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Abstract: Aquaculture plays a crucial role in meeting the increasing global demand for food and
protein sources. However, its expansion is followed by increasing challenges, such as infectious
disease outbreaks and antibiotic misuse. The present study focuses on the genetic and functional
analyses of two Lacticaseibacillus paracasei (BF3 and RT4) and two Lactiplantibacillus plantarum (BF12
and WT12) strains isolated from a rotifer cultivation tank used for turbot larviculture. Whole-genome
sequencing (WGS) and bioinformatics analyses confirmed their probiotic potential, the absence
of transferable antibiotic resistance genes, and the absence of virulence and pathogenicity factors.
Bacteriocin mining identified a gene cluster encoding six plantaricins, suggesting their role in the
antimicrobial activity exerted by these strains. In vitro cell-free protein synthesis (IV-CFPS) analyses
was used to evaluate the expression of the plantaricin genes. The in vitro-synthesized class IIb (two-
peptide bacteriocins) plantaricin E/F (PlnE/F) exerted antimicrobial activity against three indicator
microorganisms, including the well-known ichthyopathogen Lactococcus garvieae. Furthermore,
MALDI-TOF MS on colonies detected the presence of a major peptide that matches the dimeric form
of plantaricins E (PlnE) and F (PlnF). This study emphasizes the importance of genome sequencing
and bioinformatic analysis for evaluating aquaculture probiotic candidates. Moreover, it provides
valuable insights into their genetic features and antimicrobial mechanisms, paving the way for their
application as probiotics in larviculture, which is a major bottleneck in aquaculture.

Keywords: aquaculture; larviculture; rotifers (Brachionus plicatilis); probiotics; lactic acid bacteria;
lactobacilli; WGS; bioinformatics; plantaricins

1. Introduction

Aquaculture has become a critical pillar within the global food supply chain and
represents the fastest-growing sector in food production. Considering the expected surge
in the human population, which could reach approximately 9.8 billion individuals by
the year 2050, as well as the new global demographic dynamics, the demand for food
and protein sources is expected to soar. In this context, aquaculture emerges as a vital
alternative to meet this growing demand [1,2]. Nevertheless, climate change and the
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expansion and intensification of aquaculture pose numerous challenges for this sector,
including disease outbreaks, the emergence and resurgence of ichthyopathogens (viral,
bacterial, and parasitic), and the prevalence of antimicrobial-(multi)resistant bacteria [2–6].

In the past, the indiscriminate and erroneous use of antibiotics in aquaculture was
somewhat underestimated. Yet, due to the nature of aquatic environments, the constant
surface interaction between water and fish, and the intense nature of aquaculture, these
practices can promote the proliferation of multiple pathogenic bacteria, which can act as
reservoirs for the transference of antimicrobial resistance genes. Besides, both residues and
sedimentation resulting from the administration of medicated feeds containing uneaten
and non-absorbed antimicrobial compounds, as well as their metabolites, pose significant
contamination threats to aquatic ecosystems [3,5,7].

Innovative and complementary strategies for disease control in aquaculture, including
vaccines, prebiotics, probiotics, postbiotics, symbiotics, bacteriophages, and immunostim-
ulants, have emerged to address these growing challenges. These novel strategies are of
special need during the larval rearing phases of aquaculture, as they are often affected by
impactful infectious disease outbreaks. In particular, probiotics, which can be defined as
live microorganisms that confer health benefits when provided in adequate proportions,
are regarded as one of the most promising strategies for aquaculture. Although specific
guidelines for evaluating and selecting aquaculture probiotics are currently scarce, sev-
eral authors and institutions have established principles and general guidelines. These
recommendations are based on safety assessments of microorganisms used in food and
feed, taxonomical identification, and factors such as resistance to antibiotics or virulence
factors. In particular, the European Food Safety Authority (EFSA) recently established as a
standard protocol the whole-genome sequencing (WGS) of bacterial probiotics intended
for use in the food chain and outlined guidelines for its analysis [8–12]. Lactic acid bacteria
(LAB) is the principal group of bacteria proposed as probiotics for aquaculture, and their
use has gathered increasing attention over the years. This interest is driven by several
factors, such as the overall categorization of the qualified presumption of safety (QPS) by
the EFSA, their antimicrobial properties (such as the production of bacteriocins, organic
acids, hydrogen peroxide, reuterin, carbon dioxide, and acetaldehyde), their competition
for adhesion sites and nutrients, and even their immunomodulatory potential [9,13].

Amongst the several challenges faced by the aquaculture sector, larviculture stands
as one of its major bottlenecks, in which frequent infectious disease outbreaks and popu-
lational crashes in larvae cause serious economic losses. Interestingly, finfish larviculture
mostly relies on the use of live feed such as rotifers as food sources for the early larval
stages. During this phase, fish larvae have an underdeveloped microbial community and
immune system, as they are frequently exposed to high loads of organic matter and bacte-
rial concentrations [9,13]. To this effect, LAB are often suggested as new alternatives to the
conventional chemotherapeutical options in aquaculture, such as the use of antibiotics, as
well as new biocontrol mechanisms for the industry [10,12,14,15]. Moreover, there is, to a
certain degree, a consensus that beneficial bacteria isolated from autochthonous sources
(i.e., isolated from the same species, or rearing environment, as its target species) have
greater chances of succeeding as probiotic candidates [14]. In this regard, two Lc. paracasei
and two Lp. plantarum strains, previously isolated by our group from the rearing tank of
rotifers (Brachionus plicatilis) used as live feed for turbot (Scophthalmus maximus, L.) larvae,
showed a broad and strong antimicrobial activity spectrum against several bacterial ichthy-
opathogens of importance to turbot larviculture. Moreover, an in vitro safety assessment
indicated their safety, as well as the absence of antibiotic resistance genes and virulence
factors [16].

