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Abstract: The production of milk by dairy cows far exceeds the nutritional needs of the calf and is
vital for the economical use of dairy cattle. High milk yield is a unique production trait that can
be effectively enhanced through traditional selection methods. The process of lactation in cows
serves as an excellent model for studying the biological aspects of lactation with the aim of exploring
the mechanistic base of this complex trait at the cellular level. In this study, we analyzed the milk
transcriptome at the single-cell level by conducting scRNA-seq analysis on milk samples from two
Holstein Friesian cows at mid-lactation (75 and 93 days) using the 10× Chromium platform. Cells
were pelleted and fat was removed from milk by centrifugation. The cell suspension from each cow
was loaded on separate channels, resulting in the recovery of 9313 and 14,544 cells. Library samples
were loaded onto two lanes of the NovaSeq 6000 (Illumina) instrument. After filtering at the cell
and gene levels, a total of 7988 and 13,973 cells remained, respectively. We were able to reconstruct
different cell types (milk-producing cells, progenitor cells, macrophages, monocytes, dendritic cells, T
cells, B cells, mast cells, and neutrophils) in bovine milk. Our findings provide a valuable resource
for identifying regulatory elements associated with various functions of the mammary gland such as
lactation, tissue renewal, native immunity, protein and fat synthesis, and hormonal response.

Keywords: mammary gland; scRNA-seq; lactation; cattle; transcriptome; milk somatic cells; differential
gene expression

1. Introduction

The mammary gland is a relatively recent acquisition of mammalian evolution, es-
sential for successful reproduction, as it provides nourishment and immune protection
for the neonate in the first weeks of life. The mammary gland is a highly regenerative
organ and one of the few tissues that undergo most of its development after birth [1]. The
cyclical phases of growth, differentiation, lactation, and involution of the mammary gland
are regulated by hormones and growth factors [2].

A consequence of this complex function of the mammary gland and intense secretion
of milk, which differs significantly among different species, is also the presence of somatic
cells in milk. The main fractions of somatic cells in milk are epithelial cells, lymphocytes,
polymorphonuclear neutrophils (PMN), and macrophages. The majority of exfoliated
epithelial cells present in milk are viable and exhibit characteristics of fully differentiated
alveolar cells [3]. Since the somatic cell count (SCC), widely used as a marker for udder
health, only provides the cumulative number of somatic cells in milk, allows the newly
developed differential somatic cell count (DSCC) differentiation between two groups of
cells: PMN and lymphocytes versus macrophages [4]. Therefore, differential somatic cell
count represents a significant step forward in understanding the dynamics of the somatic
cell population in the mammary gland during lactation and at infection. In cattle and sheep,
the epithelial cell fraction represents only a relatively small part of somatic cells in milk,
whereas, in porcine milk, similar to human milk, epithelial cells are the predominant cell
type in milk [3].
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In diverse organs, adult stem cells are present with their primary role of maintaining
tissue homeostasis [5]. However, stem cells in the adult mammary gland serve both devel-
opment and homeostasis. Mammary stem cells (MaSCs) can self-renew and differentiate
into different cell types during the mammary gland’s developing cycles [6]. Because of
dramatic changes observed in mammary epithelium during morphogenesis and the repro-
ductive cycle, researchers have for many years suspected the existence of mammary stem
cells. In the 1950s, fat pad transplantation studies in mice demonstrated the regenerative
and differentiation capacity of epithelial mammary gland cells [7,8]. In 2006, it was reported
that mouse MaSCs were identified and isolated [9]. Since then, plenty of strategies, such as
transplantation of tissue, colony-forming assays, cell populations sorted for cell surface
markers, and lineage tracing, have been used to identify and characterize MaSC and to
delineate the mammary epithelial hierarchy [1].

In order to gain an insight into the molecular events in the lactating mammary gland
at the cellular level, access to the relevant biological material is required. Taking biopsies
from the mammary gland is one possibility to obtain material for different types of studies.
However, due to its invasive nature, researchers were looking for alternatives to biopsies.
The comparison of five different sources of RNA (biopsies of the mammary gland tissue,
laser microdissected mammary epithelial cells, milk somatic cells, milk fat globules, and
antibody-captured milk mammary epithelial cells) for analysis of the bovine mammary
gland transcriptome, showed that isolation of total RNA directly from somatic milk cells
released into milk during lactation is an effective alternative to mammary gland tissue
biopsies and laser microdissection of mammary epithelial cells [10].

