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Abstract: The availability of the complete genome of an organism plays a crucial role in the com-
prehensive analysis of the entire biological entity. Despite the rapid advancements in sequencing
technologies, the inherent complexities of genomes inevitably lead to gaps during genome assembly.
To obviate this, numerous genome gap-filling tools utilizing long reads have emerged. However,
a comprehensive evaluation of these tools is currently lacking. In this study, we evaluated seven
software under various ploidy levels and different data generation methods, and assessing them
using QUAST and two additional criteria such as accuracy and completeness. Our findings revealed
that the performance of the different tools varied across diverse ploidy levels. Based on accuracy and
completeness, FGAP emerged as the top-performing tool, excelling in both haploid and tetraploid
scenarios. This evaluation of commonly used genome gap-filling tools aims to provide users with
valuable insights for tool selection, assisting them in choosing the most suitable genome gap-filling
tool for their specific needs.

Keywords: gap-filling; long reads; genome assembly

1. Introduction

The quality of genome assembly significantly impacts the quality of downstream
genomic analyses. With the advancement of sequencing technologies, particularly, the
emergence of single-molecule sequencing (SMS) technologies, genomes have gradually
evolved towards being assembled from telomere to telomere. This has led to an increasing
number of complete genomes without gaps, such as those of maize [1], rice [2,3], soy-
bean [4], carrot [5], and others. However, challenges such as uneven sequencing depth, the
complexity of genome repeat regions, sequencing errors, and other factors frequently lead
to the occurrence of numerous gaps during genome assembly. To fill these gaps, extensive
efforts have been made. Some approaches involve using next-generation sequencing data
to close those gaps. However, a drawback of this strategy is the short length of reads, which
makes assembly challenging and computationally intensive, increasing the likelihood of
assembly errors. The development of the SMS technology has now made it the mainstream
method for filling gaps in genome assembly. SMS reads are longer, which makes it easier
to eliminate gaps with lower computational challenges. Therefore, using SMS reads to fill
genome assembly gaps has become the preferred approach for researchers when addressing
missing regions in genomes.

The method of filling gaps using SMS reads is primarily based on alignment. Various
software tools, such as FGAP [6], LR_Gapcloser [7], TGS-GapCloser [8], PGcloser [9],
DENTIST [10], RFfiller [11], and SAMBA [12], utilize these strategies for gap closure. FGAP
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employs long reads or contigs to fill gaps. It initiates by aligning these sequences to the draft
genome through BLAST [13]. The most suitable sequences are then selected for gap closure.
LR_Gapcloser can work with both corrected and uncorrected long reads. It segments long
reads into uniform-length fragments and aligns them to scaffolds using BWA [14]. Based on
the alignment results, it identifies long reads capable of bridging the gaps. TGS-GapCloser
is versatile and can handle various types of long reads and contigs generated by assembly
software. It begins by identifying gap regions within scaffolds, splitting the scaffolds, and
aligning long reads to the divided scaffolds. Candidate sequences are chosen from these
alignments and undergo further refinement to select the highest-quality sequence for gap
closure. PGcloser also supports both long reads and contigs for gap closure. It identifies
anchor points at both ends of the gaps and aligns them to long reads. This process aids in
selecting suitable long reads to either fill gaps or reduce the gap size. DENTIST utilizes long
reads to close gaps. It starts by identifying and masking repetitive regions. Subsequently,
it aligns long reads to scaffolds and derives a consensus from all the reads that can be
used to fill the gaps. RFfiller uses both long reads and contigs to close gaps. It begins by
creating a Markov chain based on alignment information between contigs, scaffolds, and
paired-end reads. This Markov chain is then used to allocate long reads or contigs to the gap
regions, effectively closing the gaps. These tools rely on alignment and sequence selection
methods to bridge gaps in genomic assemblies, harnessing the potential of single-molecule
sequencing data. SAMBA is employed to fill gaps generated during the assembly process
using long reads, thereby improving the continuity of the assembly results. It utilizes long
reads to reassemble contigs from the existing genome assembly, concurrently filling in the
gaps during the reconstruction. When filling gaps in scaffolds, the process involves initially
fragmenting the scaffold into contigs, subsequently reconstructing these contigs using long
reads, and ultimately re-linking the contigs back into the scaffold. This approach may
potentially introduce errors in contigs due to the reconstruction process.