Considering the probiotic potential demonstrated by these four LAB strains, their
whole-genome sequences were determined and further analyzed through a bioinformatic
(in silico) analysis. Additionally, given the strong antimicrobial properties previously
demonstrated by these probiotic candidates and the need to gain further insight into their
antimicrobial mechanisms, in vitro cell-free protein synthesis (IV-CFPS) and colony matrix-
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assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)
analyses were performed.

2. Materials and Methods
2.1. Growth Conditions and Genomic DNA Isolation

Lp. plantarum (BF12 and WT12) and Lc. paracasei (BF3 and RT4) strains were grown in
de Man, Rogosa, and Sharpe (MRS) agar (1.5%, w/v) plates (Oxoid, Basingstoke, UK) at
30 ◦C overnight.

For total genomic DNA isolation, the NZY Microbial gDNA Isolation Kit (NZYTech,
Lisbon, Portugal) was used according to the manufacturer instructions. The final eluate
was stored at −20 ◦C until further use.

2.2. Whole-Genome Sequencing, Assembly, and Mapping

The whole-genome sequencing (WGS) of the four probiotic candidates was performed
at the SeqCenter (Pittsburgh, PA, USA). Briefly, libraries were prepared using the Illumina
DNA Prep kit and Integrated DNA Technologies (IDT) 10 bp unique dual index (UDI)
indices. Then, they were sequenced on an Illumina NextSeq 2000 (Illumina, San Diego, CA,
USA), producing 2 × 150 bp reads. Demultiplexing, quality control, and adapter trimming
were performed with a BCL Convert v3.9.3 (Illumina). The resulting sequence reads were
assembled into contigs using the Unicycler v0.4.8 program [17]. Rounds of assembly
polishing were carried out with the Pilon program (Oxford Nanopore Technologies, Oxford,
UK). Additionally, genome maps of the four probiotic candidates were generated using the
Proksee web server (https://proksee.ca/, accessed on 13 September 2023). Finally, some
genomic features of the four probiotic candidates were compared with those of the species
type strains Lc. paracasei JCM8130 and Lp. plantarum DSM20174.

2.3. Bioinformatic (In Silico) Analysis
2.3.1. Species Identification

Although the strains were previously taxonomically identified through DNA sequenc-
ing of the PCR-amplified gene encoding the 16S rRNA subunit (16SrDNA) as Lp. plantarum
(BF12 and WT12) and Lc. paracasei (BF3 and RT4), their identity was confirmed by two dif-
ferent databases: SpeciesFinder v.2.0. (https://cge.food.dtu.dk/services/Speci esFinder/,
accessed on 12 September 2023) and KmerFinder v.3.0.2. (https://cge.food.dtu.dk/services/
KmerFinder/, accessed on 13 September 2023). These servers predict bacterial iden-
tity based on the complete sequence of the 16SrDNA and on the number of concurrent
kmers (namely, 16-mers), respectively [18,19]. Additionally, a phylogenetic whole-genome
sequencing-based mapping was obtained through the Type (Strain) Genome Server (TYGS)
(https://tygs.dsmz.de/, accessed on 13 December 2023).

2.3.2. Transferable Antibiotic Resistances

A BLASTn search against the ResFinder tool v.4.3.3. database (http://genepi.food.dtu.
dk/resfinder, accessed on 13 December 2023) [20] was performed to identify the acquired
antimicrobial resistance genes in the four probiotic candidates.

2.3.3. Virulence Factors and Pathogenicity

A BLASTn search was run against the VirulenceFinder v.2.0.3 database (https://cge.
food.dtu.dk/services/VirulenceFinder/, accessed on 13 December 2023). This server finds
and predicts genes encoding for bacterial virulence factors [21]. Furthermore, another
BLASTn search run to assess the virulence and pathogenicity towards humans using the
PathogenFinder v.1.1. web server (https://cge.food.dtu.dk/services/Pathogen Finder/,
accessed on 13 December 2023) [22] was carried out.

https://proksee.ca/
https://cge.food.dtu.dk/services/Speci
https://cge.food.dtu.dk/services/KmerFinder/
https://cge.food.dtu.dk/services/KmerFinder/
https://tygs.dsmz.de/
http://genepi.food.dtu.dk/resfinder
http://genepi.food.dtu.dk/resfinder
https://cge.food.dtu.dk/services/VirulenceFinder/
https://cge.food.dtu.dk/services/VirulenceFinder/
https://cge.food.dtu.dk/services/Pathogen
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2.3.4. Mobile Genetic Elements (MGEs)

Likewise, a BLASTn search was performed against the MobileElementFinder database
v1.0.2. (https://cge.food.dtu.dk/services/MobileElementFinder/, accessed on 13 Decem-
ber 2023) in search of intracellular MGEs—specifically, insertion sequences (ISs), as well as
extracellular MGEs such as plasmids and prophages [23].