The first data about organ-specific gene expression in the mammary gland were
obtained using expression microarrays a decade ago [11]. This approach revealed the ex-
pression of genes involved in cell development, growth, proliferation, and cell morphology
in the human milk cells from milk fat globules. In addition, it allowed a comparative
approach between species but was limited by the selection of genes on the chip. The
next important step represented bulk RNA sequencing from mammary gland isolates [12].
Sequencing of bulk RNA isolated from bovine milk cells in three lactation stages, transition
lactation (day 15), peak lactation (day 90), and late lactation (day 250) in Holstein cows
revealed expressions of 16,892, 19,094, and 18,070 genes, respectively. This is a cumulative
number of genes expressed in different cell types present in cow’s milk. Independent of the
lactation stage, approximately 9000 genes showed ubiquitous expression, genes encoding
caseins, whey proteins, and enzymes in the lactose synthesis pathway showed higher
expression in early lactation, and also the majority of genes in the fat metabolism pathway
had high expression in transition and peak lactation [13].

It has recently become possible to analyze the transcriptomes of single cells [14]. Since
then, single-cell RNA sequencing of bovine milk cells has been performed and revealed
immune (macrophages, monocytes, dendritic cells, T cells, B cells, and NK cells) and
epithelial cells, 2.47% of the cells were epithelial cells [15]. Single-cell transcriptomic studies
on human milk have shown it predominantly comprises epithelial cells from the luminal
lineage. Endothelial and immune cells make up approximately 1.4 ± 1.1% of the total cell
count in mature human milk samples. Furthermore, two distinct secretory cell types were
identified in human milk [16]. The study of mammary epithelial cells at the single-cell
level in humans and mice revealed much greater heterogeneity in the composition of
mammary epithelial cells than previously reported [17]. A few studies have examined
mammary gland cells from mice and humans, analyzing the epithelial cells of the mammary
gland [18–23] or the entire mammary gland at the single-cell level [24,25]. The analyses
revealed several different cell types. The researchers reported mostly consistent, but also
some discordant results, possibly due to differences in the methods of analysis.

The capacity of milk production in dairy cows exceeds several times the nutritional
needs of the calf and is essential for the economical use of dairy cattle in agriculture.
Lactation in cattle is a suitable model for studying the biology of lactation with the aim of
discovering the mechanistic base of this complex trait at the cellular level. The single-cell
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RNA sequencing opens a new horizon for documentation of cell type-specific expression
profiles in the mammary gland and even the possibility of determining different cell types
based on cell type-specific transcriptomic profiles [20]. This approach also allows the
identification of cellular sources for several milk components, which did not have a defined
origin before [26].

Milk contains mammary epithelial cells and immune system cells (lymphocytes,
macrophages, and neutrophils), which reflect the activity of the mammary gland and
reveal the response of the mammary gland to environmental challenges [27]. The gene
expression of ductal, alveolar, and stromal cells in the mammary gland drives lactation and
reveals the cyclic character of the mammary gland [28]. Here, we report the application of
scRNA-seq to elucidate the cell type repertoire in bovine milk based on the transcriptomic
differences between different cell clusters. We were focused on defining the resident cell
types in mid-lactation bovine milk. This information will contribute to a better under-
standing of the complex processes in the mammary gland, including tissue remodeling
and involution.

2. Materials and Methods
2.1. Bovine Milk Samples and Isolation of Cells

Milk samples were collected from two healthy Holstein Friesian cows in mid-lactation
(75 and 93 days) from a dairy farm in Slovenia. The sample collection was performed in
February and animals were on a standard grass/maize silage diet with the addition of a
standard concentrate for dairy cows. A regular milking test was performed five days prior
to sampling and the records are as follows: 49.6 and 51.2 milk yield (kg), 3.46 and 3.08
fat (%), 3.37 and 3.22 protein (%), 4.71 and 4.77 lactose (%), 19,000 and 25,000 SSC, and 30
and 34 mg urea per liter. Milk samples were taken after morning milking with manual
milking from all four quarters, 30 mL per quarter and 120 mL from each animal. Fresh
milk samples were transported to the laboratory on ice and processed within three hours
of being collected. The cells were pelleted and the fat was removed from the milk in 50-mL
tubes by centrifugation (500× g) for 5 min. The supernatants were decanted and the pellets
were pooled by resuspending them in approximately 5 mL of cold phosphate-buffered
saline (PBS). The pellet was washed by removing the supernatant and resuspending the
cells in 5 to 10 mL of cold PBS before transferring the sample to a new 15 mL tube and
centrifuging at 490 g for 5 min at 4 ◦C. The ratio of dead cells was estimated by trypan blue
(0.2%) staining (1:1) of cell suspension in the cell counting chamber.

