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Abstract: Paternally expressed Insulin-like Growth Factor II (IGF2) encodes a gene whose 
protein product functions as a potent growth mitogen. Overexpression of IGF2 has been 
implicated in a wide number of disorders and diseases. IGF2 is regulated in part by differential 
methylation of the two parentally derived alleles. The differentially methylated region (DMR) 
located upstream of the imprinted promoters of IGF2 exhibits plasticity under environmental 
stress and is hypomethylated in several types of cancer. Through bisulfite pyrosequencing 
and confirmation by nucleotide sequencing, we discovered a CpG to CpC transversion that 
results in hypomethylation of one of the three CpGs comprising this DMR. The presence of 
the polymorphism introduces a genetic rather than an environmentally-driven epigenetic 
source of hypomethylation that is additive to non-genetic sources. 
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1. Introduction 

Numerous studies have focused on analysis of DNA methylation at a region located upstream of the 
three major imprinted promoters of IGF2 in humans. This region is one of the differentially methylated 
regions (DMRs) contributing to the regulation of Insulin-like Growth Factor II (IGF2), an imprinted 
gene that is expressed from the paternally-derived chromosome. IGF2 encodes for a small protein that 
is part of the insulin family and functions as a signaling molecule through binding to the IGF1 and insulin 
receptors [1]. IGF2 protein also binds to the membrane-bound and soluble forms of the IGF2 receptor, 
but this leads to internalization and degradation of IGF2 in the lysosomes. IGF2 has been shown to be 
deregulated in neurodevelopmental disorders [2–4], obesity and cancer [1,5], and is also known to  
have a critical role in memory consolidation in the brain [6–9]. 

DNA methylation occurs at the 5'-carbon position of the cytosine ring at cytosines that are followed 
by guanines (CG dinucleotides) in the DNA sequence. DNA methyltransferase (DNMT) enzymes 
recognize the palindromic 5'-CG-3' dinucleotide and are able to establish methylation de novo (DNMT3A 
and DNMT3B) or copy the methylation pattern of the parent DNA strand onto newly replicated DNA 
(DNMT1) (for review, please see [10,11]). Most CG dinucleotides throughout the genome are methylated. 
For genes subjected to parent-of-origin-dependent, monoallelic expression, CG dinucleotides are methylated 
on one parental strand and the same CG dinucleotide sequence on the other parental strand is unmethylated. 
This pattern of differential methylation is established during gametogenesis. For imprinted IGF2,  
these regulatory methylation marks are established during spermatogenesis, while the same sequences 
in the oocyte are unmethylated. 

The multifaceted effects of IGF2 have led many, including our group, to study how the methylation 
status of this DMR, hereafter referred to as the IGF2 DMR, varies in disease states [12–15], as well as 
how methylation of this region is influenced by the in utero environment [16–23]. The first reports of 
methylation plasticity of the IGF2 DMR came from studies of individuals with colon cancer. In these 
studies, hypomethylation of the three CpG sites comprising the DMR was reported [24]. This was also 
detectable in peripheral blood of the individuals with colon cancer and in 10% of an otherwise healthy 
control population [25]. This same region has also been the focus of studies of individuals conceived 
during the Hunger Winter in the Netherlands at the end of World War II. Hypomethylation of this DMR 
was associated with exposure to caloric restriction in utero and this was evident decades later [26].  
We have also found that methylation of this region in newborns is vulnerable to the effects of in utero 
exposure to cigarette smoking [18] and paternal obesity [27]. Hypomethylation has also been associated 
with increased circulating levels of IGF2 protein and increased birth weight [20], and conversely,  
low birth weight for children born to mothers who are depressed during pregnancy [17]. 

