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Abstract: Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD),
primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revas-
cularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI)
and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or pro-
genitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the
effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are
approved in the US, EU, or China. The reasons are unclear, but animal models that do not repre-
sent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical
success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on
inappropriate models. The question is significant because the former case requires abandonment of
current strategies, while the latter encourages continued optimization. These issues are discussed
in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse
models that include age and atherosclerosis as the only comorbidities that are consistently present
and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials,
no biopharmacological procedure that failed in clinical trials had been tested in animal models that
included advanced age and atherosclerosis relevant to PAD/CLI.

Keywords: gene therapy; cell therapy; peripheral artery disease; critical limb ischemia; preclinical
models; clinical trials

1. Introduction

Peripheral artery disease (PAD), the third leading cause of atherosclerotic morbid-
ity after coronary heart disease and stroke, refers primarily to lower limb ischemia and
includes asymptomatic lower limb PAD, intermittent claudication (IC), and critical limb
ischemia (CLI). PAD affects approximately 6% of adults globally and about 8.5 million
people in the United States [1–3]. Incidence is markedly age-dependent, increasing from
about 5% in subjects aged 40 to 44 years to >12% at age 70 to 74, with some studies reporting
IC in up to 35% of patients over 50 years of age, and 1% to 2% with CLI [4–6]. Medical
therapies to ameliorate hyperlipidemia, hypertension, and hyperglycemia combined with
thrombolytics or fibrinolytics reduce morbidity and mortality related to cardiovascular
events but have limited impact on PAD symptoms or disease progression [7,8]. Other
major risk factors for PAD include smoking, sedentary lifestyle, high BMI, and elevated
systemic inflammatory markers [4,9]. Currently, only supervised walking programs and
the phosphodiesterase type 3 (PDE3) inhibitor cilostazol, an antiplatelet vasodilator, pro-
vide symptomatic benefits including improved pain-free walking time (PFWT). Surgical or
endovascular revascularization remain primary interventions for lifestyle-limiting claudica-
tion and CLI, but this option is not available for up to 40% of CLI patients [10,11]. Despite
two decades of intense basic and translational research efforts to develop gene and/or
cell therapies, no new treatments have been approved in the US or EU, leading some to
question whether PAD/CLI is even amenable to such biotherapies, especially gene therapy.
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Positive results of preclinical studies along with partial successes in some clinical trials
of gene therapy, and broader successes of cell therapies, provide important information
on the most promising pro-angiogenic biopharmacological strategies, but reveal larger
protocol and translation flaws, and limited predictive value of preclinical models. This
review discusses the failures of earlier gene therapy clinical trials, the possible reasons
for such failures, impacts on ongoing biopharmacology research for PAD, and avenues
to resolve the dilemmas of translation and optimization. The broad interpretation that
gene therapy for PAD/CLI has failed should be tempered by the approvals and ongoing
application of plasmid (p)VEGF and pHGF, respectively, in Russia and Japan, and the
significant, albeit limited, efficacies seen for gene therapy on some clinical parameters such
as rest pain and ulcer healing. Such spasmodic efficacy suggests inadequate strategies
of implementation rather than fundamental misconceptions related to the approach and
invites further analysis and optimization.

2. Literature Review
2.1. Meta-Analyses of Early Clinical Trials of Genes and Cells

Whereas early meta-analyses of gene and stem cell clinical trials of patients with PAD
and CLI confirm universal safety of the procedures, efficacy to enhance blood flow, prevent
or delay amputation and/or death, and improve PFWT and/or quality of life have been
underwhelming. Genes tested in these trials include VEGF, FGF, HIF-1α, HGF, Del-1, SDF-
1, and ZFP-VEGF (an engineered zinc finger transcription factor of VEGF-A), delivered
by plasmid or adenoviral vectors (reviewed in: [7]). Cell therapies include bone marrow
mononuclear cells (BMMNC), peripheral blood mononuclear cells (PBMNC), mesenchymal
stem cells (MSC), endothelial progenitor cells (EPC), and smooth muscle cells (SMC).
Figure 1 shows the genes and cells that have undergone positive preclinical evaluation and
progressed to clinical trials by IA or IM delivery of recombinant human proteins, plasmids,
or viral vectors. In the first meta-analysis of Phase 2 randomized, controlled clinical trials
(RCT) of gene and cell therapies for PAD/CLI, De Haro et al. [12] reported that therapeutic
angiogenesis significantly improved clinical outcomes including peak PFWT relative to
placebo in both PAD and CLI cohorts. The authors concluded that gene and cell therapies
were safe, well tolerated, and conferred significant efficacy for both PAD and CLI patients
(see Table 1 and Refs. [13–18] therein). Four years later, using similar analyses that included
updated trial results, Steiner and Hammer [19] concluded from 12 PAD/CLI gene therapy
RCTs and a total of 1494 patients that endpoints were not significantly improved in the
majority of studies. This meta-analysis showed neither significant benefit nor harm for
gene therapy across all-cause mortality, amputations, or ulcer healing, and no differences
in outcomes between patients with PAD or CLI. The meta-analysis included the Talisman
201 Phase II and TAMARIS Phase III RTCs of plasmid (p)FGF1 as well as pHGF, Ad- and
pVEGF, pDel-1 and Ad-HIF1α, (see Table 2 and Refs. [20–27] therein); TAMARIS, with
525 CLI patients, was the largest worldwide gene therapy trial ever conducted [20,28].
Subsequent meta-analyses confirmed these results, including a study with 1988 PAD/CLI
patients that reported no improvement of amputation-free survival, major amputation, or
death by gene therapy relative to placebo [29]. These and other disappointing results that
culminated with the withdrawal in 2016 of the multinational Phase III AGILITY RTC of
pHGF for CLI (NCT02144610), brought this phase of translational research to an end and
led to predictions that clinical trials of therapeutic angiogenesis by gene therapy for PAD
were over [7].