2.2. Single-Cell Library Preparation and Sequencing

Single-cell library generation for 10X Genomics chemistry was performed following
Chromium Single Cell 3′ Reagent Kits user guide (v3 Chemistry) [29]. In brief, cell suspen-
sions were loaded onto a 10X Chromium Controller instrument (10x Genomics, Pleasanton,
CA, USA) to generate single-cell GEMs for two biological replicates followed by cell lysis
and barcoded reverse transcripts of RNA, amplification, shearing, and 5′ adapter and
sample index attachment. Quality control and quantification of the resulting polymerase
chain reaction (PCR) products were determined using a DNA high-sensitivity assay on
a PerkinElmer-HP (Waltham, MA, USA). The peak of the fragment size distribution was
around 1200 to 1500 bp indicating a good quality of cDNA synthesis (Figure S1).

Library samples were diluted to a concentration of 10 nM and loaded onto two lanes
of the NovaSeq 6000 (Illumina, San Diego, CA, USA) instrument. Two samples (27.5 and
20.0 µL of cell suspension) were loaded on each channel which resulted in the recovery
of 9313 and 14,544 cells. A total of ~361 million reads were obtained with 36,315 mean
reads per cell for the first replicate and ~257 million reads with 17,459 mean reads per cell
for the second replicate. For the first replicate, 96.6% of the reads were mapped to the
genome and for the second replicate 94.1%. We detected a total of 15,630 and 16,497 genes,
corresponding to 735 and 661 median genes per cell in the first and second biological
replications, respectively.
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2.3. Pre-Processing and Quality Control of scRNA-Seq Data

Sample demultiplexing, barcode processing, read alignment to the bovine reference
genome (ARS-UCD1.2.108), quantification, and initial quality control of paired-end se-
quencing data were performed for each sample using Cell Ranger software (version 7.1.0,
10X Genomics). The sequencing saturation determined by Cell Ranger showed a saturation
of 77.2% and 66.3%. The output of Cell Ranger was used for further processing with R
(version 4.3.2) and the R package Seurat v4.2.0 [30]. Genes expressed in less than three
cells were removed from the gene expression matrix. We kept the cells with a minimum of
200 and a maximum value of 2500 expressed genes. Cells in which mitochondrial genes
accounted for more than 20% of the counts were filtered out. After filtering, 7988 and
13,973 cells remained.

2.4. Identification of Cell Clusters

We applied Seurat’s “anchor-based” workflow [31] to integrate two datasets. After
filtering, we log-normalized the raw counts with LogNormalize and used FindVariableFeatures
function to identify highly variable genes for each batch at default settings. We then ran
FindIntegrationAnchors with dims = 1:30. The resulting anchors were used for IntegrateData
with the 30 dimensions. We then scaled all genes with ScaleData and performed a principal
component analysis with RunPCA, all with the default settings. Clusters were identified
using the FindClusters function with a resolution of 0.8 and then visualized using the
RunTSN and RunUMAP (reduction = “pca”) functions.

2.5. Annotation of Cell Types

For the fully automated identification of cell types, we used ScType [32] with the
ScType marker database (https://www.nature.com/articles/s41467-022-28803-w, accessed
on 18 September 2023) and clustermole: Unbiased Single-Cell Transcriptomic Data Cell
Type Identification R package version 1.1.1. (https://igordot.github.io/clustermole/, ac-
cessed on 25 February 2024). We used singleCellBase, a manually curated database of cell
markers for scRNA-Seq annotation [33]. Cell types were also manually assigned to cell
clusters by matching cluster-specific upregulated marker genes with prior knowledge of
cell type markers.

2.6. Identification of Highly Variable Expressed Genes

The most variable genes based on their expression in the whole population were
determined using the FindVariableGenes function [31,34] with the default parameters (se-
lection.method = “vst”, nfeatures = 2000). This function is used to calculate the average
expression and dispersion for each gene. The genes are placed into bins and then the
z-score for dispersion is calculated for each bin. We selected the 2000 genes with the highest
standardized variance.

