
<0.0001




	
Ever

	
311 (27.3)

	
511 (43.6)

	




	
Drinking status

	

	

	




	
No

	
968 (84.8)

	
600 (51.2)

	
<0.0001




	
Yes

	
173 (15.2)

	
573 (48.8)

	




	
Pack-years

	

	

	




	
0

	
830 (72.7)

	
662 (56.4)

	
<0.0001




	
≤30

	
207 (18.1)

	
383 (32.7)

	




	
>30

	
104 (9.1)

	
128 (10.9)

	




	
Sites

	

	

	




	
Colon

	
505 (44.3)

	
-

	




	
Rectal

	
636 (55.7)

	
-

	




	
Duke Stages

	

	

	




	
A

	
130 (11.4)

	
-

	




	
B

	
363 (31.8)

	
-

	




	
C

	
359 (31.5)

	
-

	




	
D

	
289 (25.3)

	
-

	








a Two-sided chi square test for distributions between colorectal cancer cases and cancer-free controls. b Data are mean ± standard deviation.








Genotype frequency distributions of the two SNPs in controls were in agreement with the Hardy–Weinberg equilibrium (HWE) (p = 0.300 for rs2228001 A > C, and p = 0.095 for rs2228000 C > T). Overall, neither XPC Lys939Gln (rs2228001 A > C) nor Ala499Val (rs2228000 C > T) polymorphism was associated with the risk of CRC (Table 2). We next combined these two polymorphisms, which might increase the effect of individual polymorphisms and improve cancer risk prediction [13]. However, we found that carriers of one or two risk XPC genotypes had similar cancer risk to those carrying two wild-type genotypes (adjusted odds ratio (OR) = 1.13, 95% confidence interval (CI) = 0.77–1.66, p = 0.524 for carriers of one risk genotype; adjusted OR = 1.03, 95% CI = 0.69–1.54, p = 0.884 for carriers of two risk genotypes) (Table 2).



Table 2. Associations between xeroderma pigmentosum group C (XPC) gene polymorphisms and colorectal cancer risk.







	
Genotypes

	
Cases

	
Controls

	
p a

	
OR (95% CI)

	
p

	
Adjusted OR (95% CI)

	
p b






	
rs2228001 A > C




	
AA

	
476 (41.7)

	
472 (40.2)

	

	
1.00

	

	
1.00

	




	
AC

	
497 (43.6)

	
557 (47.5)

	

	
0.89 (0.74–1.06)

	
0.172

	
0.92 (0.76–1.13)

	
0.667




	
CC

	
168 (14.7)

	
144 (12.3)

	

	
1.16 (0.90–1.50)

	
0.266

	
1.15 (0.86–1.54)

	
0.426




	
AC/CC

	
665 (58.3)

	
701 (59.8)

	
0.470 d

	
0.94 (0.80–1.11)

	
0.470

	
0.97 (0.80–1.17)

	
0.752




	
Additive model

	
0.089 c

	
1.02 (0.91–1.15)

	
0.734

	
1.06 (0.86–1.31)

	
0.568




	
AA/AC

	
973 (85.3)

	
1029 (87.7)

	

	
1.00

	

	
1.00

	




	
CC

	
168 (14.7)

	
144 (12.3)

	
0.085 e

	
1.23 (0.97–1.57)

	
0.086

	
1.20 (0.92–1.58)

	
0.188




	
rs2228000 C > T




	
CC

	
432 (37.9)

	
429 (36.6)

	

	
1.00

	

	
1.00

	




	
CT

	
531 (46.5)

	
583 (49.7)

	

	
0.91 (0.76–1.08)

	
0.269

	
0.95 (0.78–1.16)

	
0.621




	
TT

	
178 (15.6)

	
161 (13.7)

	

	
1.10 (0.85–1.41)

	
0.467

	
1.11 (0.83–1.47)

	
0.485




	
CT/TT

	
709 (62.1)

	
744 (63.4)

	
0.521 d

	
0.95 (0.80–1.12)

	
0.521

	
0.99 (0.81–1.19)

	
0.878




	
Additive model

	
0.241 c

	
1.01 (0.90–1.14)