Genes 2024, 15, 135 3 of 17Genes 2024, 15, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. Gene and cell targets of therapeutic angiogenesis. Green boxes show target pro-angiogenic 
genes that have been tested in Phase I-III RCTs delivered IA or IM as proteins, cDNA plasmids or 
cDNA adenovirus. Yellow boxes indicate autologous cells also delivered IA or IM. Aqua boxes in-
dicate ongoing trials of combination genes including two isoforms of human HGF (pHGF728 and 
pHGF723) and a bicistronic plasmid vector expressing human VEGF165 and HGF 
(pIRES/VEGF165/HGF). Unboxed denotes ongoing RCTs with viral delivery of human FGF2 by IM 
of Sendai virus and IM injections of human telomerase reverse transcriptase (hTERT) by AAV. 

Table 1. RCTs from 2000–2007 used for meta-analysis. For a complete list of studies see De Haro et 
al. [12] and Iyer and Annex [7]. IA: intra-arterial; IM: intramuscular; N/C: no significant change; QoL: 
quality of life. rFGF2: recombinant fibroblast growth factor 2. All treatments are deemed safe with 
indication of efficacy in rFGF-2 and BMMNC trials. 

Author Phase Treatment Treatment/CTRL Major Findings 

Lazarous et al. [13] I IA rFGF-2 13/6 
Safe. Increased calf blood flow at 6 
months in treatments. 

Rajagopalan et al. [14]  
(RAVE) II 

IM Ad2-  
VEGF121 15/3 Safe. N/C ABI, PFWT, QoL. 

Lederman et al. [15]  
(TRAFFIC) II IA rFGF-2 116/58 

Safe. Improved PFWT at 90 days; 
early improved ABI. 

Makinen et al. [16] II IA Ad2- and 
pVEGF165 

35/19 
Ad antibodies. Improved vascularity
both treatments; N/C ABI or Ruther-
ford class vs control. 

Grossman et al. [17]  
(DELTA) 

II IM pDel-1 +  
poloxamer 188 

52/53 
N/C PFWT ABI, claudication com-
pared with control poloxamer 188 
alone. 

Tateishi-Yuyama et al. 
[18] (TACT) II IM BMMNC or 

PBMNC 
25 unilateral  
22 bilateral 

Safe. Improved ABI, TcO2, PWT, in-
creased collateral vessels in BM-
MNC vs. PBMNC. 
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Figure 1. Gene and cell targets of therapeutic angiogenesis. Green boxes show target pro-
angiogenic genes that have been tested in Phase I-III RCTs delivered IA or IM as proteins, cDNA
plasmids or cDNA adenovirus. Yellow boxes indicate autologous cells also delivered IA or IM.
Aqua boxes indicate ongoing trials of combination genes including two isoforms of human HGF
(pHGF728 and pHGF723) and a bicistronic plasmid vector expressing human VEGF165 and HGF
(pIRES/VEGF165/HGF). Unboxed denotes ongoing RCTs with viral delivery of human FGF2 by IM
of Sendai virus and IM injections of human telomerase reverse transcriptase (hTERT) by AAV.

Table 1. RCTs from 2000–2007 used for meta-analysis. For a complete list of studies see De
Haro et al. [12] and Iyer and Annex [7]. IA: intra-arterial; IM: intramuscular; N/C: no signifi-
cant change; QoL: quality of life. rFGF2: recombinant fibroblast growth factor 2. All treatments are
deemed safe with indication of efficacy in rFGF-2 and BMMNC trials.

Author Phase Treatment Treatment/CTRL Major Findings

Lazarous et al. [13] I IA rFGF-2 13/6 Safe. Increased calf blood flow at 6 months in
treatments.

Rajagopalan et al. [14]
(RAVE) II IM Ad2-

VEGF121 15/3 Safe. N/C ABI, PFWT, QoL.

Lederman et al. [15]
(TRAFFIC) II IA rFGF-2 116/58 Safe. Improved PFWT at 90 days; early improved

ABI.

Makinen et al. [16] II IA Ad2- and
pVEGF165 35/19 Ad antibodies. Improved vascularity both treatments;

N/C ABI or Rutherford class vs control.

Grossman et al. [17]
(DELTA) II IM pDel-1 +

poloxamer 188 52/53 N/C PFWT ABI, claudication compared with control
poloxamer 188 alone.