Herein we report the identification a G > C polymorphism that directly affects one of the three CpG 
sites that comprise the IGF2 DMR, resulting in a CpC dinucleotide. The presence of this genetic 
polymorphism necessarily results in loss of methylation at this position, and thus overall decreased 
methylation of this DMR, through genetic ablation of the DNA methyltransferase recognition sequence 
at this CpG dinucleotide. Furthermore, the polymorphism appears to be more common in individuals 
with African heritage. These findings have implications for the methylation status of this region and 
consequent effects on IGF2 expression and imprinting. 
  



Genes 2015, 6 779 
 
2. Materials and Methods 

Human Subjects 

Cervical Cancer Screening Cohort, Moshi, TZ: The study population has been previously described, 
along with eligibility criteria and recruitment procedures [28]. Briefly, 249 participants were recruited 
of 251 approached between November 2008 and March 2009 from the Reproductive Health Clinic 
(RHC) at Kilimanjaro Christian Medical Center (KCMC), a Cervical Cancer prevention clinic. Eligibility 
criteria included �18 years of age, no prior history of an abnormal Pap test and willingness to participate. 
Invasive cervical cancer patients were also 18 years or older and were referred for colposcopic directed 
evaluations. Methylation data for the IGF2 DMR was generated for 166 of these women [13]. All 
subjects gave their informed consent for inclusion before they participated in this study. This study was 
conducted in accordance with the Declaration of Helsinki and the protocol was approved by the Research 
Ethics Board at KCMC and by the Duke University Institutional Review Board (Pro00008813). 

The Newborn Epigenetics STudy (NEST), Durham, NC, USA: Study participants were enrolled 
between 2005–2009 and 2009–2011 as part of two multiethnic birth cohorts designed to identify the 
effects of early exposures on epigenetic profiles and phenotypic outcomes. These studies were conducted 
in accordance with the Declaration of Helsinki and approved by the Duke University Institutional 
Review Board (Pro00014548). Written consent was obtained from all mothers participating as study 
subjects prior to their inclusion in the study. Details regarding identification and enrollment procedures 
have been described elsewhere [19,29]. A total of 3646 pregnant women were approached and 2587 
consented to participate in NEST. Methylation data for the IGF2 DMR was completed for 1104 newborns. 

Bisulfite pyrosequencing. Genomic DNA was extracted from cervical scrapes, biopsies and invasive 
cervical cancer specimens (described in [30]) using Gentra Puregene Reagents (Qiagen, Valencia, CA, 
USA). Genomic DNA was extracted from umbilical cord blood in the NEST cohort also using Gentra 
Puregene reagents. The IGF2 DMR was analyzed by bisulfite pyrosequencing. Bisulfite modification of 
800 ng genomic DNA was performed as previously described [31] or using the Zymo EZ DNA 
MethylationTM Kit according to the manufacturer’s recommendations (Zymo Research; Irvine, CA, 
USA). Pyrosequencing assays were designed using PSQ Assay Design Software and reactions were run 
on a Pyromark Q96 MD Pyrosequencer (Qiagen). The percent methylation for each of the CpGs within 
the target sequence was calculated using PyroQ CpG Software (Qiagen). 

The region analyzed for the IGF2 DMR includes three CpG dinucleotides upstream of exon 3 (chr 
11p15.5; CpG site 1: 2,169,519; CpG site 2: 2,169,516; and CpG site 3: 2,169,499; NCBI Human 
Genome Build 37/hg19) [24]. PCR and pyrosequencing primers and conditions were as described [17,19]. 
Assay validation was performed by analysis of defined ratios of plasmids that contain inserts derived 
from the bisulfite modified version of the methylated and unmethylated sequences, as previously 
described [32]. 

