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Abstract: Transcriptional activation of eukaryotic genes is accompanied, in general, by  
a change in the sensitivity of promoter chromatin to endonucleases. The structural basis of 
this alteration has remained elusive for decades; but the change has been viewed as a 
transformation of one structure into another, from “closed” to “open” chromatin. In 
contradistinction to this static and deterministic view of the problem, a dynamical and 
probabilistic theory of promoter chromatin has emerged as its solution. This theory,  
which we review here, explains observed variation in promoter chromatin structure at the 
level of single gene molecules and provides a molecular basis for random bursting in 
transcription—the conjecture that promoters stochastically transition between 
transcriptionally conducive and inconducive states. The mechanism of transcriptional 
regulation may be understood only in probabilistic terms. 
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1. Introduction 

“There are great solutions, but a final solution does not exist.” (Karl Popper, 1994) 
Thirty years ago, it was discovered upon mild digestion of chromatin with DNase I that transcriptional 

activation of the mouse mammary tumor virus coincided with a marked increase in the endonucleolytic 
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sensitivity of viral promoter sequences [1]. Similar observations of inducible chromatin changes were 
subsequently made for many other genes [2]. A classic example is the PHO5 promoter of budding yeast [3]. 
The observed changes were generally attributed to a transformation between qualitatively distinct 
chromatin structures or states. Promoter chromatin was thought to be “closed” under repressing 
conditions and “open” when induced for transcription. Recent research on the PHO5 promoter suggests 
that this static and deterministic view is mistaken. Rather, both activated and repressed promoter 
chromatin are dynamical systems, describable as stochastic processes that differ only in the numerical 
values of their probabilistic parameters, and not the range of structural states attainable by the promoter [4]. 
The transition between repressed and active promoter chromatin is a change in quantity (kinetic 
parameter values), and not quality (structure). 

Analysis of single PHO5 gene molecules by electron microscopy revealed the existence of alternative 
promoter nucleosome configurations in cells that expressed PHO5 constitutively [4]. This observation 
had been anticipated theoretically [5–7]. However, contrary to prior expectation [5], all combinatorial 
possibilities of occupying three nucleosome positions were observed, including the fully nucleosomal 
and the nucleosome-free promoter (Figure 1). The same range of configurations was observed in cells 
that could not activate PHO5, but with different relative frequencies; the fully nucleosomal configuration 
was, by far, the most prominent under repressing conditions, whereas a comparatively small fraction of 
gene molecules retained all promoter nucleosomes under activating conditions [4]. 

How can this structural variation be explained? In the following, we review the basic assumptions of 
such an explanation, its experimental tests by analysis of single gene molecules, and then discuss its 
implications for gene expression and regulation. Section 3 covers some formal assumptions which 
underlie most stochastic gene expression models, but often go without mention. A major implication of 
this theory is transcriptional bursting––the notion that promoters randomly transition between 
transcriptionally conducive and inconducive states. Excellent reviews of the rich literature on 
transcriptional bursting have been recently published elsewhere [8,9]. 

2. Ergodic Hypothesis 

Two classes of explanatory theories for the molecular variation of promoter chromatin may be 
distinguished, viz. static and dynamical hypotheses. Different promoter nucleosome configurations may 
correspond, for instance, to distinct states of cellular differentiation with no transitions between cellular 
states and thus nucleosomal configurations [10]. This static hypothesis has been refuted: nearly all 
possible pairs of nucleosome configurations have been observed for two PHO5 promoter copies that 
shared the same cellular history (“conjugate reporter approach”); the two copies were found to be 
stochastically independent [11]. 