Tateishi-Yuyama et al.
[18] (TACT) II IM BMMNC or

PBMNC
25 unilateral
22 bilateral

Safe. Improved ABI, TcO2, PWT, increased collateral
vessels in BM-MNC vs. PBMNC.
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Table 2. RCTs from 2008–2015 used for meta-analysis. For a complete list of studies see Hammer
A, Steiner S [19] and Iyer and Annex [7]. IA: intra-arterial; IM: intramuscular; N/C: no significant
change; QoL: quality of life. rFGF2: recombinant fibroblast growth factor 2. All treatments are
deemed safe with indications of efficacy especially in pHGF and BMMNC trials.

Author Phase Treatment Treatment/CNTR Major Findings

Belch et al. [20]
(TAMARIS) III IM pFGF1 259/256 N/C amputation or death

Van Huyan et al. [21] II IA + IM
BMMNC 12/15 Improved PFWT and ABI

Powell et al. [22]
(HGF STAT) II IM pHGF 56/23 Increased TcPO2; N/C TBI, ABI,

wound healing

Nikol et al. [23]
(TALISMAN) II IM pFGF1 59/66

Improved rest pain, QoL,
amputation; N/C wound
healing

Shigematsu et al. [24] III IM pHGF 27/13 Improved rest pain, ulcer size,
QoL; N/C ABI or amputation

Creager et al. [25] II IM AdHIF1α 213/76 N/C PFWT, QoL, ABI

Walter et al. [26]
(PROVASA) II IA BMMNC 19/21

Improved ulcer healing, rest
pain, N/C ABI, amputation,
death

Teraa et al. [27]
(JUVENTAS) (2015) II IA EPC 81/79 N/C amputation, death, ABI,

ulcer size, QoL, rest pain, TcPO2

By conferring more comprehensive stimuli involving multiple cytokines and growth
factors with autocrine and paracrine angiogenic effects, cell therapy has been considered
potentially superior, although more expensive and technically more demanding, than
proteins or genes for promoting angiogenesis and tissue salvage in PAD. TACT (thera-
peutic angiogenesis using cell transplantation) was the first major cell clinical trial for
PAD [18] that compared BMMNC with PBMNC. The study reported safety and signifi-
cantly greater improvements in ABI, rest pain, and PFWT at 24 weeks in the BMMNC
group. PROVASA (intra-arterial administration of BMMNC in patients with CLI), a Phase
II RTC of intra-arterial BMMNC versus placebo, reported no difference in ABI or limb
salvage but significant improvements in ulcer healing and rest pain [26]. The largest JU-
VENTAS (rejuvenation EPC via transcutaneous intra-arterial supplementation) trial of
CLI patients with intra-arterial EPCs versus placebo, reported no significant differences in
major amputation rate, quality of life, rest pain, ABI, or TcPO2 [27]. In a 2017 meta-analysis
of autologous cell therapy that included 19 RCTs (837 patients), 7 nonrandomized trials
(338 patients), and 41 noncontrolled studies (1177 patients), Rigato et al. [30] reported
that cell therapy reduced the risk of amputation by 37%, and improved amputation-free
survival and wound healing by 18% and 59%, respectively. Cell therapy also significantly
increased ABI and TcPO2, and reduced rest pain. The authors noted that the efficacy of
end points was no longer significant in placebo controlled RCTs and disappeared in RTCs
with a low risk of bias. In a 2018 meta-analysis of RCTs of autologous stem cell therapy
in CLI, Xie et al. [31] reported significantly improved ABI, TcO2, PFWT, as well as ulcer
healing, reduced amputation rates, and increased angiogenic scores in the cell therapy
group relative to controls. The analysis concluded that while cell therapy may be safe and
effective, higher quality and larger RCTs are still required to support clinical application. In
another recent (2019) meta-analysis of autologous stem cell therapy [32] that included 27
RCTs and 1186 patients, Gao et al. reported significantly improved healing of ulcers, ABI,
TcO2, and PFWT, reduction of rest pain, and minor amputation rates, but no significant
improvement in major limb salvage. The authors acknowledged high risk of bias and low-
quality of evidence outcomes and concluded that autologous stem cell therapy may have a
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positive effect on “no-option” patients with PAD but did not significantly impact major
limb amputation. In a meta-analysis of autologous cell therapy for CLI including 12 RCTs
and 630 patients, Pu et al. [33] reported significantly improved total and major amputation
rates, ABI, TcO2, and rest pain score compared with placebo or standard care but no change
in all-cause death or ulcer size and concluded that autologous cell therapy conferred benefit
to CLI patients in terms of limb salvage, perfusion, and rest pain alleviation. The results of
the meta-analyses of autologous cells are summarized in Table 3.

Table 3. Meta-analyses of autologous cell therapy conclude that the procedures are safe with
evidence of efficacy on multiple outcomes including reduced amputation rates and QoL parameters.
Variability of methods, reporting, and quality of data do not yet allow a determination on suitability
for translation to clinical practice.