Nucleotide sequencing. Genomic DNA underwent PCR using primers F: 5'-TTT CCC TGG GAA 
TGC TCA TTC-3' and R: 5'-TTC TGT TGG ACA GGC TGC CC-3'. Genomic DNA (20 ng) was 
amplified in a 12.5 μL PCR reaction volume using Hotstar Taq DNA polymerase (Qiagen). Thermocycler 
conditions were as follows: 95 °C for 15 min followed by 35 cycles of 95 °C for 30 s, 67 °C for 30 s and 
72 °C for 30 s, and a final extension at 72 °C for 10 min. The amplicons were resolved on 2% agarose 



Genes 2015, 6 780 
 
gels stained with ethidium bromide, the bands excised and amplicons separated from the agarose using 
GenElute Agarose Spin Columns (Sigma-Aldrich Corp.; St. Louis, MO, USA). Sequencing reactions 
were performed with BigDye Terminator reagents (Life Technologies; Grand Island, NY, USA). The 
product was sequenced using primer 5'-ATG CAT GAA GTT TTT CTC TG-3' at the Duke Genome 
Sequencing and Analysis Core Facility. 

Statistical analysis. The potential over-representation of the polymorphism by race or by disease 
status was analyzed using Fisher’s exact tests, with a p value < 0.05 considered significant. 

3. Results 

In prior published work, we have reported on methylation of the IGF2 DMR in two distinct cohorts. 
The first cohort analyzed included 1104 newborn participants of our Newborn Epigenetics Study from 
Durham, NC, using umbilical cord blood [17,19]. The second cohort analyzed were adult women from 
Moshi, Tanzania who provided cervical scrapes as part of their participation in a study of the progression 
of cervical intraepithelial neoplasia [28]. As part of our analysis of DNA methylation at regulatory regions 
of imprinted genes for these two studies, we used bisulfite pyrosequencing to quantify methylation of the 
same three CpG sites within the IGF2 DMR as first defined by Cui et al. [24]. We have previously 
validated the performance of this assay and shown the ability to discriminate 5% differences in methylation 
across the full range of possible values, using defined mixtures of methylated and unmethylated DNAs [17]. 

The pyrosequencing software uses information from a pre-defined sequence provided from user input 
during the assay setup that determines the order of nucleotides to be added, one at a time, during the 
sequencing reaction. The pre-defined sequence allows for detection of methylation status at CpG 
dinucleotides by step-wise injection of “T” (unmethylated) and then “C” (methylated). It then calculates 
the proportion of C from the peak height obtained relative to the total peak heights obtained for the T 
and C combined at that particular cytosine position, prior to injection of the guanine nucleotide at the 
following step that completes the CpG dinucleotide sequence. Mononucleotide runs, especially Ts, are 
common due to the conversion of non-CpG cytosines to uracils, then to thymines following PCR. Such 
runs are accounted for by the height of the peak obtained. The peak height should be divisible by the 
number of same nucleotides in the run to yield a number that is equivalent to that obtained for the peak 
height of a single nucleotide. 

At the end of each run, the Pyromark CpG software assigns a “pass”, “check quality” or “fail” descriptor 
for each sample. Whereas “pass” means that the sequence obtained and measured is within the limits of 
what might be expected given the sequence being analyzed. “Fail” means that a substantial problem has 
occurred except in the case of “no template” controls that are scored as “failed” runs when they have 
worked appropriately. A “check quality” score means there is a problem, but it may be minor or of no 
consequence and the software leaves it up to the user for interpretation. During study of the two cohorts 
described, we incidentally noted that there were multiple samples among our cohorts that were scored 
as “failed” runs by the PyroMark CpG software. We attempted to repeat the pyrosequencing reactions 
but to no avail. Since DNA quality can affect the ability to successfully perform pyrosequencing, we 
initially attributed failure of these runs to poor DNA quality and excluded these specimens from our 
original analyses. However, upon later visual inspection of the raw data, it was apparent that all of the 
“failed” runs were similar at the first CpG position of the IGF2 DMR and had a “failed” reference 
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sequence at several positions downstream. These were followed by resumption of normal sequence 
patterns to the end of the sequence analyzed (Figure 1). The T incorporation at position 15 (Figure 1c) 
was much greater than expected, even if the cytosine had been unmethylated in the original sequence. 
This also led to problems with the second CpG site in the sequence (position 19), due to sequencing of 
the two alleles being out of sync until reaching an A residue (position 25) located a few bases prior to 
the 3rd CpG site (position 31), which shows the expected pattern of methylation in these individuals. 
We hypothesized that this pattern might result from the presence of a polymorphic nucleotide variant  
in the sequence. 