3. Results
3.1. ScRNA-Seq Identifies a Diversity of Cell Types in Bovine Milk Somatic Cells

Transcriptional profiling of bovine somatic milk cells was performed using scRNA-seq
analysis with the 10x Chromium platform on fresh milk samples from two Holstein Friesian
cows in mid-lactation (75 and 93 days). Cell quality control was based on the number of
genes per cell, the number of UMI reads per cell, the percentage of cell counts mapping to
mtDNA genes, and the percentage of cell counts mapping to ribosomal protein transcripts.
Bovine milk somatic cells have slightly different numbers of expressed genes per cell and
regulation of mitochondrial and ribosomal transcripts (Figure 1). After filtering at cell
and gene levels, a total of 7988 and 13,973 cells remained. Since we had two individual
scRNA-seq samples, we conducted an anchor-based integration analysis to explore all cells
in these samples simultaneously.

https://www.nature.com/articles/s41467-022-28803-w
https://igordot.github.io/clustermole/
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Figure 1. ScRNA−seq quality control analysis with UMAP plots of two somatic milk cell datasets after
integration. The colors indicate: (a) number of genes per cell (nFeature_RNA), (b) number of UMI
reads per cell (nCount_RNA), (c) percentage of cell counts mapping to mtDNA genes (percent.mt),
and (d) percentage of cell counts mapping to ribosomal protein transcripts (percent.rb).

After normalization and integration of the data, the cells from each of the two milk
samples appeared to be evenly distributed along the cell projection (Figure 2). UMAP
reduction generates a clear cell clustering highlighting 21 distinct cell populations based
on their gene expression profiles. All identified clusters were shared by both samples
(Figure 2).

We identified 21 cell clusters and annotated them (Figure 3) as T cells (CD8+, CD4+),
neutrophils, progenitor cells, monocytes, mast cells, macrophages, B cells, NK cells, den-
dritic cells, monocytes, luminal cells, and luminal progenitor cells. These annotations
were determined using automated methods for cell type annotation and examination of
established marker genes for each cell type as well as major marker genes for each cluster
(Table 1, Figures 4 and 5).
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Table 1. Ten major marker genes were identified for each of 21 cell clusters and cluster annotations.

Cluster Cluster Annotation Marker Gene

0 CD8+ T cells GZMK, ENSBTAG00000027204, CD52, ENSBTAG00000010828, FAM162A, RGS1, CCL5,
ENSBTAG00000034609, ENSBTAG00000000432

1 CD4+ T cells UBD, ICOS, ENSBTAG00000055140, GUCY1B1, ENSBTAG00000027204, CD4, S100A13, NCR3,
ENSBTAG00000034609

2 Neutrophils GPR84, BASP1, PLAU, PLEK, MARCKS, IL1B, DMXL2, IL1RN, BATF3
3 Progenitor cells CCL2, APOE, S100A2, CLDN4, CD9, CCL8, CST6, CRYAB, CRCT1
4 Monocytes CD36, CTSS, CTSB, LIPA, CCL8, GRN, CNDP2, TREM2, CD9
5 Monocytes EDN1, FCN1, LYZ, CD14, ARAF, TNF, CXCL3, BOLA-DRA, DEFB13

6 Mast cells NUPR1, KIT, ENSBTAG00000055197, SPRY2, CTSW, ENSBTAG00000000144, CD7, TNFRSF9,
ENSBTAG00000034609

7 Macrophages FABP5, CD36, CTSB, APOE, CSTB, CNDP2, CTSZ, ATOX1, CD9

8 Neutrophils BASP1, ENSBTAG00000048980 (Chemokine interleukin-8-like domain-containing protein), IFITM3,
CXCR1, GPR84, SELL, ENSBTAG00000034366, TGM3, S100A9

9 B cells BLA-DQB, ENSBTAG00000013919, CD74, MS4A1, ENSBTAG00000055240, TNFRSF13C, CCR7,
ENSBTAG00000009656, IRF4

10 Progenitor cells TACSTD2, RASD1, ENSBTAG00000050919, DUSP5, EFNB2, ARC, KLF4, HSPA2, MAFB

11 NK cells
GNLY, ENSBTAG00000047449 (Saposin B-type domain-containing protein), CD52, UBD, S100A13, PRF1,
GPR183, ENSBTAG00000000144 (Ig-like domain-containing protein), ENSBTAG00000055197
(Immunoglobulin C1-set domain-containing protein)