Author Title Major Findings

Rigato et al. [30] (2017)

Autologous Cell Therapy for Peripheral
Arterial Disease: Systematic Review and
Meta-Analysis of Randomized,
Nonrandomized, and Noncontrolled
Studies.

Autologous cell therapy may reduce the risk of
major amputation, improve the probability of
wound healing, and amputation-free survival,
ameliorate pain and functional capacity. Results of
the primary analysis were confirmed and
strengthened by secondary analysis. No change in
all-cause mortality.

Xie et al. [31] (2018)
Autologous Stem Cell Therapy in Critical
Limb Ischemia: A Meta-Analysis of
Randomized Controlled Trials.

Cell therapy significantly increased the probability
of ulcer healing, angiogenesis, and reduced
amputation rates. ABI and PFWT were
significantly improved. Higher quality and larger
RCTs are required to support clinical application.

Gao et al. [32] (2019)

Autologous stem cell therapy for
peripheral arterial disease: a systematic
review and meta-analysis of randomized
controlled trials.

Improved healing rate of ulcers, ABI, TcO2, and
PFWT; reduction in amputation rate and rest pain
scores, no significant improvement in major limb
salvage. High risk of bias and low-quality
evidence of outcomes. Larger, placebo controlled,
RCT are needed.

Pu et al. [33] (2022)

A meta-analysis of randomized
controlled trials on therapeutic efficacy
and safety of autologous cell therapy for
atherosclerosis obliterans.

No-option CLI patients show significantly
improved total amputation, major amputation,
ABI, TcO2, and rest pain score compared with
standard care. No effect on all-cause death or ulcer
size.

Beltrán-Camacho et al. [34]
(2021)

Current Status of Angiogenic Cell
Therapy and Related Strategies Applied
in Critical Limb Ischemia

Cell therapy may represent an alternative for
no-option CLI. Variability between trials is high,
reflecting a lack of consensus on cell dose, cell
types or sources, administration routes,
parameters to define outcome efficacy, or cohorts
themselves. Further investigation is required to
better understand mechanism. Much work is
needed to translate to clinical practice.

In their review of angiogenic cell therapy for CLI up to and including 2021 data,
Beltrán-Camacho et al. [34], concluded that 20 years of clinical trials with autologous stem
cells confirms safety and promising efficacy but due to high variability between studies
and low to moderate quality of data, it remains unclear which cells, doses, or routes of
administration are optimal. One possible problem cited by several authors is that most
studies are supported by sponsors with potentially conflicted interests and reporting is
often incomplete and/or subjective. However, despite this, most authors agree on the
safety and feasibility of cell therapies and concur that they represent a promising approach
for no option CLI, a population that represents 50% of CLI patients [35,36]. Ongoing
trials are also testing secreted products such as exosomes that avoid the potential hazards
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and regulatory/technical demands of live autologous cell therapy and optimizing cells
by preconditioning and/or genetic engineering [37–39]. Although, autologous cell-based
approaches now appear to show greater promise than gene therapy, the procedures are
more expensive, labor intensive, and technically demanding.

2.2. Recent and Ongoing Clinical Trials of Genes and Cells II

With the exception of ongoing trials of pVM202 and JVS-100 (see below), the 2017
prediction by Iyler and Annex [7] that “termination of the multinational Phase III AGILITY
trial may well end gene therapy trials of therapeutic angiogenesis for peripheral arterial
disease”, appears to have been substantially validated within the US. Despite insufficient
evidence of efficacy for approval in the US, pVEGF-165 (Neovasculgen) was approved to
treat CLI patients by the Russian Ministry of Healthcare in 2011 and the Ukraine equivalent
in 2013. The decisions were based on positive safety/efficacy findings of pre-clinical studies
and a Phase IIB/III clinical trial [40–42]. Similarly, pHGF (Collategene) was approved by
the Japanese Ministry of Health to treat ulcers in no-option CLI patients in 2019. This
approval was based on positive results from preclinical and clinical studies including a
Phase III RCT [24,43–46]. Clinical studies of pHGF containing two isoforms of human
pHGF (HGF728 and HGF723) to treat PAD are also ongoing in the US and China. HI-
PAD, a Phase II RTC of pVM202 in the US was initiated in 2018 (NCT03363165) and a
Phase III trial of NL003 (HGF-X7) in China was initiated in 2019 (NCT04274049). Awaited
outcome results include wound healing, rest pain, and limb salvage. In a related Phase
III RCT of patients with painful diabetic peripheral neuropathy, Kessler et al. [47] recently
reported significant alleviation of pain by pVM202 in one arm of the trial. A Phase II RCT
in Poland assessed safety and efficacy of a bicistronic plasmid vector expressing human
VEGF165 and HGF (pIRES/VEGF165/HGF) by intramuscular injections in diabetic CLI
patients [48]. Preliminary results indicate safety and efficacy with significantly increased
ABI, reduced rest pain, and improved vascularization assessed by computed tomography
angiography. In Beijing, China, a dose escalation, safety, and tolerability Phase I clinical
trial of human FGF-2 delivered via intramuscular injection of Sendai virus (SeV-hFGF2)
to CLI patients, initiated in 2018, is underway (NCT03668353). In another Phase II RCT,
Shishehbor et al. reported that gene therapy with JVS-100 (pSDF-1) conferred no significant
improvement in outcomes of patients undergoing revascularization [49]. The Libella gene
therapy trial in Colombia is an ongoing Phase I safety and tolerability trial of intravenous
adeno-associated virus (AAV) expressing the human telomerase reverse transcriptase (AAV-
hTERT) in CLI patients (NCT04110964). Telomerases protect against age- and cell division-
dependent telomere shortening, thereby delaying senescence and preserving gene function.
hTERT was shown to augment VEGF-A activity and enhance the regenerative properties of
endothelial progenitor cells (EPC) in vitro and in vivo. Adenovirus (Ad)-hTERT combined
with Ad-VEGF was shown to enhance angiogenesis, vascular remodeling, and perhaps
muscle regeneration in a rat CLI model [50], and the hope is that AAV-hTERT ameliorates
telomere dysfunction and augments vascular regeneration in elderly PAD patients. A
parallel trial will test AAV-hTERT in Alzheimer’s patients. Recruitment for the Libella trials
commenced in 2019.