	
0.837

	
1.03 (0.90–1.18)

	
0.688




	
CC/CT

	
963 (84.4)

	
1012 (86.3)

	

	
1.00

	

	
1.00

	




	
TT

	
178 (15.6)

	
161 (13.7)

	
0.202 e

	
1.16 (0.92–1.46)

	
0.203

	
1.14 (0.88–1.48)

	
0.327




	
Combined effect of XPC risk genotypes




	
0

	
71 (6.2)

	
77 (6.6)

	

	
1.00

	

	
1.00

	




	
1

	
766 (67.1)

	
747 (63.7)

	

	
1.11 (0.79–1.56)

	
0.538

	
1.13 (0.77–1.66)

	
0.524




	
2

	
304 (26.6)

	
349 (29.8)

	
0.208

	
0.95 (0.66–1.35)

	
0.756

	
1.03 (0.69–1.54)

	
0.884








CI, confidence interval; OR, odds ratio. a Chi square test for genotype distributions between cases and controls; b Adjusted for age, gender, smoking and drinking status; c for additive genetic models; d for dominant genetic models; e for recessive genetic models.









2.2. Stratification Analysis


We performed a stratified analysis by age, gender, smoking status, pack-year, drinking status, tumor sites, and Duke’s stages (Table 3). A stratified analysis by age indicated that XPC rs2228001 A > C polymorphism was significantly associated with an increased CRC risk in subjects at 57 years of age and younger (adjusted OR = 1.37, 95% CI = 1.004–1.86, p = 0.047). A stratified analysis also revealed increased CRC risk associated with rs2228001 for never smokers (OR = 1.42, 95% CI = 1.05–1.92, p = 0.024); however, the significance of the association disappeared after adjustment for age, gender, smoking and drinking status. Moreover, non-drinkers carrying rs2228001 AA/AC genotypes showed a significantly increased risk of CRC (adjusted OR = 1.53, 95% CI = 1.10–2.12, p = 0.011), which was likely to be due to chance. In term of tumor sites, XPC rs2228001 A > C did not seem to confer predisposition to either colon cancer or rectal cancer. XPC rs2228001 A > C polymorphism was not associated with Duke’s stage, either. Moreover, no significant association with CRC risk was found for the rs2228000 C > T polymorphism in the stratified analysis.



Table 3. Stratification analysis for associations between the XPC rs2228001 A > C and rs2228000 C > T genotypes with colorectal cancer risk.







	
Variables

	
rs2228001 A > C (Cases/Controls)

	
OR (95% CI)

	
p

	
Adjusted OR (95% CI)

	
p a

	
rs2228000 C > T (Cases/Controls)

	
OR (95% CI)

	
p

	
Adjusted OR (95% CI)

	
p a




	
AA/AC

	
CC

	
CC/CT

	
TT






	
Median age, years




	
≤57

	
501/874

	
97/125

	
1.35 (1.02–1.80)

	
0.039

	
1.37 (1.004–1.86)

	
0.047

	
500/865

	
98/134

	
1.27 (0.95–1.68)

	
0.103

	
1.20 (0.89–1.62)

	
0.236




	
>57

	
472/155

	
71/19

	
1.23 (0.72–2.10)

	
0.456

	
1.09 (0.63–1.89)

	
0.749

	
463/147

	
80/27

	
0.94 (0.59–1.51)

	
0.801

	
0.93 (0.57–1.50)

	
0.755




	
Gender




	
Males

	
643/689

	
110/100

	
1.18 (0.88–1.58)

	
0.269

	
1.14 (0.81–1.60)

	
0.445

	
628/685

	
125/104

	
1.31 (0.99–1.74)

	
0.060

	
1.28 (0.92–1.77)

	
0.140




	
Females

	
330/340

	
58/44

	
1.36 (0.89–2.07)

	
0.153

	
1.47 (0.91–2.39)

	
0.116

	
335/327

	
53/57

	
0.91 (0.61–1.36)

	
0.638

	
0.90 (0.58–1.42)

	
0.661




	
Smoking status




	
Never

	
701/586

	
129/76

	
1.42 (1.05–1.92)