Today, the use of long reads to fill gaps has gradually become the primary choice
in genome assembly. Users generally choose gap-filling software based on the type of
data they have. However, the selection of the most suitable software to improve the
completeness and accuracy of the genome after gap filling requires careful consideration.
With numerous software options available for gap filling utilizing long reads, testing each
one can be resource-intensive, in terms of both time and computational resources. To
address this issue, we conducted tests on several software options. We made efforts to
compile a comprehensive selection of gap-filling software, considering factors such as
maintenance status and user-friendliness. Ultimately, we selected seven software tools
for our study: FGAP, LR_Gapcloser, TGS-GapCloser, PGcloser, DENTIST, RFfiller, and
SAMBA. Our investigation involved evaluating the performance of these seven software
tools across different ploidy levels. We utilized QUAST [15] for assessment and introduced
two new metrics: completeness and accuracy. Additionally, we documented the execution
time and memory usage.

2. Materials and Methods
2.1. Datasets

Our dataset comprised three main components: sequencing or synthetically generated
reads, preliminary genome assembly results, and a reference genome. The sequencing
reads were sourced from the work of Hou et al. [16].

2.1.1. Synthetic Datasets with Haploid Genome

We utilized the ZS97RS3 rice genome as the haploid reference genome. The reads used
were HIFI reads of a homozygous diploid rice, which were synthesized based on the rice
genome ZS97 by Hou et al. The coverage of the HIFI reads was 30× Genome assembly was
carried out using Hifiasm (v0.16.1) [17], and we followed Hou et al.’s recommendation to
employ Yahs (v1.2a.2) [18] for scaffolding the assembly results. This process yielded the
required genome sketch. The same reads were used for gap filling.
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2.1.2. Real Datasets with Diploid Genome

The dataset consisted of HIFI reads from a segment of the strawberry [19] genome
(NCBI project PRJNA801713). The coverage of the HIFI reads was 128×. Genome assembly
was performed using Hifiasm, and for chromosome scaffolding in the diploid scaffold,
we selected the best-performing software 3D-DNA (v180922) [20], whose efficacy was
demonstrated in Hou et al.’s study. These steps led to the creation of the diploid genome
sketch. The same reads used for assembly were employed for gap filling. The reference
genome for the diploid dataset was sourced from Sun et al.’s publication, which provided
the strawberry genome.

2.1.3. Synthetic Datasets with Tetraploid Genome

We used synthesized HIFI reads generated by Hou et al. for a tetraploid genome.
The coverage of the HIFI reads was 30×. After assembling using Hifiasm, we employed
the software Pin_hic (3.0.0) [21], as described by Hou et al., which exhibited the best
performance for tetraploid scaffolds, to scaffold the obtained contigs and generate the
tetraploid draft genome. The same reads were used for gap filling. The reference genome
was the complete genome of a tetraploid organism used for synthesizing the reads.

2.2. Software Running Details

Each software tool is provided with distinct parameters tailored to various data
types and ploidy levels. These parameters enable the tools to reduce errors and enhance
operational efficiency when filling gaps. Prior to execution, the DENTIST (v4.0.0) software
requires configuration through a settings file, encompassing information such as read type,
read coverage, and ploidy. LR_Gapcloser, TGS-GapCloser (v1.2.1), and SAMBA necessitate
the specification of read type and alignment parameters. On the other hand, PGcloser (v1.2)
and FGAP (v1.8.1) involve only fundamental parameters related to alignment and gap
length. Among these tools, RFfiller stands out as the simplest, offering only a basic option
for the number of threads, with no additional selectable parameters. When running these
tools, we strictly adhered to the specified data types and ploidy levels when configuring
parameters. In the absence of specific parameters, we followed the default settings provided
by the software.

2.3. Evaluations

We employed six criteria to assess the quality of the genome assembly after gap
filling: NG50, NGA50, misassemblies, genome fraction, completeness, and accuracy. NG50,
NGA50, misassemblies, and genome fraction were evaluated using the QUAST (v5.2.0).
NG50 is a length, and the collection of all contigs of that length or longer covers at least half
the reference genome. NGA50 represents a block length such that all blocks of at least the
same length together cover at least 50% of the reference genome. Genome fraction refers to
the proportion of the assembled genome compared to the reference genome. Misassemblies
refer to the number of positions where the left-side sequence in an assembly differs by
more than 1 kbp from the right-side sequence in the reference genome (relocation) or
where sequences are positioned on different strands (inversion) or different chromosomes
(translocation). We referred to the completeness metrics in Quast-LG [22], proposed our
own completeness indicators, and expanded them into accuracy metrics. Both indicators
were based on unique k-mer counts, with specific calculation formulas. The formulas for
completeness and accuracy are given below:

vcompleteness =
Sre f G_unikmers ∩ S f illedG_unikmers

Sre f G_unikmers
(1)

vaccuracy =
Sre f G_unikmers ∩ S f illedG_unikmers

S f illedG_unikmers
(2)
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where Sre f G_unikmers refer to the unique k-mers that reference genome has, and S f illedG_unikmers
are unique k-mers in the filled genome. We set all k in k-mer to 21 when we evaluated the
completeness and accuracy of the chosen software. This comprehensive approach allowed
us to thoroughly assess the gap-filling software performance across different genomic
contexts and provide a robust evaluation of genome assembly quality after gap filling.

2.4. Runtime and Memory Usage

We configured all software with 32 threads and recorded the runtime and maximum
memory usage for each experiment. With the exception of one software that exceeded
the memory limit, all gap fillers were run on a server equipped with 2 AMD EPYC 7H12
64-Core CPUs and 1024 GB of RAM. The software that exceeded the memory limit was
executed on an Inspur Cluster Engine Linux cluster at the Agricultural Genomics Institute
at Shenzhen, Chinese Academy of Agricultural Sciences. This cluster comprises six main
nodes, each equipped with 80 CPUs and 3 TB of memory.

3. Results

We conducted a comprehensive set of experiments on seven gap fillers, encompassing
various ploidies and data generation methods.

3.1. Experiments on Synthetic Haploid Datasets

All gap fillers were evaluated using synthetic haploid HIFI reads. The experiments
utilized reads identical to those used in the assembly. We performed a comprehensive
assessment of these software tools based on the six evaluation metrics mentioned in the
Methods section. For the haploid dataset, except for RFfiller and TGS-GapCloser, the
memory requirements for each software were quite similar. RFfiller could efficiently
fill over 99% of the gaps in the shortest time and with the lowest memory usage. TGS-
GapCloser, while using most memory, could also effectively fill over three-quarters of the
gaps. A less effective software was DENTIST, which consumed a considerable amount of
time and could only fill a minimal number of gaps. The software with the least favorable
performance was SAMBA, as it failed to successfully fill any gaps, despite its minimal time
and memory consumption (Table 1).

Table 1. Number of gaps after gap filling of a haploid dataset, runtime, and maximum mem-
ory consumption.

Tool Number of
Closed Gaps Closed Rate Runtime

(min)

Maximum Memory
Consumption

(Gb)

LR_Gapcloser 668 49.12% 1243 23.36
TGS-GapCloser 1068 78.53% 510 82.28

DENTIST 5 0.37% 1049 18.16
RFfiller 1359 99.93% 226 2.91

PGcloser 53 3.90% 1104 28.17
FGAP 115 8.46% 126 37.01

SAMBA 0 0 112 6.89
All software were run with 32 threads on the same computer.

DENTIST was identified as the highest-performing software based on the evaluation
metrics of QUAST, as well as on the completeness and accuracy metrics provided. Despite
filling a comparatively smaller quantity of gaps, DENTIST guaranteed the precision of
the sequences it filled, thereby minimizing potential risks in subsequent genome analysis.
Even though other software tools may surpass DENTIST in the number of gaps filled,
according to the evaluation from Quast and based on our integrity and accuracy metrics,
a portion of the filled gaps by these tools contained errors. For instance, RFfiller, despite
addressing the majority of the gaps, resulted in a substantial number of misassemblies,
which contributed to a decline in genome accuracy and diminished the overall quality
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of genome assembly. The reason for SAMBA’s exceptionally high completeness and low
accuracy lies in its process of scaffold fragmentation, followed by the reconstruction of
contigs using long reads. While this approach increased the correctly assembled portions,
it concurrently elevated the incidence of misassemblies, contributing to a reduction in
overall accuracy (Figure 1). For synthetic haploid datasets, considering a comprehensive
assessment of these metrics, we highly recommend DENTIST. If considering a balance
between accuracy and closure rate, FGAP would be preferred. While it may exhibit a lower
closure rate, the gaps it filled tended to have relatively higher accuracy, which ultimately
enhanced the overall quality of genome assembly. For some software, such as LR_Gapcloser,
SAMBA, RFfiller, DENTIST, FGAP, and TGS-GapCloser, when evaluated using QUAST,
the values for NG50 and genome fraction were quite similar. This similarity arose because
the genome itself, after scaffolding, exhibited high continuity and completeness, and the
impact on the overall integrity and continuity of the genome after gap filling was minimal.
Therefore, relying on a single metric is insufficient for the effective evaluation of a software
tool. It is crucial to consider a comprehensive set of metrics to obtain more accurate
comparative results.
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(c) misassemblies, (d) genome fraction, (e) completeness, and (f) accuracy for synthetic haploid
datasets, calculated by python scripts or reported by QUAST.