It is conceivable that the promoter randomly “freezes” in distinct nucleosome configurations, 
regardless of the state of its (intracellular) environment. However, such an assumption neither explains 
variation, nor does it seem physiologically reasonable. This leaves the following alternative explanation: 
single gene molecules visit each promoter nucleosome configuration over time, in some sequence (see 
below), with statistically distributed sojourn times in between transitions [12]; in other words, the 
variation across a population of molecules arises from the stochastic dynamical behavior of each single 
molecule. We shall refer to this conjecture as “ergodic hypothesis”. (The term is also used in statistical 
thermodynamics with a similar but more precise meaning, but this is of no concern here.)  
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Figure 1. Transition graph for the stochastic dynamics of PHO5 promoter nucleosomes 
(top). The promoter is represented by a box and occupied nucleosome positions as dots. 
Nucleosome positions from top to bottom are called N-1 to N-3. N-1 contains the transcription 
start site. Black, gray, and dashed arrows indicate assembly, disassembly, and sliding transitions, 
respectively. At the bottom is the electron micrograph of an isolated PHO5 molecule after 
psoralen-crosslinking, DNA denaturation, and heavy metal shadowing. Positions previously 
occupied by nucleosomes appear as single-stranded DNA “bubbles” (for psoralen crosslinks 
linker DNA, but not DNA within the nucleosome core particle). Nucleosome position N-3 
is occupied, but not positions N-2 and N-1 (see reconstruction above electron micrograph 
with promoter nucleosomes in dark gray and nucleosomes over open reading frame in light 
gray) [4]. A bent arrow indicates the transcription start site. 

3. Assumption of a Stationary Markov Process 

Probabilistic theories make quantitative rather than qualitative predictions. Therefore, they have to be 
cast in mathematical form to be testable. Formal theories generally require seemingly artificial 
assumptions for mathematical convenience [13]. As with any other hypothesis, such assumptions  
are tested for their ability to provide reasonable approximations to the facts. A formalism which  
has proved surprisingly successful in this regard is the assumption of a time-homogeneous Markov 
process [13,14]––that the future is conditionally independent of the past, provided the present state is 
known. In short, it is assumed that the process is “memory-free”. 

This lack of memory assumption is formalized as follows. The nucleosome configurations of the 
promoter are represented as nodes with directed edges (arrows) between them to indicate allowed 
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transitions between configurations (Figure 1). We call the set of nodes and directed edges a “transition 
graph” [12]. A stochastic process may be viewed as probability mass flowing between the nodes along 
the edges of the graph. This flow is described by the transition functions of the process pji(t + h, t), which 
indicate the probability of nucleosome configuration j at time t + h, given the promoter’s present 
configuration, i, at time t. The transition functions of a time-homogeneous Markov process depend on 
the time interval h and the present value i alone, and not on t or the process’ history prior to t; that is to 
say, pji(t + h, t) = pji(h, 0) ≡ pji(h). This is a strong assumption; indeed, strong enough to completely 
specify the mathematical properties of the process [15]. Perhaps the most important of its properties is 
linearity: The flow of probability per unit time from node i to node j linearly depends on the probability 
of i (analogous to elementary rate equations in chemistry, but with probability replacing concentration [16]). 
The rate constant in this linear relationship, i.e., the limit of pji(h)/h for h→0, exists for all i ≠ j [15]. If 
there is no outgoing edge from i to j, this limit is zero. In principle, therefore, the stochastic process has 
as many rate constants or “kinetic parameters” as there are edges in its transition graph. Another salient 
property of time-homogeneous Markov processes should be mentioned here: the sojourn times between 
transitions are exponentially distributed. 

One additional assumption is required to make testable predictions: the assumption of a stationary 
process. Note that a directed graph is called strongly connected if every node can be reached from any 
other node by a string of one or more edges. It can be proved that a time-homogeneous Markov process 
on a strongly connected graph tends toward a steady state where the probability currents into and out of 
each node are balanced; the probability at each node, then, is time-independent and uniquely defined and 
the process is said to be stationary [15,17]. This assumption may be experimentally satisfied, at least in 
good approximation [4]. 

4. Simple Process Assumption 

A “good” explanation (theory) is a prohibition––it prohibits certain things to happen––or else it 
cannot be refuted by experimental observation [18]. The refutability of mathematical models, e.g., a 
stochastic process, decreases with the number of freely adjustable model parameters (degrees of freedom). 
Therefore, explanations with fewer degrees of freedom must be preferred over those with more [12]. 