	
0.024

	
1.37 (0.96–1.95)

	
0.084

	
705/569

	
125/93

	
1.08 (0.81–1.45)

	
0.584

	
1.15 (0.82–1.61)

	
0.433




	
Ever

	
272/443

	
39/68

	
0.93 (0.61–1.43)

	
0.753

	
1.03 (0.65–1.64)

	
0.898

	
258/443

	
53/68

	
1.34 (0.91–1.98)

	
0.144

	
1.16 (0.75–1.81)

	
0.501




	
Pack-year




	
0

	
701/586

	
129/76

	
1.42 (1.05–1.92)

	
0.024

	
1.37 (0.96–1.95)

	
0.084

	
705/569

	
125/93

	
1.08 (0.81–1.45)

	
0.584

	
1.15 (0.82–1.61)

	
0.433




	
≤30

	
175/328

	
32/55

	
1.09 (0.68–1.75)

	
0.720

	
1.00 (0.59–1.71)

	
0.991

	
170/330

	
37/53

	
1.36 (0.86–2.14)

	
0.194

	
1.13 (0.66–1.93)

	
0.656




	
>30

	
97/115

	
7/13

	
0.64 (0.25–1.66)

	
0.358

	
0.87 (0.32–2.38)

	
0.791

	
88/113

	
16/15

	
1.37 (0.64–2.92)

	
0.416

	
1.18 (0.53–2.62)

	
0.681




	
Drinking status




	
Never

	
813/533

	
155/67

	
1.52 (1.12–2.06)

	
0.008

	
1.53 (1.10–2.12)

	
0.011

	
818/512

	
150/88

	
1.07 (0.80–1.42)

	
0.658

	
1.09 (0.81–1.48)

	
0.575




	
Ever

	
160/496

	
13/77

	
0.52 (0.28–0.97)

	
0.039

	
0.63 (0.32–1.23)

	
0.178

	
145/500

	
28/73

	
1.32 (0.82–2.12)

	
0.247

	
1.48 (0.84–2.61)

	
0.175




	
Tumor sites




	
Colon

	
431/1209

	
74/144

	
1.23 (0.91–1.66)

	
0.185

	
1.31 (0.93–1.85)

	
0.124

	
429/1012

	
76/161

	
1.11 (0.83–1.50)

	
0.475

	
1.12 (0.80–1.57)

	
0.497




	
Rectal

	
542/1209

	
94/144

	
1.24 (0.94–1.64)

	
0.133

	
1.15 (0.84–1.58)

	
0.377

	
534/1012

	
102/161

	
1.20 (0.92–1.57)

	
0.183

	
1.14 (0.84–1.54)

	
0.394




	
Duke stages




	
A + B

	
425/1209

	
68/144

	
1.14 (0.84–1.56)

	
0.397

	
1.10 (0.77–1.58)

	
0.593

	
421/1012

	
72/161

	
1.08 (0.80–1.45)

	
0.637

	
1.09 (0.77–1.54)

	
0.644




	
C + D

	
548/1209

	
100/144

	
1.30 (0.99–1.72)

	
0.059

	
1.31 (0.97–1.79)

	
0.083

	
542/1012

	
106/161

	
1.23 (0.94–1.61)

	
0.129

	
1.18 (0.88–1.59)

	
0.272








OR, odds ratio; CI, confidence interval. a Obtained in logistic regression models with adjustment for age, gender, smoking and drinking status.









2.3. Meta-Analysis Results


The two XPC polymorphisms have been frequently studied for their ability to modify CRC susceptibility. However, results remain open to more than one interpretation. We next carried out meta-analysis to further explore the association between these two polymorphisms and CRC risk by including eligible publications and our data (Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram). Overall, there were 12 publications consisting of 13 studies (6107 cases and 8207 controls) for the rs2228001 A > C polymorphism and five publications consisting of six eligible studies (3533 cases and 4860 controls) for the rs2228000 C > T polymorphism (Table 4). After pooling all studies together, risk estimates indicated a lack of correlation between the rs2228001 A>C polymorphism and CRC risk (Table 5 and Figure 1). Similarly, null association with CRC risk was found for the rs2228000C > T polymorphism in overall and stratified analyses (Table 5 and Figure 2).