Nucleotide sequencing of the unmodified genomic DNA indeed confirmed the presence of a G/C 
transversion polymorphism at CpG position 1, which changes the CpG dinucleotide to a CpC dinucleotide 
on the affected allele (Figure 2). This SNP, subsequently identified as SNP rs116779517 (dbSNP 135), 
abolishes the 5'-CG-3' recognition sequence for the DNA methyltransferase enzymes—and thus the 
ability to methylate this cytosine. The decreased methylation observed at the second CpG dinucleotide 
was an artifact due entirely to the pyrosequencing method itself, whereby incorporation of nucleotides 
at the second CpG site occurred prematurely at the position of the first CpG site, rather than to any 
additional sequence variants being present, as described above. 

We observed this polymorphism in 4.5% (50/1104 individuals; minor allele frequency of 0.02) of our 
newborn cohort (Table 1) as well as in 11.4% (19/166 individuals; minor allele frequency of 0.06) of our 
case-control study from Moshi, Tanzania (Table 2). The 1000 Genomes Project reports an overall minor 
allele frequency of 0.01 and 0.05 for individuals from West Africa [33]. All individuals from Tanzania 
in our study were of African descent, while 39 of the 50 newborns carrying the variant allele were from 
mothers who self-reported as African American (Fisher’s exact test, p < 0.0001 comparing African 
descent to non-African descent). These results indicate that this polymorphism may be significantly more 
prevalent in individuals with African heritage. However, the polymorphism was not enriched among 
individuals with cervical intraepithelial neoplasia (CIN; Fisher’s exact test, p = 0.62) or invasive cervical 
cancer (ICC; p = 0.39). In addition, pyrosequencing of peripheral blood DNA from all nine individuals 
with CIN or ICC showed the presence of the polymorphism. We confirmed the polymorphism by Sanger 
sequencing of biopsy specimens for two patients with ICC and two patients with CIN; peripheral blood 
DNA from one patient with ICC and one with CIN was also sequenced with concordant results (data not 
shown). These results suggest that the presence of this polymorphism may not be associated with the 
onset or progression of cervical dysplasia, though larger studies are required for confirmation. 

To confirm that the presence of the polymorphism influences the methylation status of CpG position 1 
within the IGF2 DMR, we performed bisulfite sequencing of cloned alleles for six individuals carrying 
the variant allele (Figure 3). All six individuals showed a lack of methylation at CpG position 1 on the 
variant T allele using this method. For three of the four cord blood specimens (UCB1-3 in Figure 3), the 
variant T allele was likely the paternally derived allele, since the other two CpG positions were nearly 
fully methylated across the clones analyzed. We are able to infer this because this region is normally 
differentially methylated, with methylation present on the paternally-derived allele [34,35]. For the two 
cervical biopsy specimens analyzed, more generalized hypomethylation at this DMR, a common finding 
in other gynecologic cancers [12,36], made it difficult to determine the parental origin of each allele. 
Regardless, these results demonstrate that the presence of the polymorphism prevents methylation at 
CpG position 1 by changing the CG DNA methyltransferase target sequence on the WT allele to a CC 
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dinucleotide combination not recognized by these enzymes. Furthermore, if this polymorphism is present 
on the paternally-derived chromosome, this theoretically reduces the overall methylation at this locus 
from ~50% to ~34% in a diploid cell. 