2.3. Predictive Value of Preclinical Models

Despite the Russian and Japanese approvals, respectively, of pVEGF and pHGF, and
the ongoing trials of pVM202 and JVS-100, the universal failure of large Phase III US-
based clinical trials of gene therapy for CLI has markedly dampened enthusiasm for the
technology and prompted speculation on the reasons for the failures [34,51,52]. Possible
explanations include: (1) use of single angiogenic growth factors that generate immature
leaky capillaries reminiscent of pathological angiogenesis [53]; (2) limitation of most in-
terventions to stimulate only angiogenesis when revascularization may require enhanced
arteriogenesis and vasculogenesis; (3) insufficient level, duration, targeting, and regulation
of transgene expression; and (4) inadequate predictive value of preclinical models that do
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not include comorbidities of PAD/CLI patients [1–3,54,55]. Plasmids have been the vectors
of choice for all major trials so far, whereas AAV and lentiviral vectors may provide higher
levels of sustained, regulable expression [56]. However, the inadequacy of preclinical mod-
els to accurately predict clinical translation stands out as a major reason for the failed gene
therapy trials. Two properties of the most used mouse models that fail to replicate clinical
targets include: (1) acute ischemia by femoral artery ligation and excision (FAL) that does
not replicate occlusion by progressive atherosclerotic narrowing by arterial plaque, and
(2) absence of comorbidities that determine the responsiveness of ischemic limb tissues to
pro-angiogenic stimuli. Comorbidities of PAD/CLI patients that are rarely incorporated into
mouse models include age, atherosclerosis, hypertension, hyperglycemia, hyperlipidemia,
diabetes, smoking, sedentary lifestyle, and elevated systemic inflammation [51,57–59]. Of
these, advanced age and severe atherosclerosis are the only comorbidities that are consistently
present in patients with clinical PAD/CLI. Other comorbidities that exacerbate clinical PAD
and are variously present in clinical trial subjects are usually well-controlled by standard
pharmacology that includes antithrombotic drugs, and medications to treat dyslipidemia,
hypertension, and diabetes. Such management reduces the risk of major adverse events (AMI
and stroke) but does not alter the course of PAD progression or the outcome of biopharmaco-
logical (gene/cell) clinical trials [1,3]. The average age of patients in the major Phase III clinical
trials of gene and cell therapies for CLI is >70 years and all patients were symptomatic with
leg pain and ulcers secondary to chronic ischemia caused by atherosclerotic plaque build-up
in the in-flow blood vessels [60]. For example, the mean age of patients in the TAMARIS trial
was 70 years (equivalent to 25-month C57BL/6 mice), wherein atherogenic stenoses were
present in >95% of infrainguinal arteries, 66% of thigh arteries, and 94% of arteries below the
knee. In total, 70% of patients had more than one diseased artery, 80% were hypertensive, 60%
hypercholesterolemia, 61% former or current smokers, 53% diabetic, and 18% obese. Similar
hemodynamic and angiographic patterns were typically reported in all regional areas, as well
as in diabetic and non-diabetic patients. Therefore, the vasculatures of aged CLI patients with
chronic, severe atherosclerosis are unlikely to replicate the responses to angiogenic stimulation
of young healthy mice with acute ischemic damage.