Figure 1. Forest plot of effect estimates for xeroderma pigmentosum group C (XPC) rs2228001 A > C polymorphism with overall colorectal cancer risk by a recessive model. For each study, the estimates of odds ratio (OR) and its 95% confidence interval (CI) are plotted with a box and a horizontal line. ◊, pooled ORs and its 95% CIs.



[image: Genes 07 00073 g001]





Figure 2. Forest plot of effect estimates for XPC rs2228000 C > T polymorphism with overall colorectal cancer risk by a recessive model. For each study, the estimates of OR and its 95% CI are plotted with a box and a horizontal line. ◊, pooled ORs and its 95% CIs.



[image: Genes 07 00073 g002]






Table 4. Characteristics of available studies included in the current meta-analysis.







	
Study

	
Year

	
Country

	
Ethnicity

	
Source

	
Genotyping

	
Number of Cases

	
Number of Controls

	
MAF

	
HWE






	
rs2228001 A > C

	

	

	

	

	

	
All

	
AA

	
AC

	
CC

	
All

	
AA

	
AC

	
CC

	

	




	
Huang

	
2006

	
USA

	
Caucasian

	
PB

	
TaqMan

	
665

	
253

	
300

	
112

	
667

	
241

	
312

	
114

	
0.40

	
0.450




	
Hansen

	
2007

	
Denmark

	
Caucasian

	
PB

	
TaqMan

	
395

	
141

	
204

	
50

	
797

	
307

	
392

	
98

	
0.37

	
0.112




	
Pardini

	
2008

	
Czech

	
Caucasian

	
HB

	
PCR-RFLP

	
532

	
171

	
268

	
93

	
532

	
189

	
243

	
100

	
0.42

	
0.165




	
Engin

	
2010

	
Turkey

	
Caucasian

	
HB

	
PCR-RFLP

	
110

	
22

	
63

	
25

	
116

	
25

	
55

	
36

	
0.55

	
0.642




	
Wu

	
2011

	
China

	
Asian

	
PB

	
PCR-RFLP

	
420

	
155

	
204

	
61

	
842

	
363

	
375

	
104

	
0.35

	
0.639




	
Gil

	
2012

	
Poland

	
Caucasian

	
HB

	
PCR-RFLP

	
133

	
48

	
71

	
14

	
100

	
43

	
46

	
11

	
0.34

	
0.803




	
Liu

	
2012

	
China

	
Asian

	
PB

	
TaqMan

	
1028

	
360

	
565

	
103

	
1085

	
453

	
500

	
132

	
0.35

	
0.740




	
Yue

	
2013

	
China

	
Asian

	
HB

	
PCR-RFLP

	
428

	
142

	
225

	
61

	
450

	
174

	
212

	
64

	
0.38

	
0.964




	
Ahmad Aizat

	
2013

	
Malaysia

	
Asian

	
HB

	
PCR-RFLP

	
255

	
108

	
106

	
41

	
255

	
129

	
100

	
26

	
0.30

	
0.316




	
Steck

	
2014

	
USA

	
Caucasian

	
PB

	
MassARRAY

	
303

	
103

	
148

	
52

	
532

	
191

	
252

	
89

	
0.40

	
0.704




	
Steck

	
2014

	
USA

	
African

	
PB

	
MassARRAY

	
226

	
126

	
91

	
9

	
322

	
149

	
142

	
31

	
0.32

	
0.736




	
Paszkowska-Szczur

	
2015

	
Poland

	
Caucasian

	
PB

	
TaqMan

	
471

	
187

	
202

	
82

	
1336

	
480

	
647

	
209

	
0.40

	
0.711




	
Hua

	
Current

	
China

	
Asian

	
PB

	
TaqMan

	
1141

	
476

	
497

	
168

	
1173

	
472

	
557

	
144

	
0.36

	
0.300




	
rs2228000 C > T

	

	

	

	

	

	
All

	
CC

	
CT

	
TT

	
All

	
CC

	
CT

	
TT

	

	