 

Figure 1. (a) The original sequence of interest for the IGF2 DMR region and the expected 
sequence from the bisulfite modified DNA and pyrosequencing, alongside the sequence for 
the variant allele. The three CpG dinucleotides are labeled; (b) Pyrogram obtained for an 
individual with wild type alleles; (c) Pyrogram from an individual with the variant allele, 
showing low methylation of CpG position 1 and a much higher than expected incorporation 
of T nucleotides at CpG 2 (position 19) due to the creation of a 3–4 base mononucleotide 
stretch of T residues. The number of T residues incorporated depends on the methylation 
status of the second CpG cytosine. This leads to premature incorporation of the downstream 
T nucleotides at position 19, early incorporation of the downstream G at position 21 instead 
at position 18 on the variant allele and as consequence only half the anticipated G height at 
the subsequent G at position 21, and lower than expected peak height for the Ts at position 
23 since those on the variant allele had been incorporated at position 19. This also results in 
inaccuracy for the methylation status of the second CpG (site 20). The % methylation 
measured is indicated above each CpG cytosine. CpG cytosine positions are indicated by the 
grey vertical bars. Blue diamonds, non-variable reference peaks; orange diamonds with yellow 
background bar, bisulfite treatment control and reference peak; narrow grey bars behind 
peaks, theoretical histogram for the sequence to analyze. Methylation data for the IGF2 
DMR was generated for n = 166 cervical cancer study specimens, of which n = 19 had the 
variant allele, and n = 1104 NEST cohort specimens, of which n = 50 had the variant allele. 



Genes 2015, 6 783 
 

 

Figure 2. Representative nucleotide sequencing of the non-bisulfite modified genomic DNA 
for n = 14 variant cervical tissue specimens, n = 2 WT cervical cancer specimens and n = 6 
cord blood specimens. The non-variant (top) and variant (bottom) nucleotide sequences of 
the IGF2 DMR region are shown. The three CpG sites comprising this DMR are designated 
at the top and the position of SNP G > C rs116779517 is indicated by the arrow. 

Table 1. Newborn Epigenetics Study. 

rs116779517 WT (%) Heterozygote (%) 
Caucasian 510 (99) 7 (1) 
African American 445 (92) 39 (8) 
Asian/Pacific Islander 18 (100) 0 (0) 
Native American 4 (100) 0 (0) 
Multiracial 10 (100) 0 (0) 
Other 53 (96) 2 (4) 
Don't Know 5 (100) 0 (0) 
Missing 9 (82) 2 (18) 
Total 1054 (95) 50 (5) 

Table 2. Tanzania Cervical Cancer Study. 

rs116779517 WT (%) Heterozygote (%) 
Non-neoplastic 88 (90) 10 (10) 
Neoplastic 59 (87) 9 (13) 
Total 147 (89) 19 (11) 
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Figure 3. The variant allele lacks methylation at CpG position 1 of the IGF2 DMR. Bisulfite 
sequencing of cloned alleles for four umbilical cord blood DNA specimens (UCB1-UCB4) 
and two cervical biopsy specimens (CVX1-CVX2) from individuals carrying the variant 
allele. Each line represents a given clone and each circle represents one of the CpG dinucleotides 
within the IGF2 DMR. Filled circles indicate that the cytosine was methylated and the 
unfilled circles indicate that the cytosine was unmethylated within that clone. The data 
indicate that the variant T allele exhibits a lack of methylation at the first CpG site within 
the IGF2 DMR. 

4. Discussion 

The presence of this polymorphism is crucial to interpretation of any methylation studies of the IGF2 
DMR, especially since the most common abnormality reported for this DMR in the literature is 
hypomethylation. The presence of this variant allele could go unnoticed using other bisulfite-based 
methods and lead to a finding of hypomethylation, assumed to be due to environmentally driven epigenetic 
variability rather than genetic variation. Indeed, we excluded the individuals carrying this variant in our 
own studies because these samples failed the pyrosequencing runs. 