The following assumption of a “simple process” dramatically limits the degrees of freedom.  
The assumption is this: the kinetic parameter for the transition between two nucleosome configurations 
only depends on the “kind of transition” [4,12]. We may distinguish between three different kinds of 
transitions: assembly, disassembly, and sliding. Accordingly, a transition either adds or removes 
nucleosomes, or redistributes nucleosomes between promoter positions. This conjecture implies that the 
process is a time-homogenous Markov process and it limits the degrees of freedom to two––one of the 
three kinetic parameter values may be set to 1 on some suitable time scale (say, the parameter for 
nucleosome assembly). 

The simple process assumption reduces the problem of finding an explanatory theory for the relative 
frequencies of the promoter nucleosome configurations to the comparative analysis of alternative 
transition graphs. The parameter values for each graph are chosen to maximize the probability of the 
data. Likewise, between competing transition graphs, the graph that is preferred is that which allows the 
experimental observations to attain greater probability. Dynamical conjectures, i.e., transition graphs, 
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may thus be refuted given an alternative conjecture of greater likelihood [4,12]. Graphs that are not 
strongly connected may be excluded without calculation, because for such graphs only a subset of the 
experimentally observed configurations would have a probability larger than zero at steady state. 

5. Promoter Chromatin Dynamics 

It may be argued that violations of the simple process conjecture are quite plausible, that the simple 
process conjecture is too prohibitive or too bold. Yet, remarkably, a simple stationary process was 
discovered whose theoretical predictions closely correspond to microscopic observations, both for 
molecules isolated from induced and non-induced cells, albeit with different kinetic parameter values [4]. 

The transition graph of this process has the following features (Figure 1): each node of the graph has 
several outgoing edges, i.e., the graph is “branched” [12]. Thus, single gene molecules visit the 
alternative promoter nucleosome configurations in random sequence. This does not imply, however, that 
all sequences are allowed; only sequences consistent with the transition graph are possible: nucleosomes 
are added, removed (by disassembly), or slid only one at a time. Sliding occurs from the central position 
into the outer positions of the promoter, but not vice versa, which explains why this position is more 
likely to be nucleosome-free than its neighbors. Unidirectional sliding contravenes the demand for 
detailed balance in thermodynamic equilibrium [19]. It follows that the steady state requires the constant 
input of free energy, i.e., promoter chromatin is a dissipative system. 

Earlier findings corroborated various aspects of this theory. The removal of nucleosomes from the 
PHO5 promoter occurs by disassembly, rather than sliding away from the promoter [20]. All known 
remodeling enzymes accommodate one and only one nucleosome at a time [21–23], and they couple 
nucleosome transactions to ATP hydrolysis [24]. Removal of nucleosomes from the PHO5 promoter can 
be largely dependent on the chromatin remodeling complex SWI/SNF [25]. As predicted by the 
assumption of a dynamical system of nucleosome removal and reformation, newly synthesized histones 
preferentially associate with promoter regions of both active and repressed promoters [26]. 

Our theory implies that ATP hydrolysis drives the process away from (thermodynamic) equilibrium 
rather than accelerates its approach toward equilibrium. This is a testable assertion: digestion of 
chromatin with micrococcal nuclease has suggested the presence of a “nucleosome-free region” at many 
promoters, in a location similar to the central (N-2) nucleosome position of the PHO5 promoter.  
The free energy of nucleosome formation on the DNA of such nucleosome-free regions was found to 
hardly differ from a high affinity sequence (differences did not exceed one kBT per molecule), suggesting 
that many nucleosome-free regions are the product of the continual removal of nucleosomes by 
chromatin remodelers rather than the result of exclusion by DNA sequence [27]. (This does not refute 
the well-corroborated conjecture that nucleosomes, once formed, preferentially occupy among closely 
related positions those that are thermodynamically favored [28]. The concepts of nucleosome occupancy 
and positioning should not be confused.) 