2.3.5. Probiotic Traits

A manual prospection of coding sequences (CDSs) was carried out by using the online
server Rapid Annotation using Subsystem Technology (RAST) and SEED v.2.0 (http://rast.
nmpdr.org/, accessed on 2 October 2023) [24]. The probiotic traits investigated included
factors related to adhesion and aggregation, amino acid metabolism, the production of
lactic acid, active metabolism, vitamin biosynthesis, stress tolerance, host gastrointestinal
tract adaptations, and enzyme production for food digestion.

2.3.6. CRISPR/CRISPR-Cas

The CRISPRCasFinder server v.1.1.2. (https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/
Index, accessed on 13 December 2023) [25] was used to predict clustered regularly inter-
spaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas).

2.3.7. Bacteriocin Production

To understand the potential antimicrobial mechanisms of the four probiotic candidates,
bacteriocin mining was performed through the BAGEL v4.0. online webserver (http:
//bagel4.molgenrug.nl/accessed on 13 December 2023) [26].

2.4. In Vitro Cell-Free Protein Synthesis (IV-CFPS) of Bacteriocins

Total genomic DNA from Lp. plantarum BF12 and WT12 was used for PCR-amplification
of the genes encoding the mature bacteriocins of interest. The oligonucleotide primers
(Table 1) were obtained from Thermo Fisher Scientific (Waltham, MA, USA) based on
primers previously described and used [27]. Phusion Hot Start II High-Fidelity DNA
Polymerase (Thermo Fisher Scientific) was used for PCR-amplification in 50 µL reaction
mixtures containing 1 µL of genomic DNA. PCR-derived amplicons were visualized via
agarose (1.5%, w/v) gel electrophoresis, dyed with GelRed Nucleic Acid Gel Stain (Biotium,
Inc., Fremont, CA, USA) in a ChemiDoc Imaging System (Bio-Rad, Hercules, CA, USA), and
quantified using a Qubit fluorometer system (Invitrogen, Waltham, MA, USA). For in vitro
cell-free protein synthesis (IV-CFPS) reactions, the PCR-derived amplicons (standardized
at a final DNA concentration of 10 ng/µL) were used as templates by using a PURExpress
In vitro Protein Synthesis Kit (New England Biolabs, Ipswich, MA, USA) according to the
manufacturer protocol [28].

Table 1. Primers and PCR products used in this study.

Primers and PCR
Products Nucleotide Sequence (5′–3′) a Amplification

Fragment

PlnA-F GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGG
AGGAAAAAATATGATGAAGAGTAGTGCGTATTCTTTGCAGATG PlnA

PlnA-R AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTA
CCCATCCCCATTTTTTAAACAGTTTC PlnA

PlnE-F GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAGG
AAAAAATATGATGTTTAATCGGGGCGGTTATAACTTTGGTAAAAG PlnE

PlnE-R AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTA
AAATACCACGAATGCCTGCAACTG PlnE

https://cge.food.dtu.dk/services/MobileElementFinder/
http://rast.nmpdr.org/
http://rast.nmpdr.org/
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
http://bagel4.molgenrug.nl/accessed
http://bagel4.molgenrug.nl/accessed


Genes 2024, 15, 64 5 of 18

Table 1. Cont.

Primers and PCR
Products Nucleotide Sequence (5′–3′) a Amplification

Fragment

PlnF-F GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAG
GAAAAAATATGATGGTTTTCCATGCCTATAGCGCGCGTGGC PlnF

PlnF-R AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTA
TTCCGTGGATGAATCCTCGGACAG PlnF

PlnJ-F GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAGG
AAAAAATATGATGGGCGCTTGGAAAAATTTCTGGTCTAGTTTAAG PlnJ

PlnJ-R AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTA
TACGACGGATTGCTCTGCCAGCTTC PlnJ

PlnK-F GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGGAGG
AAAAAATATGATGCGTCGGAGTCGTAAAAATGGAATTGGATAC PlnK

PlnK-R AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTA
TCTTATTATAATCCCTTGAACCAC PlnK

PlnN-F GCGAATTAATACGACTCACTATAGGGCTTAAGTATAAGG
AGGAAAAAATATGATGAAAAACTATTCTAAGACATGGTGGTAC PlnN

PlnN-R AAACCCCTCCGTTTAGAGAGGGGTTATGCTAGTTA
TACCTAAACCATGCCATGCACTCG PlnN

PCR Products

PlnA T7 promoter and transcription terminator containing the mature sequence of the bacteriocin PlnA
PlnE T7 promoter and transcription terminator containing the mature sequence of the bacteriocin PlnE
PlnF T7 promoter and transcription terminator containing the mature sequence of the bacteriocin PlnF
PlnJ T7 promoter and transcription terminator containing the mature sequence of the bacteriocin PlnJ
PlnK T7 promoter and transcription terminator containing the mature sequence of the bacteriocin PlnK
PlnN T7 promoter and transcription terminator containing the mature sequence of the bacteriocin PlnN

a T7 promoter is shown in bold; T7 transcription terminator is underlined.