12 Memory CD8+ T cells RUBCNL, UBD, CD52, BASP1, PLAU, ENSBTAG00000027204, PLEK, IL1RN, ENSBTAG00000034609
13 Dendritic cells CCR7, GPR183, LY75, BLA-DQB, TAMALIN, PKIB, ENSBTAG00000013919, BOLA-DRA, FSCN1
14 Monocytes PTGS2, CCL2, CD36, CCL8, CTSS, RUBCNL, EDN1, CXCL5, DEFB13
15 Luminal progenitor cells CLU, CLDN3, CLDN4, CRYAB, KRT7, DSTN, WFDC2, KRT19, LTF
16 Luminal cells CSN1S1, PAEP, CSN1S2, CSN3, GLYCAM1, LALBA, HSTN, SCGB1D, FABP3
17 Luminal progenitor cells CRCT1, AGPAT2, CLDN3, KRT7, CLDN4, DSTN, S100A2, CRYAB, WFDC2
18 Neutrophils TUBB4B, GADD45G, DDIT4, GADD45A, HSPH1, HSPA1A, IER5L, ZFAND2A, LRIF1
19 CD4+ CD8+ T cells PCLAF, MKI67, STMN1, TOP2A, DUT, HMGB2, CENPF, TMPO, DNMT1, UBE2C

20 Dendritic cells BOLA-DRA, ENSBTAG00000013919 (BOLA-DRB3), ENSBTAG00000009656 (BOLA-DQA2), CD74,
C3H1orf54, BLA-DQB, CST3, ENSBTAG00000037605 (BOLA-DQA1), BOLA-DMA, PLAC8AGenes 2024, 15, x FOR PEER REVIEW 9 of 15 
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Figure 5. Dot plot highlighting the marker genes used to determine the cluster identities of 21 clusters.
The marker genes are listed on the X axis and the cluster numbers are on the Y axis. The size of the
circle corresponds to the number of cells in the cluster expressing the marker, while the shading
corresponds to the extent of expression.

The cells responsible for milk production were identified in three clusters, 15, 16, and
17. These clusters were classified as luminal progenitor cells and luminal cells characterized
by the expression of genes encoding caseins and whey proteins and epithelial markers.
Clusters 3 and 10, which express epithelial markers, were identified as progenitor cells
using the Clustermole tool, which found similar cell types in a database of mouse mammary
gland cells (cluster 3 being hormone-sensitive progenitor cells and cluster 10 being other
progenitor cells). Monocytes were identified in clusters 4, 5, and 14, characterized by the
expression of monocyte markers (CD14). Cluster 7 contained macrophages, clusters 13 and
20 dendritic cells, and clusters 2, 18, and 8 neutrophils. T cells expressing either CD4, CD8,
or both markers were located in clusters 0, 1, 12, and 19; NK cells were located in cluster 11,
while B cells expressing specific marker genes (CD19, MS4A1, CD79A, CD79B, BLNK, and
TNFRSF13C) formed cluster 9. Mast cells expressing genes CD7 and KIT were identified in
cluster 6.

3.2. Milk Producing Cell Clusters

To identify milk-producing cells, we examined the expression of casein (CSN1S1,
CSN1S2, CSN2, CSN3) and whey protein (PAEP, LALBA) genes (Figure 6). In both samples,
expression of milk-producing genes was present, CSN1S1 was expressed in 50.2% of cells
in the first and in 52.4% of cells in the second sample, CSN1S2 was expressed in 22.4% and
21.2% of cells, CSN2 was expressed in 53.0% and 38.2%, CSN3 in 33.1% and 20.9%, PAEP in
82.0% and 66.3% and, LALBA in 21.3% and 12.6% of recovered cells. Significantly higher
levels of caseins and whey proteins are detected in cluster 20, annotated as alveolar cells.
However, caseins and whey proteins were expressed also in clusters 18 and 19 assigned as
neutrophils and effector CD4+ T cells.

The expression of casein (CSN1S1, CSN1S2, CSN2, and CSN3) genes, whey protein
(PAEP and LALBA) genes, MUC15 and BTNA1 genes shows cell-type specific profiles which
indicate differences among bovine somatic milk cell clusters.
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Figure 6. Expression of casein (CSN1S1, CSN1S2, CSN2, and CSN3) and whey protein (PAEP and
LALBA) genes in bovine somatic milk cell clusters (labeled with 0 to 20).