	
Huang

	
2006

	
USA

	
Caucasian

	
PB

	
TaqMan

	
689

	
397

	
261

	
31

	
703

	
403

	
259

	
41

	
0.24

	
0.942




	
Wu

	
2011

	
China

	
Asian

	
PB

	
PCR-RFLP

	
419

	
172

	
195

	
52

	
838

	
315

	
406

	
117

	
0.38

	
0.447




	
Steck

	
2014

	
USA

	
Caucasian

	
PB

	
MassARRAY

	
303

	
177

	
104

	
22

	
535

	
293

	
207

	
35

	
0.26

	
0.847




	
Steck

	
2014

	
USA

	
African

	
PB

	
MassARRAY

	
228

	
175

	
51

	
2

	
323

	
276

	
47

	
0

	
0.07

	
0.158




	
Paszkowska-Szczur

	
2015

	
Poland

	
Caucasian

	
PB

	
TaqMan

	
753

	
443

	
269

	
41

	
1288

	
548

	
563

	
177

	
0.36

	
0.094




	
Hua

	
Current

	
China

	
Asian

	
PB

	
TaqMan

	
1141

	
432

	
531

	
178

	
1173

	
429

	
583

	
161

	
0.39

	
0.095








HB, hospital based; PB, population based; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; MAF, minor allele frequency; HWE, Hardy–Weinberg equilibrium.








Table 5. Meta-analysis of the association between XPC rs2228001 A>C and rs2228001 C>T polymorphisms and colorectal cancer risk.







	
Variables

	
No. of

Studies

	
Homozygous

	
Heterozygous

	
Recessive

	
Dominant

	
Allele Comparison




	

	
OR (95% CI)

	
p het

	
OR (95% CI)

	
p het

	
OR (95% CI)

	
p het

	
OR (95% CI)

	
p het

	
OR (95% CI)

	
p het






	
rs2228001 A > C

	
CC vs. AA

	
AC vs. AA

	
CC vs. (AC + AA)

	
(AC + CC) vs. AA

	
C vs. A




	
All

	
13

	
1.07 (0.96–1.19)

	
0.175

	
1.09 (0.96–1.24)

	
0.002

	
1.01 (0.89–1.15)

	
0.083

	
1.08 (0.97–1.21)

	
0.005

	
1.04 (0.97–1.12)

	
0.050




	
Ethnicity




	
Caucasian

	
7

	
1.01 (0.87–1.18)

	
0.984

	
1.04 (0.90–1.20)

	
0.169

	
0.99 (0.87–1.14)

	
0.789

	
1.02 (0.91–1.14)

	
0.384

	
1.01 (0.94–1.08)

	
0.851




	
Asian

	
5

	
1.18 (1.02–1.38)

	
0.294

	
1.20 (0.98–1.48)

	
0.004

	
1.11 (0.89–1.39)

	
0.061

	
1.21 (1.03–1.43)

	
0.030

	
1.12 (1.03–1.21)

	
0.266




	
African

	
1

	
0.34 (0.16–0.75)

	
/

	
0.76 (0.53–1.08)

	
/

	
0.39 (0.18–0.84)

	
/

	
0.68 (0.49–0.96)

	
/

	
0.69 (0.52–0.90)

	
/




	
Source of control




	
PB

	
8

	
1.04 (0.92–1.17)

	
0.122

	
1.02 (0.87–1.20)

	
<0.001

	
1.01 (0.87–1.19)

	
0.072

	
1.02 (0.88–1.18)

	
0.002

	
1.02 (0.94–1.11)

	
0.040




	
HB

	
5

	
1.16 (0.93–1.45)

	
0.358

	
1.27 (1.08–1.49)

	
0.995

	
1.00 (0.77–1.30)

	
0.193

	
1.25 (1.07–1.45)

	
0.924

	
1.11 (0.99–1.25)

	
0.315




	
rs2228000 C > T

	
TT vs. CC

	
CT vs. CC

	
TT vs. (CT + CC)

	
(CT + TT) vs. CC

	
T vs. C




	
All

	
6

	
0.77 (0.46–1.31)

	
<0.001

	
0.91 (0.72–1.14)

	
<0.001

	
0.83 (0.52–1.30)