It should be noted here that possession of a nucleosome-free or (better) nucleosome-depleted region 
is not an intrinsic property of promoters, as the classification of promoters into those with and without 
such a region suggests [29]; the PHO5 promoter, on average, would be classified as a promoter with and 
without a nucleosome-depleted region under-activating and repressing conditions, respectively, and 
single molecules may defy such a classification under any condition [4]. 
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6. Transcriptional Bursting 

Nucleosomes are general repressors of transcription, in part because they exclude transcription factors 
from their DNA binding sequences [30]. If single gene molecules visit alternative nucleosome 
configurations—some conducive to transcription and others not—in random sequence and with 
statistically distributed sojourn times in between transitions, then transcription is predicted to occur in 
stochastic bursts. 

The simplest stochastic process that may be invoked to model this behavior assumes two promoter 
states—one conducive to transcription (ON), the other not (OFF)—between which the promoter jumps 
randomly, i.e., with statistically distributed sojourn times between jumps (Figure 2) [31,32]. As indicated 
above, ON and OFF states may each consist of multiple “microstates”, e.g., nucleosome configurations [4]. 
Both the level of model granularity (the number of microstates) and the presence or absence of irreversible 
transitions between such microstates affect the sojourn time distribution of the ON and OFF state. 

 

Figure 2. Transcript number fluctuations with and without transcriptional bursting. (A) An 
example or “sample path” (black line) for transcription with random transitioning between 
two promoter states, ON and OFF, that are conducive and inconducive to transcription, 
respectively. The sample path was calculated using Gillespie’s stochastic simulation 
algorithm [33]. The level of expression may be controlled by either one of four parameters: 
burst frequency, α; burst duration, β−1; the initiation rate of transcription in the ON state, ε; 
and the rate per molecule of mRNA degradation, δ. (B) Sample path in the absence of 
transcriptional bursting (random birth-and-death process). The transcript level may be 
controlled by ε and δ alone. 

This stochastic model of gene expression raises interesting new problems. On the assumption of a 
stationary Markov process with two promoter states, the mean number of mRNA molecules or “level of 
transcription”, MR, is given by 

  RM � �
�
� ���
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where α and β are the kinetic parameters for the transition from OFF to ON, and ON to OFF, respectively; 
ε and δ are the parameters for mRNA synthesis (in the ON state) and degradation, respectively [32]. 

In the absence of bursting (i.e., β = 0), the transcript level may be regulated either by controlling the 
kinetic parameter for mRNA synthesis, ε, or transcript stability, δ. Bursting, furthermore, allows for 
regulation at the level of burst frequency, α, and burst duration, β−1. 

By which of these mechanisms do transcriptional activators control transcription [34]? As detailed 
below, analysis of this problem, while providing novel insights into the mechanism of transcriptional 
regulation, also suggested experimental tests of the bursting conjecture and, by implication, of the 
stochastic process theory of promoter nucleosome dynamics. 

7. Noise and the Mechanism of Transcriptional Regulation 

Stochastic bursting contributes to the variation in the number of mRNA molecules or “noise” of gene 
expression. The magnitude of this noise may be expressed by the Fano factor, ΦR, the variance over the 
mean number of transcript molecules. For the stationary Markov process with two promoter states, the 
Fano factor is given by 

 
 

where κ = α + β [32]. In the absence of bursting, ΦR invariably equals 1, regardless of expression level. 
Deviations from this expectation may be explained on the conjecture of transcriptional bursting.  
Thus, ΦR increases monotonically with increasing mean (MR) if transcription is controlled by tuning ε 
(Figure 3; green line) but decreases if regulated via α (yellow line). If regulation occurs at the level of 
burst duration, then ΦR describes a convex arch when plotted as a function of MR (blue line). The same 
qualitative conclusions hold for protein expression, and for promoter models with several ON and OFF 
states [4]. The different regulatory mechanisms may be tested, therefore, by measuring the mRNA or 
protein noise at different levels of expression of the same gene. 

To test regulatory hypotheses, two noise components must be distinguished, which together comprise 
the total noise of gene expression: “extrinsic noise”, which results from the deterministic response of the 
gene expression process to variation in its intracellular environment (extrinsic variation), and “intrinsic 
noise”, which cannot thus be explained and must arise, therefore, within the gene expression process and 
not elsewhere [35]. 