3.3. Highly Variable Expressed Genes in Bovine Milk Somatic Cells

Analysis of highly variable expressed genes that contribute to cell-to-cell variation
within bovine milk somatic cells revealed the most highly variable expressed genes: CRCT1
(cystein rich C terminal 1), S100A2 (S100 calcium-binding protein A2), caseins (CSN1S1,
CSN1S2, CSN2, and CSN3) and whey proteins (PAEP and LALBA) (Figure 7).
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4. Discussion

Traditionally, somatic cells in the milk are expected to belong to myo/epithelial
mammary gland cells, different types of immune cells (lymphocytes, neutrophils, and
macrophages) and stromal cells [35]. However, since precise markers for sub-differentiation
of cell types in the mammary gland are not present in all mammalian species (agricultural
species are not very well covered), the number of different cell types in the somatic cell
fraction was normally underestimated. The analysis of bulk RNA transcripts from milk
somatic cells revealed a very wide range of expressed genes and consequently indicated a
wider range of cell types in the milk somatic cell fraction. Single-cell sequencing of human
and mouse mammary somatic cells revealed a much wider range of cell types, which are
present in the milk [20,25]. Our single-cell RNA sequencing analysis of bovine milk has
revealed a cellular landscape of bovine milk somatic cells, highlighting a rich diversity
of cell types pivotal for lactation, immune response, and tissue homeostasis. Similar to
the findings of Becker et al. (2021) [15], our study also emphasizes the complexity of the
mammary gland and reveals a broad spectrum of immune and epithelial cells. Becker et al.
(2021) [15] identified 14 cell clusters in bovine milk, which were annotated as monocytes,
CD4+ T cells, CD8+ T cells, B cells, macrophages, dendritic cells, NK cells, and epithelial
cells. Despite using a consistent granularity parameter of 0.8 for clustering, our analysis
revealed 21 distinct clusters. We identified an additional cluster, encompassing three
subclusters of neutrophils. Neutrophils are a component of the defence mechanisms of the
mammary gland and are naturally present in milk. However, their numbers increases in
response to infection.
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We applied an anchor-based workflow to integrate cells from two milk samples
together. In the anchor-based approach, cross-dataset pairs of cells are identified, and cells
that share a biological state are clustered together [31]. We identified cell subpopulations
that are present in both datasets (Figure 2). By focusing on the mid-lactation in two Holstein
Friesian cows, our study aims to capture a snapshot of the cellular mechanisms driving
milk synthesis and secretion at a time when these processes are highly expressed. The
mid-lactation phase is characterized by relatively stable milk production and provides a
window to study the gene expression profiles of milk-producing cells without the effects of
the ramp-up in early lactation or the wind-down phase towards the end of lactation.

Expression of genes, encoding caseins and whey proteins is characteristic of mam-
mary epithelial cells. We identified cells producing caseins (CSN1S1, CSN1S2, CSN2, and
CSN3) and whey proteins (PAEP and LALBA). Higher levels of caseins and whey proteins
were detected in secretory alveolar cells. Detection of highly variable expressed genes
allowed us to identify genes that strongly contribute to cell-to-cell variation within the cell
population [36]. The most highly variable expressed genes in our samples were CRCT1
(cystein-rich C terminal 1), S100A2 (S100 calcium-binding protein A2), caseins (CSN1S1,
CSN1S2, CSN2, and CSN3) and whey proteins (PAEP and LALBA). The gene CRCT1 was
associated with epidermal differentiation [37] and might allow insight into a possible
differentiation pathway that plays a role in the differentiation process of the mammary
gland. S100 calcium-binding protein A2 was identified in milk from cows with clinical
mastitis [38], but later it was identified also in milk from healthy cows [39].

A recent analysis of single-cell transcriptomes in mice revealed important differences
in gene expression between different cell types, which can significantly vary during the
development of the mammary gland as well as in the course of lactation [21]. With the
application of RNA sequencing for the study of milk transcriptome, the methodology for
collecting biological samples became more and more important, especially for applications
based on the single-cell sequencing approach. Since there is solid evidence that expression
profiles and the proportion of different cell types in the mammary gland very much depend
on the lactation stage, it is necessary to compare transcription profiles in different lactation
stages, preferably in the same animal, because of the differences in the representation of
cell types and differences in transcription profiles between animals [3,40]. Together with
animal welfare arguments is the possibility of obtaining multiple samples from the same
animal in the course of lactation a strong argument for a non-invasive sampling approach.

5. Conclusions

Our results shed light on the complex cellular landscape and gene expression profiles
of bovine milk during mid-lactation. The identification of a considerably higher num-
ber of cell types in the milk somatic cell fraction compared to traditional expectations
opens a new horizon for a more complex interpretation of the biological processes in the
mammary gland.
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