2.5. Antimicrobial Activity of In Vitro Synthesized Bacteriocins

The antimicrobial activity of the in vitro-synthesized bacteriocins was evaluated by
a spot-on-agar test (SOAT) [29]. Briefly, 10 µL of the samples were spotted onto MRS
agar (1.5%, w/v) plates, which were then overlaid with a soft agar (0.8%, w/v) previously
seeded with ca. 105 CFU/mL of fresh overnight cultures of the indicator microorganisms
(Aeromonas salmonicida CLFP23, L. garvieae CLG4, Listeria seeligeri CECT917, Staphylococ-
cus pseudintermedius ICM21/02217, Streptococcus parauberis LMG225, and Vibrio anguil-
larum CECT4344) (Table S1). After incubation, the growth inhibition zones were analyzed
and measured.

2.6. Colony Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
(MALDI-TOF MS) of Lp. plantarum BF12 and Lp. plantarum WT12

Colony MALDI-TOF MS analysis of both Lp. plantarum BF12 and Lp. plantarum WT12
was performed as previously described by Lawrence et al. [30], with slight modifications.
Briefly, single colonies of the strains grown on MRS agar plates (1.5%, w/v) at 30 ◦C
for 48 h were picked and resuspended in 50 µL 100% (v/v) isopropanol with 0.1% (v/v)
trifluoroacetic acid (TFA). The mixtures were vortexed and centrifuged at 11,000× g for
30 s. Subsequently, 1 µL of the corresponding supernatant was mixed with 1 µL of a
sinapic acid matrix (Sigma-Aldrich, St. Louis, MO, USA) in 30% (v/v) acetonitrile and 0.3%
(v/v) TFA. Then, the mixtures were transferred onto the MS target plate and dried. The
MALDI-TOF MS analysis of samples was conducted on an Ultraflex workstation (Bruker
Daltonics, Billerica, MA, USA), equipped with a 337 nm nitrogen laser, at the Unidad de
Espectrometría de Masas (CAI Técnicas Químicas, Universidad Complutense de Madrid,
Madrid, Spain). The mass spectrometer was calibrated with protein calibration standard I
(4000–20,000 m/z) according to the manufacturer instructions. The FlexControl Software
v.2.4. (Bruker Daltonics) was used for sample analysis and control of method parameters.
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3. Results and Discussion
3.1. Whole-Genome Sequencing, Assembly, and Mapping

The size (expressed in bp), number of contigs, G + C content, L50 and N50 values,
and number of RNAs of the whole-genome sequence of Lc. paracasei (BF3 and RT4) and Lp.
plantarum (BF12 and WT12), as well as their respective species type strains, are shown in
Table 2. Additionally, the genome maps of these four strains, generated using the Proksee
web server, are shown in Figure 1.

Table 2. General characteristics of the WGS of the four bacterial probiotic candidates and their
respective species type strains a.

Strains Size
(in bp)

Number
of Contigs

G + C
Content
(in %)

L50
Value

N50
Value

Number
of

RNAs
tRNA tmRNA rRNA ncRNA Number

of CDS

Lc. paracasei
BF3 3,031,310 152 46.20 16 59,098 60 46 1 2 11 2907

Lc. paracasei
RT4 3,031,310 152 46.20 146 59,098 64 49 1 2 12 2883

Lc. paracasei
JCM8130 2,995,875 1 46.60 - 1 84 61 1 15 7 2924

Lp. plantarum
BF12 3,319,453 37 44.30 3 343,226 75 65 1 2 7 3138

Lp. plantarum
WT12 3,340,608 41 44.30 3 343,226 75 65 1 2 7 3161

Lp. plantarum
DSM20174 3,242,936 1 44.50 - 1 93 72 1 16 4 3016

a Abbreviations: G + C content: content of guanine and cytosine (in %); L50 value: smallest number of sequences
whose length makes up 50% of the assembly; N50 value: length of the shortest contig for which longer and equal
length contigs cover at least 50% of the total assembly; tRNA: transfer RNA; tmRNA: transfer \–messenger RNA;
rRNA: ribosomal RNA; ncRNA: non-coding RNA; CDS: coding sequence.
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dark green, and red regions represent the open reading frames (ORFs), the GC content, and the CG
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3.2. Bioinformatic (In Silico) Analysis
3.2.1. Species Identification

The SpeciesFinder v.2.0. software confirmed the previous taxonomic identification of
the four probiotic candidates as two Lp. plantarum (BF12 and WT12) and two Lc. paracasei
(BF3 and RT4) [17]. Moreover, the KmerFinder v.3.0.2. revealed a 95,565 and 95,567 kmer
matching of Lp. plantarum BF12 and WT12 with the reference strain Lp. plantarum ZDY2013,
respectively. Moreover, this software matched (88,322 kmers) Lc. paracasei RT4 with the
reference strain Lc. paracasei WX322. Nevertheless, the KmerFinder v.3.0.2. matched Lc.
paracasei BF3 with the two reference strains, Lc. casei BL23 and Lc. paracasei MGB0245
(98,073 and 9110 kmers, respectively). This inconclusive result could be due to the close
genetic relatedness between the species Lc. paracasei and Lc. casei, which can lead to
cross-identification, as previously reported [32,33].