	
<0.001

	
0.90 (0.69–1.19)

	
<0.001

	
0.93(0.72–1.19)

	
<0.001




	
Ethnicity




	
Caucasian

	
3

	
0.60 (0.26–1.36)

	
<0.001

	
0.79 (0.56–1.13)

	
0.001

	
0.66 (0.33–1.31)

	
0.001

	
0.76 (0.49–1.17)

	
<0.001

	
0.78 (0.53–1.15)

	
<0.001




	
Asian

	
2

	
0.98 (0.74–1.30)

	
0.195

	
0.90 (0.78–1.04)

	
0.860

	
1.04 (0.79–1.37)

	
0.182

	
0.92 (0.80–1.05)

	
0.547

	
0.97 (0.87–1.09)

	
0.261




	
African

	
1

	
7.88 (0.38–165.05)

	
/

	
1.71 (1.10–2.66)

	
/

	
7.14 (0.34–149.46)

	
/

	
1.78 (1.15–2.75)

	
/

	
1.75 (1.16–2.63)

	
/




	
Source of control




	
PB

	
6

	
0.77 (0.46–1.31)

	
<0.001

	
0.91 (0.72–1.14)

	
<0.001

	
0.83 (0.52–1.30)

	
<0.001

	
0.90 (0.69–1.19)

	
<0.001

	
0.93(0.72–1.19)

	
<0.001








OR, odds ratio; CI, confidence interval; HB, hospital based; PB, population based.










3. Discussion


The association between two common nonsynonymous XPC polymorphisms (rs2228001 A > C and rs2228000 C > T) and the risk of CRC was evaluated in 1141 CRC cases and 1173 healthy controls enrolled from southern China. We found no statistical evidence of a significant association between these two polymorphisms and the risk of CRC. A combined analysis with these two polymorphisms suggested that subjects carrying one or two risk genotypes did not show increased CRC risk, when compared with non-carriers. Stratified analyses by age, gender, smoking status, pack-year, drinking status, tumor sites, and Duke’s stages demonstrated a significant association between the XPC rs2228001 variant allele and increased CRC risk in participants at 57 years of age or under, non-smokers, and non-drinkers. However, in the stratified analysis, age, smoking status, and drinking status had no effect on the association between the rs2228000 C > T polymorphism and the risk of CRC. The role of the XPC gene in carcinogenesis started to attract attention because of the observation that mutations in the DNA repair genes can cause the inherited disease xeroderma pigmentosum (XP). This disease is characterized by hypersensitivity to UV light due to impaired DNA repair capacity. XP patients have an approximately 1000-fold higher risk of developing multiple skin cancers [14]. XPC participates in NER by recognizing specific changes in the DNA structures, instead of the lesions themselves [15]. Upon recognition of damaged DNA, the XPC complex can interact with xeroderma pigmentosum group A (XPA) or TFIIH to enable the downstream steps of NER, including excision and restoration of DNA [16]. There are three widely investigated common polymorphisms in the XPC gene, XPC rs2228001 A > C, rs2228000 C > T [8], and a poly (AT) deletion/insertion on intron 9 [17]. The XPC rs2228001 A > C polymorphism, an A-to-C transition in exon 15, leads to a substitution of glutamine for lysine in codon 939 (Lys939Gln), while rs2228000 C > T polymorphism is a C-to-T transition in exon 8, resulting in the replacement of alanine with valine in codon 499 (Ala499Val) [18]. The XPC rs2228001 A > C polymorphism is located in the domain interacting with TFIIH. Both biological and biochemical evidence showed that XPC rs2228001 A > C polymorphism could alter the DNA repair capacity [19,20]. Moreover, lymphocytes from individuals with this XPC polymorphism were shown to have a reduced capacity of repairing benzo(a)pyrene DNA adducts [21].