It has been known for some time that genetic and epigenetic variation together influence gene 
expression and disease susceptibility, however, specific empirical data are limited. Within the IGF2/H19 
imprinted domain, Tobi et al. have reported that SNP rs2239681, upstream of the IGF2 DMR, is associated 
with decreased methylation [23], but this SNP exerts this effect over distance and does not directly alter 
CpG sites. A single nucleotide variant that alters methylation at a CpG site within one of the core binding 
sites for the CTCF insulator protein that regulates the IGF2/H19 imprinted domain has also been 
identified. The presence of the variant allele (rs10732516) affects genetically-induced hypomethylation, 
which is associated with higher birth weight [21]. In another study, Oertel et al. identified an A>G SNP 
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(rs1799971) that introduces a new CpG site in the OPRM1 gene; methylation at this site reduces 
expression and opioid receptor signaling [37]. Thus although an increasing number of studies are 
examining the cis activity of SNPs in relation to DNA methylation, there are also SNPs that directly 
affect methylation changes with a consequent change in phenotype that should also be further investigated. 

Genetically predetermined hypomethylation may have substantial relevance to the expression of 
IGF2 and risk of disease, perhaps more so than any environmentally-induced variation. We previously 
reported that a 1% change in methylation at this DMR was associated with a two-fold change in IGF2 
transcription [18]. Others have reported that hypomethylation of these same CpGs is associated not only 
with loss of IGF2 imprinting, but also to risk of colon cancer, with hypomethylation detected in 10% of 
an otherwise unaffected population [24,25,38]. Race was not reported in these studies so it is unclear 
how this polymorphism might have contributed to the hypomethylation reported. Furthermore, the 
relevance of loss of imprinting is also uncertain, since other studies have detected loss of imprinting 
primarily where overall IGF2 expression is low [12,39]. We did not detect an association between the 
presence of the polymorphism and cervical neoplasia or cancer, however we examined a relatively small 
number of individuals. Nevertheless, if the prevalence of this polymorphic variant in individuals of 
African descent is confirmed by others, these findings could have substantial implications for colon 
cancer risk assessment in these individuals. Hypomethylation at this DMR may increase risk of cancer 
regardless of whether the hypomethylation is genetically and/or epigenetically determined. 

We did not determine the parental origin of the rare variant allele. However, we have previously 
found that these CpGs are fully methylated in mature human spermatozoa [35], confirming reports of 
others [34,40] and consistent with the methylation in somatic tissues being on the paternally-derived 
allele. Thus if the G>C polymorphism is inherited from the father, it might be expected that there would 
be no methylation present at this CpG site. However, we did not observe 0% methylation at this CpG 
site in any of the samples analyzed that carry the nucleotide variant. The reason for this is evident when 
tracking the order of nucleotide incorporation in the pyrosequencing “sequence to analyze” and taking 
into account the pattern of methylation expected on the paternal allele. The sequence variant leads to 
additional “T” nucleotides incorporated at the first CpG site (i.e., the cytosine cannot be methylated in 
CpC context so both are converted by bisulfite, adding two Ts); when the C is added for incorporation 
for the first CpG site, it is actually the second CpG site C nucleotide that ends up being incorporated at 
this position for the variant allele. Thus methylation at the first CpG site actually reflects that at the 
second CpG site. The second CpG site in turn exhibits very low methylation. 

5. Conclusions 

In conclusion, through bisulfite pyrosequencing and subsequent confirmation by nucleotide sequencing, 
we identified and validated a polymorphic variant that directly prevents methylation at one of the CpG 
dinucleotides that comprise the IGF2 DMR, a region for which hypomethylation has previously been 
associated with a compromised environment during prenatal development as well as risk of colon cancer. 
We found the variant in two distinct populations including one from Tanzania, Africa and the other from 
Durham, NC, USA. The variant is significantly more common in, but may not be exclusive to, individuals 
of African descent, and these findings indicate that epigenetic analysis of this region should take into 
account the potential genetic contribution to hypomethylation.  
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