The TYGS phylogenetic predictions for the probiotic candidate Lc. paracasei strains
(Figure 2a) revealed four highly divergent phylo-clusters (I to IV). Our strains, Lc. paracasei
BF3 and RT4, are both closely phylogenetically related to Lc. paracasei subsp. tolerans
DSM20258, and, together with the type strain Lc. casei DSM20011, as well as the other Lc.
paracasei strains, constituted phylo-cluster I. The inclusion of Lc. paracasei and Lc. casei
strains in the same phylo-cluster is not surprising, since, as stated above, both species are
closely genetically related [33,34]. On the other hand, the TYGS phylogenetic predictions
for the probiotic candidate Lp. plantarum strains showed three divergent phylo-clusters
(I to III) (Figure 2b). Interestingly, Lp. plantarum BF12 and Lp. plantarum WT12 were
grouped in two highly divergent phylo-clusters (I and II, respectively), with both being
poorly phylogenetically related to phylo-cluster III, which included the two species type
strains (sub-phylo-cluster III.1), as well as the remaining Lactiplantibacillus spp. strains
(sub-phylo-cluster III.2). The inclusion of Lp. plantarum BF12 within the same cluster as Lp.
paraplantarum DSM10667 is not surprising, as both species are closely genetically related,
with both often being included in the broad Lp. plantarum group [34].
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3.2.2. Transferable Antibiotic Resistances

The assessment of the absence of transmissible antibiotic resistance genes is of utmost
importance for selecting probiotic strains, as they are one of the biggest threats to public
health, human and veterinary medicine, and the environment. Even though LAB are
usually granted QPS status by the EFSA, screening for transferable antimicrobial resistances
is fundamental when considering potential bacterial probiotic candidates for the food
and feed chains [11,36–38]. In this context, the BLASTn searches performed against the
ResFinder v.4.3.3. database confirmed the absence of transferable antibiotic resistances in
the four probiotic candidates. These results are in accordance with those previously found
by determining the minimum inhibitory concentration (MIC) of 12 relevant antibiotics
through broth microdilution testing [16]. Furthermore, antibiotic resistance genes were also
not detected in the species type strains Lc. paracasei JCM8130 or Lp. plantarum DSM20174.

3.2.3. Virulence Factors and Pathogenicity

The potential use of LAB strains as probiotics is also dependent on the assessment
of other safety traits, such as the absence of virulence factors and pathogenicity, which
should be assessed with both in vitro and in silico approaches [11,39,40]. Regarding this,
the BLASTn searches against the VirulenceFinder v.2.0.3 database revealed no matches
for the four potential probiotic strains, thus confirming the absence of virulence factors,
which is in agreement with our previous in vitro safety studies [16]. Likewise, no hits were
detected for either species type strain. Additionally, the PathogenFinder v.1.1. software
predicted the four probiotic candidates, as well as their respective species type strains, as
non-human pathogen microorganisms (Table 3).

Table 3. Human pathogenicity predictions for the four bacterial probiotic candidates according to the
PathogenFinder v.1.1 software [22].

Strain Probability of Being a
Human Pathogen

Matched Pathogenic
Families

Lc. paracasei BF3 0.101 0
Lc. paracasei RT4 0.094 0

Lp. plantarum BF12 0.070 0
Lp. plantarum WT12 0.070 0

3.2.4. Mobile Genetic Elements (MGE)

The MobileElementFinder v1.0.2. software did not identify prophages or plasmids in
any of the four probiotic candidates. Nevertheless, it did identify the presence of at least
one true IS (e-values of 0.0) [11] for each candidate strain (Table 4).

Table 4. True insertion sequences (ISs) predicted in the genomes of the four probiotic candidates by
the MobileElementFinder v.1.0.2 software [23].

Strains IS Similar IS Family Origin Length (bp)

Lc. paracasei BF3

ISLpl1 IS30 Lp. plantarum 1043

ISPp1 IS30 Pediococcus
pentosaceus 1039

ISL1 IS3 Lc. casei 1257
ISLrh3 IS5 Lc. rhamnosus 1564

Lc. paracasei RT4
ISLrh3 IS5 Lc. rhamnosus 1564
ISLca2 IS5 Lc. casei 1563
ISL1 IS3 Lc. casei 1257

Lp. plantarum BF12 ISLpl1 IS30 Lp. plantarum 1043
ISPp1 IS30 P. pentosaceus 1039

Lp. plantarum WT12 ISLpl1 IS30 Lp. plantarum 1043
ISPp1 IS30 P. pentosaceus 1039
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The absence of both plasmids and prophages can be considered an additional pos-
itive trait for probiotic candidates. In this respect, plasmids are regarded as important
mechanisms for the transference of antimicrobial resistance genes, which may lead to
the generation of multi-drug-resistant bacteria. For instance, plasmid-mediated mech-
anisms are especially responsible for the spread and production of extended-spectrum
β-lactamases (ESBLs) [41]. Similarly, prophages have been associated with some harmful
cellular processes, such as antibiotic (multi)resistances, virulence, and even deleterious
metabolic pathways [11,42].