Our findings were in line with some previous studies. A number of case-control studies have been carried out to investigate the association between XPC rs2228001 A > C polymorphism and the risk of CRC among Caucasians [22,23,24,25,26,27,28]. Despite biological plausibility, none of those investigations provided evidence of the association of this polymorphism with CRC susceptibility [22,23,24,25,26,27,28]. Several studies have also evaluated the role of XPC rs2228001 A > C polymorphism in CRC among Asians [11,12,29,30]. Wu et al. [29] reported that carriers of the CC genotype had a significantly increased risk of CRC in an eastern Chinese population with 421 CRC patients and 845 controls. Liu et al. [12] assessed the association in a northeastern Chinese population including 1028 CRC cases and 1085 controls. They found that the XPC rs2228001 A > C polymorphism was significantly associated with increased CRC risk under the heterozygous (OR = 1.40, 95% CI = 1.16–1.69) and dominant (OR = 1.31, 95% CI = 1.10–1.56, p = 0.001) genetic models. In contrast, Yue et al. [30] failed to repeat the reported association in Chinese patients in a study population of 428 CRC cases and 450 controls. The conflicting results regarding the association from different studies might be, in part, attributed to the variations in samplings, sample sizes, genotyping methods, genetic backgrounds, and ethnicities. It was also worth noting that we identified XPC rs2228001 A > C polymorphism as a CRC susceptibility variant in some subpopulations, including participants at 57 years of age and under, non-smokers, and non-drinkers, but these findings could lack causality. Taken together, these findings suggest that XPC rs2228001 A > C polymorphism may be a low-penetrance common polymorphism with a moderate effect on CRC susceptibility. Large, well-designed multicenter studies, with consideration of epidemiological characteristics and lifestyles, should be performed to clarify the role of XPC rs2228001 A > C polymorphism in CRC carcinogenesis.



When compared with the XPC rs2228001 A > C polymorphism, relatively fewer studies have examined the association of the rs2228000 C > T polymorphism with CRC susceptibility [25,27,28,29]. The results from three studies were similar to ours [25,28,29]. Interestingly, Steck et al. [28] reported a significantly positive association between this polymorphism and CRC risk in African Americans, while another study demonstrated an association in the reverse direction in Caucasians [27]. Several meta-analyses on the association between these two polymorphisms and CRC risk have been published [8,10,31]. Since then, many relevant studies have been reported. Therefore, we also performed a meta-analysis to reevaluate the association of interest, with the addition of more studies. To date, the current meta-analysis was the largest pooled study on this topic and showed null association for these two polymorphisms.



Replication study is the golden method for the validation of the genetic associations. We tested the association of interest in the study with a relatively large sample size. As a result, the statistical power was largely increased in comparison with previous studies and the results were convincing. In the present study, the statistical power to detect a significant finding in younger subjects, never smokers, and never drinkers was 77.2%, 65.4%, and 47.9%, respectively. While using our sample size, the statistical power to detect the OR of 1.20 was approximately 70% in a recessive genetic model. Therefore, this study was important in defining genetic susceptibility to CRC. Given that the genetic backgrounds of populations may vary depending on regions and ethnicities, findings from other regions and races may not be applicable to the southern Chinese population. This study was the first one to evaluate the association in the southern Chinese population. Moreover, single case-control studies often yield conflicting results, partially due to the relatively small sample sizes of each study and variations in samplings, ethnicities, genotyping methods, and study designs (e.g., population-based vs. hospital-based) among studies. To overcome these drawbacks, we also conducted a meta-analysis on the associations of interest by pooling all eligible studies and ours together. The meta-analysis results verified our findings from the current case-control study.



However, several limitations of the studies were deserving of attention. First, the present study only had a moderate sample size. Especially, the sample size in the stratified analysis was even smaller and for this reason the statistical power might be limited. Second, we only analyzed two potentially functional polymorphisms in the XPC gene. More potentially functional polymorphisms in the XPC gene should be studied. Third, details on other risk factors, including lack of exercise, being overweight or obese, and high consumption of red meat, were not available for cases and controls, which prevented us from further investigating the effects of these parameters on the association. Fourth, the current study was a gender matched case-control study; age and other factors, such as smoking and drinking status, were not factored into the study design, which might lead to a selection bias. Fifth, an information collection bias might exist. For example, the cases had a lower percentage of individuals with a history of smoking or alcohol consumption than controls did in our current study. Sixth, 32.2% of the cases with colorectal cancer were 50 years of age or younger, which was a little higher than that (21.9%) in previous investigations performed in central China [32]. This discrepancy may be ascribed to geographical diversities. Moreover, some of our cases might have a family history of cancer. Finally, future in vitro and in vivo studies are needed to further provide biological evidence of the risk effects of XPC rs2228001 A > C polymorphism on the development of CRC and clarify the underlying mechanisms.