Experimentally, the noise components can be determined by employing the conjugate reporter 
approach: two gene copies that encode distinguishable gene products, but are otherwise identical, are 
observed within the same cell [35,36]. The deterministic response to extrinsic variation induces a correlation 
between the conjugate reporters from which the extrinsic noise is calculated. The remaining noise is 
intrinsic noise. That extrinsic noise arises from a deterministic response to extrinsic variation may be 
seen by considering gene expression in the absence of intrinsic noise. In this instance, both conjugate 
reporter genes would be perfectly correlated; the expression state of one reporter is completely 
determined by the expression state of the other reporter via their common environment, and hence, by 
the environment. It may be said, therefore, that extrinsic noise is “informative variation” [36]. 

1
( )R
��
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	 	��
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Figure 3. Fano factor for RNA expression, ΦR, as a function of average transcript number, 
MR. (Likewise, the ‘unit’ of ΦR is number of mRNA molecules.) Curves were calculated on 
the assumption of a stationary Markov process with two promoter states (Figure 2A), with 
transcription controlled either by tuning α (burst frequency, yellow curve), β−1 (burst 
duration, blue curve), or ε (the initiation rate of transcription in the ON state, green curve). 
See main text for equations. The parameters for MR = 60 are ε = 6.75 per minute, α = 2.18 
per minute, β = 1.5 per minute, and δ = 0.066 per minute and molecule [4]. In the absence 
of transcriptional bursting, ΦR invariably equals 1. 

Under fully activating conditions, extrinsic noise is the dominant noise component of PHO5 expression; 
i.e., most variation in PHO5 expression is explained by extrinsic variation (Figure 4). Surprisingly, the 
opposite is the case for the structural variation of promoter chromatin. The nucleosome configurations 
of two PHO5 promoter copies were found to be stochastically independent [11]; that is to say, the 
variation in nucleosome configuration could not be explained whatever by extrinsic variation. It had to 
entirely arise “intrinsically”. The resulting noise in gene expression, then, is intrinsic noise. This was 
naively assumed previously [4,5,7], without experimental testing. The assumption was bold, for an effect 
of extrinsic variation on the promoter nucleosome configuration appeared likely, given it is the dominant 
influence on the noise of PHO5 expression (Figure 4). 
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Figure 4. Extrinsic protein noise of PHO5 promoter-driven gene expression as percentage 
of total noise at different levels of PHO5 expression. Under fully activating conditions 
(relative expression of 1), extrinsic noise is the dominant noise component. Noise 
components were determined by the conjugate reporter approach (see main text) with CFP 
and YFP (derivatives of the green fluorescence protein or “GFP”) expressed under control 
of the PHO5 promoter [7,37]. (These data have not been previously published.) PHO5 
expression was analyzed in pho80Δ cells, which express PHO5 constitutively, and 
manipulated by mutating the activation domain of PHO4, the transcriptional activator of 
PHO5 [38], or by PHO5 mutation in the binding sequences of PHO4 [7]. Protein expression 
was normalized by cell size, a significant contributor to extrinsic variation. Without this 
normalization, the extrinsic noise was close to 97% of the total noise for the wild type, 
consistent with earlier measurements [37]. 

Measurements of the intrinsic noise at different levels of PHO5 protein expression (but not extrinsic 
or total noise) indicated an increasing Fano factor with decreasing expression level [4,7]; that is to say, 
the measurements fit the predictions of burst frequency control and not other regulatory conjectures 
(Figure 3), thus corroborating, by implication, the bursting hypothesis. Regulation of transcription by 
burst frequency is not limited to PHO5 [39]. 