On the other hand, all the predicted ISs were transposases, most of which have an
undetermined function, and, similar to those found in microorganisms, are generally
regarded as potential probiotic LAB. Interestingly, some of the predicted ISs, namely ISLpl1
and ISP1, were shared by the Lp. plantarum and Lc. paracasei strains, which were isolated
from the same rotifer rearing tank. In this context, it is not uncommon to observe the
horizontal transference of ISs as part of a co-habitational adaptive evolution [43,44].

3.2.5. Probiotic Traits

The probiotic traits identified in the four probiotic candidates using the RAST web
server included genes involved in adhesion and aggregation, the production of lactic acid,
survival under stressful conditions and in the host gastro-intestinal tract, and amino acid
metabolism and biosynthesis.

The ability to adhere to the host gastrointestinal tract is one of the most desired pro-
biotic traits for bacterial candidates, being a fundamental prerequisite step towards gut
colonization [45,46]. Regarding this, several genes hypothesized to encode surface proteins,
such as enolase, sortase A, and tyrosine–protein kinases (EspC and EspD), were identified
in all of the Lc. paracasei and Lp. plantarum strains. Furthermore, genes encoding triosephos-
phate isomerase were found in both Lc. paracasei strains, whereas the exopolysaccharide
(EPS) biosynthesis gene was predicted for both Lp. plantarum strains. Sortase A, for in-
stance, has been described as a relevant surface protein for the adhesion and colonization
of several lactobacilli in porcine in vitro models [47]. Moreover, surface proteins expressed
by lactobacilli have demonstrated positive immunomodulatory effects on the midgut of
white-leg shrimp (Litopenaeus vannamei) [48].

LAB attract interest from the food technology sectors mostly due to their lactic fer-
mentation metabolism, meaning that they produce lactic acid as an end-product. LAB
can produce both enantiomer forms of lactic acid (D- and L-lactic acid), which are syn-
thesized by the D-lactate and L-lactate dehydrogenases, respectively. Interestingly, the
RAST analysis detected the presence of both D- and L-lactate dehydrogenase genes in the
four probiotic candidates, a feature frequently reported for lactobacilli and that might be
an advantageous probiotic trait [49]. Several recent studies focusing on both human and
veterinary medicine have highlighted the antimicrobial importance and role of lactic acid
against relevant bacterial pathogens [50,51].

The suitability of probiotic candidates heavily relies on their ability to withstand
the stressful conditions of the surrounding environment and the host gastro-intestinal
tract, including extreme temperatures, oxidative stress, low pH, and high bile salt con-
centrations. Regarding this, the RAST software predicted in all of the Lc. paracasei and
Lp. plantarum strains the presence of genes encoding classic heat-shock proteins such as
GrpE and DnaK [52], pyruvate kinases involved in acid resistance [53], and choloylglycine
hydrolase and CTP synthase, which confer resistance to bile salts [54,55]. Moreover, several
osmoprotectant uptake systems that belong to the opu family were detected in the four
probiotic candidates. These uptake systems grant the candidate strains tools to tolerate
severe osmotic stress and could also be involved in enduring low- and high-temperature
conditions [56]. Lastly, several genes involved in oxidative stress tolerance were predicted,
namely, glutathione, pyruvate, and thiol peroxidases [11,55].

Rotifers and marine copepod cultures frequently suffer multiple nutrient limitations
(also called co-limitations) that have significant impacts on their growth, fecundity, and
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reproduction rates. Currently, there is a growing interest in the amino acidic imbalances
of rotifer diets, which are ultimately used as live feed in marine larviculture. It has been
suggested that the dietary amino acid content, particularly of histidine, isoleucine, arginine,
and leucine, are of special relevance for rotifer nutrition [57,58]. Regarding this, the
RAST software predicted that all of the probiotic candidates possess multiple genetic tools
involved in the biosynthesis pathways of several essential amino acids, such as histidine
and isoleucine, as well as lysine and methionine. Several authors have reported several
beneficial effects of feed supplementation with amino acids or amino acid-producing
probiotics in finfish and shrimp aquaculture [59,60]. Regarding this, recent studies have
reported, through LAB supplementation, the positive influence of and increase in amino
acidic levels in rainbow trout (Oncorhynchus mykiss, Walbaum) serum and feces [61], as well
as in muscle amino acid composition of Asian seabass (Lates calcarifer) [62].