In conclusion, we did not find any predominant effects of the XPC rs2228001 A > C and rs2228000 C > T polymorphisms with CRC risk in the southern Chinese population. Our findings should be interpreted cautiously and warrant further validation in prospective investigations.




4. Materials and Methods


4.1. Study Population


We recruited 1141 cases with histologically confirmed CRC between January 2000 and May 2010 in Sun Yat-sen University Cancer Center. Patients with primary cancer in sites other than the colon and rectum were removed from the final study. Moreover, 1173 healthy residents in the same region were randomly recruited as controls in the same period of time, and they were frequency-matched to cases on gender. All the participants were of the ethnic Han Chinese population from southern China and genetically unrelated. Potential participants were contacted to screen for eligibility and the written informed consent was signed by each of the study subjects. A self-administered questionnaire was employed to collect information from individuals during a personal interview by their attending doctors, including demographic characteristics (age and gender), lifestyle (e.g., smoking habits and alcohol consumption), and family history of cancer. A blood sample of approximately 5 mL was obtained from each subject at the end of the interview. Overall, more than 80% of cases and controls responded. This investigation was approved by the institutional review board of Sun Yat-sen University Cancer Center (Guangzhou, China). Written informed consent was obtained from all patients.




4.2. Genotyping


Genotyping procedures were described elsewhere [33,34,35]. Briefly, genomic DNA was isolated from peripheral blood samples using the Qiagen Blood DNA Mini Kit (Qiagen Inc., Valencia, CA, USA). The Taqman method was chosen for genotyping these two polymorphisms with a 7900 HT sequence detector system (Applied Biosystems, Foster City, CA, USA). Quality control was strictly conducted, with four duplicate positive controls and four negative controls (omitting the DNA template) loaded in each of 384-well plates. Moreover, genotyping assays were repeated with 10% of the samples that were randomly selected and genotyping results were 100% concordant. Laboratory staff were blind to the case/control status of the samples.




4.3. Statistical Analysis


We performed Pearson’s χ2 test and the Student’s t test to compare categorical variables and continuous variables between cases and controls, respectively. A goodness-of-fit χ2 test was used to check the significant deviation of SNP genotype frequencies from HWE in the control subjects. An unconditional logistic regression analysis was conducted to calculate ORs and 95% CIs. An additional adjustment for age, gender, smoking and drinking status was made in the multivariate logistic regression analysis. We also carried out a stratified analysis by age, gender, pack-years, smoking and drinking status to study whether these factors could modify the association of interest. All analyses were performed using SAS software (Version 9.1; SAS Institute, Cary, NC, USA). All tests were two-sided. Results were considered statistically significant at p < 0.05.




4.4. Meta-Analysis


The meta-analyses were conducted on the association between the two SNPs (rs2228001 A > C and rs2228000 C > T) and CRC susceptibility following the PRISMA checklist [36]. Systematic literature searches of MEDLINE, EMBASE, and PubMed databases were conducted. The search terms were as follows: “Xeroderma pigmentosum group C or XPC”, “Lys939Gln or rs2228001”, “Ala499Val or rs2228000”, “polymorphism or variant or variation”, and ‘‘colorectal cancer or tumor or carcinoma or neoplasm or CRC”. Literature searches were performed between October and November 2015. Detailed procedures referred to previous publications [8,37,38,39,40]. Cross-study heterogeneity was determined by a chi-square-based Q-Test. The fixed-effects model (the Mantel–Haenszel method) [12] or the random-effects model (the DerSimonian and Laird method) [13] would be performed in the absence or presence of heterogeneity, respectively. Publication bias was measured by the funnel plot and the Egger’s linear regression test [14]. Furthermore, a sensitivity analysis was also performed. We performed all analyses using STATA version 11.0 (StataCorporation, College Station, TX, USA).
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