2.4. Age and Atherosclerosis in Mouse CLI Models

Multiple hindlimb FAL models have been described wherein the intrinsic aptitude for
vascular regeneration and functional recovery is dependent on the mouse strain [57,61–64].
Whereas most models are made acutely ischemic via double FAL with FA excision, new models
more accurately replicate occlusion in clinical PAD [58,65,66]. Strain- and age-dependent
responses to angiogenic stimulation, including roles of circulating PBMNC and BMMNC, have
been described [67,68]. In the latter study, Bosch-Marce et al. compared intrinsic perfusion
recovery rates of young (2 months), mid-aged (8 months), and old-aged (20 months) C57BL/6
mice after FAL. Old-age mice salvaged only 40% of limbs and achieved < 30% perfusion
compared with young mice. The authors attributed the differences to loss of mobilization of
VEGFR2+/CD34+ angiogenic cells and deceased levels of pro-angiogenic cytokines after FAL
in the ischemic limbs of aged mice. Reductions of cytokines included ANGPT1 & 2 (<10%),
HIF-1α (<25%), MCP-1(<10%), PLGF (<10%), SCF (<10%), and SDF-1 (~10%). These trends
were confirmed in other studies that reported similar ischemia, but <50% recovery of limb
function in 18-month versus 3-month-old mice after FAL, and diminished arteriogenesis in the
ischemic hind limbs of older mice [64,69]. Collaterals in aged mice are less able to remodel and
enlarge in response to FAL because of deficient eNOS production and increased susceptibility
of ECs and SMCs to apoptosis [70]. HIF-1α levels are decreased in the ischemic hind limbs of
aged mice and correlate with reduced angiogenic factors, lower recruitment of angiogenic
cells, and loss of perfusion recovery after FAL [70]. Deficiency of Klotho, an anti-aging gene
in mice confers a phenotype equivalent to human aging that includes short lifespan, stunted
growth, vascular calcification, and atherosclerosis [71–73]. Mice with heterozygous deficiency
of the klotho gene show impaired neovascularization and perfusion recovery after FAL with
markedly decreased nitric oxide release and reduction of BMMNCs [74].



Genes 2024, 15, 135 8 of 17

Atherosclerosis progression involves the accumulation of lipids, inflammatory cells,
and smooth muscle cells in arterial walls that culminate in necrosis, fibrosis, and calcifi-
cation [75]. Systemic inflammation is associated with severe PAD and atherothrombotic
narrowing during PAD promotes changes in the circulatory system and tissues including
NO-dependent compensatory responses, angiogenesis and arteriogenesis, and detrimental
effects including microvascular dysfunction, myopathy, fibrosis, and tissue necrosis [76,77].
PAD is associated with reduced calf skeletal muscle area and density, increased calf muscle
fat infiltration, increased oxidative stress, impaired mitochondrial activity, and smaller
myofibers [78,79]. ApoE-knockout (ApoE-/-) mice mimic traits of human atherosclerosis
including inflammation and metabolism and are commonly used to simulate the effects
of atherosclerosis and dyslipidemia [80,81]. Studies from multiple groups, including the
author’s, have demonstrated that the evolution of atherosclerosis in ApoE-/- mice is par-
alleled by infiltration of inflammatory cells and progressive loss of mobility of BMMNCs
with reduced levels of angiogenic factors including SDF-1 [82–85]. ApoE-/- C57BL/6 mice
develop significant atherosclerotic lesions in the ascending aorta, carotid, femoral, and
popliteal arteries [86–88], coincident with delayed recovery from ischemia and stunted
response to angiogenic therapy [89,90]. Couffinhal et al. [91] first showed that recovery of
young C57BL/6 ApoE-/- mice from hindlimb FAL was markedly attenuated relative to WT
controls. Capillary density, CD-31, and VEGF that were significantly reduced in the ApoE-/-
group paralleled increased infiltration of inflammatory cells, leukocytes, macrophages, and
T-lymphocytes. Similar results were reported by Xie et al., effects that were partially re-
versed by delivery of ZFP-32E, a zinc finger DNA-binding transcription factor of VEGF [92].
Using a FAL model that included Western diet and 7-month aged ApoE-/- mice, Lejay
et al. [93] reported more severe mitochondrial dysfunction and increased oxidative stress
after FAL of ApoE-/- mice relative to control WT mice. Blunted responses of ApoE-/- mice
to angiogenic stimuli have been variously attributed to dysregulated expression of miRs
that regulate angiogenesis and vasculogenesis in PAD [94–99]. Peck et al. [61] subjected
8-month-old ApoE-/- fed a normal diet to exercise training after FAL and documented
responses that mimic CLI patients. They proposed that such aged ApoE-/- mice represent
a more appropriate hindlimb ischemia model to accurately evaluate therapeutic strategies
for human PAD/CLI. By regulating inflammation and EC angiogenesis, respectively, miR-
146b and miRNA-27b are implicated in the suppressed angiogenic responses of ApoE-/-
mice [100,101]. Together, results from multiple sources concur that age and atherosclerosis
create toxic environments for vascular regeneration, and their absence represent a short-
coming of therapeutic angiogenesis preclinical trials to date. By supporting optimization
on a relevant background, inclusion of age and atherosclerosis is expected to provide more
accurate predictions of clinical success.