3.2.6. CRISPR/CRISPR-Cas

The CRISPR-Cas systems are complex adaptive immunity mechanisms present in
Archaeaand bacteria that prevent the integration of exogenous DNA (mostly MGE). Al-
though they are thought to be more common in archae, some reports revealed that around
40% of the bacteria possess CRISPR-Cas loci. The CRISPRCasFinder software failed to
predict CRISPR arrays in both Lp. plantarum strains. Likewise, no CRISPR arrays were
predicted for the species type strain Lp. plantarum DSM20174. Nonetheless, in both Lc.
paracasei strains, there was a match for an apparently functional CRISPR-Cas system, with
an evidence level of 4 (the highest possible) and the presence of two cas clusters: (i) a
general class II cluster with cas9, cas1, and csn2 additional proteins and (ii) a general class I
cluster with a cas2 additional protein. On the contrary, no CRISPR arrays were detected
for the species type strain Lc. paracasei JCM8130. Overall, CRISPR-Cas systems have a
modular organization that consists of three mandatory processes (adaptation, expression,
and interference, which includes the target cleavage) and a signal transduction/ancillary
process present only in certain types of the class I systems. The systems predicted for both
Lc. paracasei strains contained the high-evidence-level CRISPR array, the Cas1 and Cas2
proteins required for the adaptation process, and the Cas9 protein involved in expression
and interference events [63]. Altogether, both Lc. paracasei strains have the genomic and
proteomic tools for the presence of a functional class II type II CRISPR-Cas system. Finally,
it should be highlighted that the RAST analysis also revealed several genes encoding
CRISPR-associated proteins, strengthening the existence of a functional CRISPR array in Lc.
paracasei BF3 and RT4.

3.2.7. Bacteriocin Production

The BAGEL v4.0. software, used for bacteriocin mining, predicted the presence of a
multi-bacteriocinogenic gene cluster in the first contig of each Lp. plantarum strain (Figure 3).
This cluster consisted of operons similar to those first described in Lp. plantarum C11, a
bactericidal LAB isolated from natural cucumber fermentations [26,27,64–66]. According to
these previous studies, this cluster encodes the production of several class II bacteriocins,
namely, plantaricins (Pln) (PlnA, E/F, J/K, and N), which traditionally should include 21
well-described genes organized in five operons: plnABCD, plnEFI, plnJKLR, plnMNOP,
and plnGHSTUV.
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Briefly, the operon plnABCD consists of a bacteriocin-like peptide named plantaricin
A, encoded by plnA, which acts as a bacteriocin but also as an induction factor. The
rest of the operon consists of a histidine protein kinase (HPK) encoded by plnB and two
cytoplasmatic response regulators (RR) encoded by plnC and plnD. The operons plnEFI
and plnJKLR encode two small cationic bacteriocin-like peptides, namely, plantaricins E/F
and J/K, respectively. Both operons are followed by open reading frames (ORFs) encoding
cationic hydrophobic peptides similar to bacteriocin immunity proteins (plnI and plnL/R,
respectively). The BAGEL v.4.0. software did not predict the existence of any ORF similar to
plnL or plnR. However, it predicted the existence of an ORF encoding an immunity protein
right before the operon plnJK (orf00045) and predicted plnI. On the other hand, on the
operon plnMNOP, the plnN encodes a bacteriocin-like peptide called plantaricin N. PlnN
should be followed by two putative immunity proteins, which are encoded either by plnM
or by plnP (which was not detected by the bacteriocin-mining software). Nevertheless,
previous reports demonstrated that plnP is physiochemically and structurally very similar
to plnI, which, in this case, was predicted twice for both strains. In light of this, it is possible
to theorize that the plnI closer to the operon plnMNOP could be encoding a bacteriocin
immunity protein similar to plnP. Lastly, the operon plnGHSTUV contains two ORFs that
encode an ATP-binding casssette (ABC) transporter and its accessory protein (plnG and
plnH, present in Lp. plantarum BF12 and WT12). These proteins are involved in processing
and exporting peptides with double glycine-type leaders, such as PlnA, PlnE, PlnF, PlnJ,
PlnK, and PlnN [27,64–66]. It should be noted that the functions of plnS, plnT, plnU, and
plnV are yet to be fully understood. The production of plantaricins, namely, PlnA, PlnE/F,
PlnJ/K, and PlnN, by several candidate probiotic strains of Lp. plantarum has previously
been described [64–70]. In this regard, the same multi-bacteriocinogenic gene cluster found
in Lp. plantarum BF12 and Lp. plantarum WT12 was encountered in the species type strain
Lp. plantarum DSM20174.

On the other hand, the BAGEL v.4.0. software failed to predict the existence of any
bacteriocinogenic gene cluster for Lc. paracasei BF3, Lc. paracasei RT4, or the species type
strain Lc. paracasei JCM8130.

3.3. In Vitro Cell-Free Protein Synthesis (IV-CFPS) and Antimicrobial Activity of Plantaricins A,
E/F, J/K, and N

To determine the functionality of PlnA, PlnE/F, PlnJ/K, and PlnN, predicted to
be encoded by Lp. plantarum BF12 and WT12, the antimicrobial activity of the in vitro-
synthesized bacteriocins was evaluated by a SOAT (Figure 4). The in vitro-synthesized
peptides PlnE and PlnF tested separately did not show antimicrobial activity against any
of the microorganisms used as indicators; however, both peptides combined in a ratio of
1:1 exerted antimicrobial activity against the widely known ichthyopathogen L. garvieae
CLG4, as well as against Ls. seeligeri CECT917 and S. pseudintermedius ICM21/02217. These
results are in accordance with previous reports, since PlnE/F is a class IIb bacteriocin that
requires the presence of both peptides in equal molar concentrations to exert antimicrobial
activity [67,68,71,72]. However, none of the other in vitro-synthesized plantaricins from Lp.
plantarum BF12 and WT12 showed antimicrobial activity against any of the tested indicator
microorganisms (results not shown).