8. Accelerated Removal versus Exclusion 

Burst frequency control has an important implication: the net loss of promoter nucleosomes observed 
upon transcriptional induction of PHO5 must be due to accelerated disassembly rather than slowed 
reformation of nucleosomes—the first increases burst frequency, the latter burst duration. The hypothesis 
that loss of nucleosomes at the PHO5 promoter is due to steric exclusion by promoter-bound transcription 
factors, i.e., decelerated nucleosome formation, was independently refuted [4]. Thus, nucleosomes 
exclude transcription factors from their DNA binding sites, and not vice versa. In this context, it is of 
great interest that the SWI/SNF remodeling complex can dislodge transcription factors from DNA by 
catalysis of nucleosome sliding [40]. This may explain why the dwell time of transcription factors at 
their binding sites in vivo is markedly shorter than their dwell time on naked DNA in vitro [41]. 
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Consistently, it is widely believed that activators stimulate transcription, among other mechanisms, 
by the recruitment of chromatin remodelers to promoters to relieve nucleosomal repression—in other 
words, by accelerating nucleosome removal. Chromatin immunoprecipitation experiments have 
supported this conjecture [42]. However, such experiments neither revealed the fate of nucleosomes, nor 
answered the question of whether nucleosome loss was attained by exclusion or accelerated removal; 
the theoretical and experimental analysis of molecular variation did because it enabled the decision 
between competing conjectures of cause and effect. 

Because nucleosomes may form on any DNA sequence, albeit with different free energies [43],  
the conjecture of transcriptional stimulation by accelerated nucleosome removal predicts, together with 
the stochastic process theory of promoter chromatin, that all (eukaryotic) genes are regulated, at least in 
part, at the level of burst frequency. However, no such consensus has been reached across different 
studies. Some transgenes were found to be regulated by burst size rather than burst frequency [44]; and 
transcription of other genes did not appear to occur in bursts at all [45]. 

It has been argued that most promoter mutations affect the frequency rather than the size of 
transcriptional bursting [29]. However, this conclusion was based on the fitting of total (and not intrinsic) 
protein noise data to a Markovian model of gene expression which assumes that promoters are 
continually transcribed; that transcription does not occur in bursts [46,47]. Thus, the size of translational 
bursts (the average number of protein molecules translated per mRNA) was inferred from the data, and 
not transcriptional bursts. This may explain, perhaps, why most promoter mutations did not affect burst 
size, and those that did frequently generated upstream start codons [29]. The same approach was used to 
interpret the effects of loss-of-function mutations in genes for histone-modifying enzymes on total 
protein noise [48]. The implications of the reported data from these studies for transcriptional bursting 
are uncertain. To the extent that the applied model fit the data, the hypothesis of transcriptional bursting 
was not required to explain them. 

9. Further Analysis is Warranted 

Transcriptional bursting, the theory that promoters randomly transition between ON and OFF states, 
is an explanatory conjecture. It has been invoked to explain, essentially, two kinds of observations: a 
variable Fano factor with changing expression level (Figure 3), and the appearance of short and long 
gaps between transcription initiation events [4,7,37,39,44,49]. It should be kept in mind that the same 
observations may perhaps be explained otherwise. Explanatory theories can be tested, but not observed. 
(Explanations necessarily transcend the observations they explain.) Further testing is warranted: the 
above discussion shows that the notion of transcriptional bursting is closely linked to hypotheses of 
transcriptional regulation. This means that tests of the bursting hypothesis are essentially tests of 
regulatory conjectures. To this end, expression noise should be analyzed at different levels of expression 
of the same gene. Intrinsic and extrinsic noise must be experimentally distinguished (by employing the 
conjugate reporter approach), for pulsatile transcription may arise from both extrinsic and intrinsic 
variation. Genes that are strongly expressed naturally (such as PHO5) provide ideal models because their 
expression level may be manipulated over several orders of magnitude: for instance, by shortening the 
activation domain of their transcriptional activator, which addresses the question of how transcription is 
controlled physiologically [7], viz. by activators rather than chromosomal location [49,50]. 



Genes 2015, 6 479 
 

Recent developments have made it possible to monitor nascent transcription at single gene loci in life 
cells over time [39,45]. This should allow for addressing the critical question of whether transcription 
occurs in bursts in real time, in instances where it previously had been inferred from population variation; 
in other words, the ergodic hypothesis may thus be tested. Temporal observations also provide the means 
to test the proper granularity of promoter models, i.e., the number of promoter states required to explain 
noise. Thus, deviations from an exponential sojourn time distribution have hinted at two or more OFF 
states [51,52]. Consistently, it has been argued that several nucleosome configurations of the PHO5 
promoter are inconducive to transcription [4]. This predicts a refractory period prior to the reactivation 
of transcription, as the promoter passes through two or more OFF states before reentering an ON state. 