2.5. Recent and Ongoing Preclinical Trials of Genes, MiRs, and NO-Donors

AGGF1 (angiogenic factor with G-patch and Forkhead-associated domain-1) binds
the integrin α5β1 receptor on ECs [102] and is the earliest known regulator of multipotent
hemangioblast specification, regulating hematopoiesis and differentiation of endothelial
lineages [103]. AGGF1 regulates EC proliferation, adhesion, migration, and capillary
tube formation [104,105] and promotes angiogenesis as potently as VEGF-A [106]. In
hindlimb ischemia mouse models, pAGGF1 promoted therapeutic angiogenesis more
efficiently than FGF2 [107,108]. Transplantation of AGGF1-transduced EPCs conferred limb
salvage, reperfusion, and exercise tolerance in high-fat diet and db/db diabetic mouse
hindlimb ischemia models [109]. AGGF1 also binds and regulates VSMC phenotypic
switching, proliferation, and migration [110], and drives therapeutic angiogenesis through
a pathway of integrin α5β1, FAK, Src, and AKT signaling. The authors predict that AGGF1,
through its roles in regulating vasculogenesis, angiogenesis, and vascular development,
represents a promising target for clinical development to provide a more effective therapy
for PAD/CLI [111].
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Anti-angiogenic VEGF165b is an alternative spliced isoform of VEGF-A that is in-
creased in ischemic muscle [2] and competes with pro-angiogenic isoforms of VEGF-A for
binding to VEGFR2 [112]. VEGF165b is a weak agonist of VEGFR2, and the interaction
lacks the downstream signaling required for an angiogenic response, making it a com-
petitive inhibitor of the VEGFR2-AKT-ERK-eNOS-NO angiogenic pathway [113–115]. By
suppressing NO production, elevated VEGF165b in muscles of PAD/CLI patients may
contribute to the absence of clinical benefit seen in VEGF-A clinical trials or of NO sup-
plementation by L-arginine in PAD patients. With the rationale that PAD/CLI patients
have chronically reduced responses to NO signaling and thence therapeutic angiogenesis,
Kuppuswamy et al. [2] recently showed that delivery of an anti-VEGF165b antibody sig-
nificantly enhanced perfusion and increased microvascular density in three mouse PAD
models with suppressed NO production including T2D and eNOS knock-out mice. The
authors conclude that VEGF165b is a potential therapeutic target for patients with PAD
where the VEGFR2-eNOS-NO pathway is impaired. The same group recently identified the
IL-21 receptor (IL-21R) as causally linked to the differential responses of C57BL/6 versus
Balb/c mice to hindlimb ischemia. High IL-21R expression in ECs of ischemic hindlimbs in
C57BL/6 mice coincided with enhanced perfusion recovery whereas low IL-21R expression
in Balb/C correlated with sustained perfusion deficit and greater tissue loss during HLI [61].
Genetic support linking the IL-21R with human PAD prompted the authors to target IL-21R
for nitric oxide-independent angiogenesis in PAD [1].

MiR-15 and -16 belong to an extended miR-16 family that bind to Tie2 mRNA coding
sequences (CDSs) and regulate angiogenesis by targeting VEGFR2 and FGFR1 [116]. The
miRs are conserved between humans and mice [117]. MiR-15a and -16 are increased in
serum and circulating proangiogenic cells (PACs) of CLI patients wherein serum concen-
trations predict amputation at 1-year post-revascularization [118]. Ex vivo transfection
with miR-15a/16 inhibitors increase the potential of human PACs to induce therapeutic
angiogenesis in mouse PAD models [118] and therapeutic angiogenesis is impaired in mice
with miR-15a gene knock-in [119]. Local adenoviral delivery of a 15a/16 decoy increased
Tie2 levels in ischemic skeletal muscle, improved perfusion recovery, and reduced toe
necrosis. The results support further development of Ad-Decoy-15a/16 to treat human
PAD/CLI.

MiR-150. Using next-generation sequencing and quantitative reverse transcription
polymerase chain reaction analyses. Desjarlais et al. [120] reported that decreased levels of
the proangiogenic microRNA miR-150 in ApoE-/- mice conferred decreased Src, eNOS,
and Akt activities that was mechanistically associated with inefficient neovascularization
following FAL. The effects were normalized by forced expression of an miR-150 mimic that
the authors propose to represent a novel therapeutic strategy to improve ischemia-induced
neovascularization in atherosclerotic conditions. However, this model does not represent
the average age or severity of atherosclerosis of human CLI.

AAV-PFKFB3 delivery was shown to salvage limbs, increase perfusion, and improve
muscle contractile function following FAL in BALB/c mice [121]. The model mimics CLI
patients wherein compromised mitochondria and inflexible metabolism exacerbate my-
opathy. The authors report that the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 3 (PFKFB3) was markedly induced in transgenic mice with defective
mitochondrial metabolism caused by accumulated mutations in mtDNA, and this conferred
resistance to ischemic myopathy by enhancing glycolysis and maintaining ATP in ischemic
muscle. Muscles from CLI patients were shown to contain lower PFKFB3 relative to normal
or claudication muscles and decreased glycolytic flux capacity. The results support reduced
glycolytic flux as a common characteristic of failing CLI patient limb skeletal muscle that
may be responsive to gene therapy with AAV-PFKFB3.