Lp. plantarum and other LAB produce several antimicrobial compounds, mainly
bacteriocins and organic acids (e.g., lactic acid, citric acid, acetic acid, and butyric acid),
as well as hydrogen peroxide, reuterin, carbon dioxide, and acetaldehyde, which is a
desirable probiotic trait [9,13,67,68,72–74]. Moreover, multi-bacteriocin production has
been widely reported for several lactobacilli and other LAB [29,65,67,68]. In this regard,
the prediction of a multi-bacteriocinogenic gene cluster in Lp. plantarum BF12 and WT12
led to the hypothesis that the antimicrobial activity exerted by these strains may be due
to the production of more than one plantaricin. Nevertheless, as mentioned above, the
only in vitro-synthesized plantaricin that demonstrated antimicrobial activity was PlnE/F.
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Altogether, our results demonstrate that the broad antimicrobial spectrum exerted by Lp.
plantarum BF12 and WT12 [16] is at least partially due to the production of PlnE/F.
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seeligeri CECT917, and (c) S. pseudintermedius ICM21/02217.

3.4. Colony Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
(MALDI-TOF MS) of Lp. plantarum BF12 and Lp. plantarum WT12

MALDI-TOF MS analyses of isopropanol-derived extracts from Lp. plantarum BF12
and Lp. plantarum WT12 cultures grown in MRS agar (1.5%, w/v) plates revealed the
presence of a peptide with a molecular mass of 7196 and 7199 Da, respectively (Figure 5).
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Considering the results of the bacteriocin-mining predictions using the BAGEL v4.0.
software, as well as the antimicrobial activity of the in vitro-synthesized PlnE/F, the two
peaks registered through MALDI-TOF MS analyses could correspond to the dimer form
of PlnE/F. The class IIb bacteriocin PlnE/F consists of the 33- and 34-residue peptides
PlnE and PlnF, respectively. The theoretical molecular mass of PlnE and PlnF is 3450
and 3700 Da, respectively [71,74,75]. Therefore, the dimer form of PlnE/F should have a
theoretical total molecular mass of 7150 Da. The detected peptides had a molecular mass
that differed from the theoretical values of PlnEF by 46 Da for Lp. plantarum BF12 and by
49 Da for Lp. plantarum WT12, which could have been due to the oxidation of three amino
acids, which is a phenomenon widely reported for several other bacteriocins [71,74–77].
Furthermore, our hypotheses are supported by a previous study that showed, through
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nuclear magnetic resonance spectroscopy, the tridimensional structure of PlnE and PlnF.
Moreover, the spontaneous, stable, and preferred dimeric molecular structure of PlnE/F
was demonstrated by molecular dynamics simulation [71,78]. On the other hand, none
of the other bacteriocins predicted for Lp. plantarum BF12 or Lp. plantarum WT12 by
the BAGEL v.4.0. software were identified by MALDI-TOF MS. Although this technique
has been previously reported as a successful method for the detection of class I and II
bacteriocins, the absence of the other expected plantaricin peaks in our work could be
attributed to the lack of bacteriocin production or the presence of molecular biomarkers
produced by these strains, or even culture medium components, which could have masked
or suppressed the bacteriocin peptide signals [79,80]. Moreover, some of the bacteriocin
genes mined and predicted by the BAGEL v4.0. software and confirmed by IV-CFPS could
have been silent genes. Silent genes are DNA sequences frequently found in bacteria that
are not normally or fully expressed [81].

4. Conclusions

This manuscript emphasizes the importance of the bioinformatic (in silico) analysis of
the WGS of probiotic candidates intended for use in the food chain—more specifically, two
Lc. paracasei and two Lp. plantarum strains isolated from a rearing tank of rotifers used as
live feed in the larviculture of turbot, which exert a broad and strong antimicrobial activity
spectrum against several bacterial ichthyopathogens. Our results confirmed some of the
beneficial and safety characteristics previously suggested for these LAB strains through
in vitro methods. Moreover, this work allowed for a deeper insight into the genetic features
and mechanisms that confer beneficial and probiotic traits on these strains. In this regard,
WGS analysis of these strains allowed us to ensure the absence of both transferable antibiotic
resistance determinants and genes encoding pathogenic and/or detrimental enzymatic
activities and/or virulence factors. Additionally, bacteriocin mining predicted the presence
of a multibacteriocinogenic gene cluster encoding six class II bacteriocins (plantaricins) for
Lp. plantarum BF12 and Lp. plantarum WT12, which, to some extent, could be responsible for
their antimicrobial activity. However, PlnE/F was the only in vitro-synthesized bacteriocin
displaying antimicrobial activity. Furthermore, MALDI-TOF MS analyses of Lp. plantarum
BF12 and Lp. plantarum WT12 cultures detected an extracellular peptide with a molecular
mass that matched that of the dimer formed by PlnE and PlnF. In conclusion, the data
provided by this study support the use of Lc. paracasei BF3, Lc. paracasei RT4, Lp. plantarum
BF12, and Lp. plantarum WT12 as probiotic and biocontrol agents in larviculture, one of the
major bottlenecks of aquaculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15010064/s1, Table S1: Growth conditions for the microor-
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spot-on-agar test.
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