In principle, it is possible to determine promoter model granularity by recording the autocorrelation 
function for RNA fluctuations in single cells, which indicates the correlation between two RNA 
measurements at time points t1 ≤ t2 as a function of τ = t2 – t1. The autocorrelation function decreases 
monotonically from one to zero with increasing τ, as the process “forgets” its increasingly distant past. 
Provided certain mathematical conditions (viz. that transcription is a stationary Markov process with  
a diagonalizable generator for promoter transitions), it can be proved that the autocorrelation function 
for an n-promoter state model is the sum of n exponential functions (H. Boeger, unpublished; but for 
solution of the analogous problem for transmembrane ion channels see [53]). However, the temporal 
resolution of current methods is likely insufficient to fully attain this goal; further technological advances 
are required. 

Similar to Fano factor analysis, different regulatory modes of transcriptional bursts may be tested by 
autocorrelation analysis; different modes predict characteristic shifts in the autocorrelation time with 
changes in mean expression. Thus, if transcription occurs in bursts and is regulated by burst frequency, 
the autocorrelation function shifts toward longer times with decreasing mean expression, but it shifts 
toward shorter times if regulated by burst size. No shift is expected if transcription is controlled by the 
rate of RNA synthesis without bursting. This analysis may reveal bursting where it previously was not 
observed because autocorrelation measurements were conducted at one level of expression only. 
(Transcriptional bursting is masked if the promoter dynamics are significantly faster than the rate of 
RNA synthesis, if ε << κ; see equation for ΦR above.) 

Other critical tests of the bursting hypothesis are tests of its conjectured molecular basis, which is 
unknown. (For this reason alone, it should be clear that bursting is not observed, but hypothesized.) The 
random process theory of promoter chromatin expounded here provides such a conjecture, i.e., a 
molecular explanation for random bursting. It currently is the most detailed and best-tested explanation, 
but other mechanisms likely exist: the observed range in nucleosome occupancy did not explain the 
observed range in PHO5 transcription, suggesting that the frequency of bursting is not controlled at the 
level of promoter nucleosomes alone [4]. Furthermore, transgenes in mammalian cells appear to burst at 
a different time scale than genes in Drosophila and yeast [4,39,44,51,54], suggesting different underlying 
mechanisms. Noise measurements in mammalian cells may be affected by the propensity of transgenes 
to fall victim to gene silencing. The mechanism remains obscure, but chromatin appears to play a role [55]. 
The chromosomal integration site of transgenes has been found to affect both burst size and burst 
frequency [49,50,56]. The molecular basis of such locus effects is unknown. Again, chromatin structure 
may play a role [49]. 
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10. Concluding Remarks 

The analysis of both promoter chromatin structure and gene expression at the level of single gene 
molecules has indicated a surprising degree of intrinsically random behavior. Both appear 
mechanistically linked: the intrinsically stochastic dynamics of promoter chromatin provide an 
explanation for intrinsically stochastic bursting in transcription. Other, additional mechanisms for 
bursting likely exist. The regulation of transcription by control of burst frequency or duration is unique 
to the probabilistic theory of gene expression; gene regulation may not be understood in deterministic 
terms. However, the deterministic response of genes to environmental signals is an apparent requirement 
for biological function in many instances, such as embryonic development [54,57].  
How is this determinism reconciled with the intrinsically random behavior of single gene molecules? 
This problem—of chance and necessity [58], of clouds and clocks, as it were [59]—is not new; it has 
been pondered by philosophers and biologists alike. Darwin’s stroke of genius explained the emergence 
of purposive or teleonomic properties from random variation by selection. Randomness in gene 
expression, perhaps, may similarly be understood as a prerequisite for biological function rather than  
its impediment. 
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