MPC-1011, an NO-donor, stimulates angiogenesis and arteriogenesis and improves
hindlimb ischemia via a cGMP-dependent pathway involving VEGF and SDF-1α [122].
Atherosclerosis-impaired NO production and associated vascular dysfunction is well-
documented in PAD patients and animal models [123–128]. Preclinical studies and small
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clinical trials confirm increased PFWT in PAD patients via NO augmentation with beetroot
juice, derivates of dark chocolate, MitoQ, a mitochondria-targeted antioxidant, and PDE-V
inhibitor sildenafil [129–133].

ACAT 1/2 inhibitors. High-intensity statins are recommended for patients with
peripheral artery disease (PAD) and meta-analyses have shown that CLI patients benefit
from statin therapy with significantly lower amputation rates (~25%) and fewer fatal events
compared with control groups without statin therapy [134,135]. Attempts to augment this
effect include inhibition of acyl-coenzyme A:cholesterol acyltransferase (ACAT; EC 2.3.1.26)
enzymes that regulate cholesterol homeostasis by esterifying the 3-hydroxyl position of
cellular free cholesterol with a fatty acid-CoA, creating cholesteryl ester (CE). ACAT1 is
responsible for CE accumulation in macrophage foam cells and its inhibition was predicted
to reduce cholesterol accumulation in atherosclerotic lesions. Positive anti-atherosclerosis
activity of ACAT1 inhibitors in mouse and rabbit models supported three multi-center
placebo controlled RCTs of two different ACAT1 inhibitors. However, human trials reported
no significant improvement in atheroma volume regression, and in some cases, significantly
increased major cardiovascular events in treated vs. placebo [136,137]. The reasons for
the absence of clinical success are unclear, but there were indications of adverse effects of
ACAT inhibition in some animal studies involving mitochondrial dysfunction, cytotoxicity,
proinflammatory effects, and apoptosis, that the authors suggest may be alleviated by
switching to ACAT2 inhibitors [137].

NLRP3 inflammasome stimulation by cellular stress activates caspase-1 and cleavage
of pro-inflammatory cytokines IL-1β and IL-18, that trigger an inflammatory response.
Quantitative trait locus mapping and molecular technologies in mice have identified new
genetic loci (Ath28, Ath22, Ath26) and associated genes (Soat1, Gpnmb, AKR Pycard) associ-
ated with NLRP3 inflammasomes that determine macrophage phenotypes and associated
atherosclerosis plaque and pathology [138–140]. Targeted inhibition of the NLRP3 inflam-
masome pathway represents another ongoing promising approach to slow atherosclerosis.

3. Summary and Conclusions

While the positive albeit variable results of cell therapies for PAD/CLI encourage
further testing to optimize and consolidate cell types and procedures, the limited efficacies
revealed by large clinical trials of gene therapy have led to reduced enthusiasm for contin-
ued development of this approach. However, gene therapy clinical trials were based on
preclinical models that lacked predictive value for clinical translation, and much evidence
suggests that more predictive models would identify different protocols with increased
likelihood of clinical success. At minimum, such models would preclude expensive, time,
and labor-intensive clinical development of products that were predestined to fail. Im-
portantly, all Phase III gene therapy trials were limited to plasmid gene delivery, whereas
more efficient viral delivery (AAV/Lentivirus) allows higher expression, targeting, and
defined duration of transgene expression, as demonstrated in a PAD model and previously
reviewed by the author’s group [56,141,142] and in other indications [143–145]. Newer gene
therapy approaches, including those listed above, may benefit from preliminary testing in
preclinical models that include advanced age and atherosclerosis (ApoE-/- mice) prior to
clinical development. Such an application, while arduous, is not as labor intensive, time
consuming, and expensive as the build-up and implementation of clinical trials; by some
estimates the cost of TAMARIS was >$25M. While FDA IND approvals for cardiovascular
indications require two animal species, relevant co-morbidities are not required and not
routinely included.

Advanced age and atherosclerosis create toxic environments that render host tissues,
vascular beds, and resident cells resistant to vascular regeneration and tissue salvage.
Heightened local and systemic inflammation, suppressed expression of angiogenic and
arteriogenic growth factors and cytokines, impaired NO production, dysregulated miRs
that drive angiogenesis and arteriogenesis, microvascular dysfunction, increased oxidative
stress, and impaired metabolic regulation including mitochondrial and glycolytic dysfunc-
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tions may contribute to muted responses to vasculogenesis. The effects worsen in parallel
with age and severity of atherosclerosis. CLI patients in the major failed clinical trials of
gene therapy were of advanced age (mean of 70 years) with severe atherosclerosis. To our
knowledge, none of the angiogenic genes subject to clinical trial were tested in preclin-
ical models that included equivalent backgrounds of advanced age and atherosclerosis.
Mouse PAD/CLI models that include age and/or atherosclerosis show markedly reduced
responses to both gene and cell treatments. Application of more inclusive models, includ-
ing surgical techniques that more closely mimic the target population of PAD patients, is
predicted to provide much needed information to optimize both gene and cell therapies for
clinical application.
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48. Barć, P.; Antkiewicz, M.; Śliwa, B.; Frączkowska, K.; Guziński, M.; Dawiskiba, T.; Małodobra-Mazur, M.; Witkiewicz, W.;
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