3.2. Experiments on Real Diploid Datasets

For the diploid dataset, the use of real HIFI reads with high sequencing depth and large
data size posed significant memory challenges, particularly for TGS-GapCloser. Therefore,
on the diploid dataset, we executed all software on the Inspur Cluster Engine Linux cluster
and recorded their runtime and maximum memory consumption. TGS-GapCloser exhibited
the highest memory requirements for the diploid dataset gap filling, exceeding 1 TB. It also
had the longest runtime and filled the second-highest number of gaps. Conversely, Rffiller
remained the software with the least resource demands, using minimal computational
resources to fill the highest number of gaps. DENTIST and SAMBA, two software tools,
exhibited similar runtime and memory usage; however, SAMBA filled a greater number of
gaps (Table 2).

Table 2. Number of gaps after gap filling of a diploid dataset, runtime, and maximum mem-
ory consumption.

Tool Number of
Closed Gaps Closed Rate Runtime

(min)

Maximum Memory
Consumption

(Gb)

LR_Gapcloser 297 64.71% 9083 64.81
TGS-GapCloser 300 65.36% 14459 1102.01

DENTIST 1 0.22% 3378 17.92
RFfiller 458 99.78% 157 8.03

PGcloser 64 13.94% 6346 84.92
FGAP 13 2.83% 270 74.03

SAMBA 5 1.09% 2199 17.85
All software were run with 32 threads on the same computer.

On the diploid dataset, according to the QUAST evaluation, all software exhibited a
relatively high number of misassemblies (Figure 2b). This was primarily attributed to the
chromosome scaffolding process. Among the seven software tools, SAMBA demonstrated
the most robust performance, achieving consistently high scores in accuracy, completeness,
and misassemblies compared to the other tools. This indicated a significant improvement
in assembly quality after contig reconstruction by SAMBA. Conversely, the least effective
software was Rffiller, despite filling over 99% of the gaps. Evaluation across various metrics
revealed a substantial decline in assembly quality, suggesting a considerable number of
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erroneously filled gaps. The remaining software tools, not involving scaffold fragmentation
and remounting during the assembly process, exhibited suboptimal performance in terms
of poorly mounted results. Additionally, Pgcloser software discarded some scaffolds during
runtime, resulting in lower values for NGA50, NG50, and genome fraction.
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3.3. Experiments on Synthetic Tetraploid Datasets

On the synthetic tetraploid dataset, we tested all software using HIFI reads identi-
cal to those used in genome assembly. The software with the highest closure rate was
TGS-GapCloser, even though it utilized a substantial amount of memory. Comparing
LR_GapCloser and TGS-GapCloser, TGS-GapCloser prioritizes time efficiency, consuming
a considerable amount of space, while LR_GapCloser emphasizes space efficiency, leading
to an extended runtime for the sake of conserving space. Among the software tools, DEN-
TIST exhibited the poorest performance in terms of gap closure rate. SAMBA and DENTIST
failed to close any gaps, which was possibly attributed to the sequencing depth. Rffiller
demonstrated the least resource requirements and closed over 26% of the gaps (Table 3).

Table 3. Number of gaps after gap filling of a tetraploid dataset, runtime, and maximum
memory consumption.

Tool Number of
Closed Gaps Closed Rate Runtime

(min)

Maximum Memory
Consumption

(Gb)

LR_Gapcloser 224 32.37% 8300 88.36
TGS-GapCloser 242 34.97% 4761 305.38

DENTIST 0 0.00% 6299 24.04
RFfiller 183 26.45% 365 10.74

PGcloser 55 7.95% 7330 117.73
FGAP 35 5.06% 712 94.99

SAMBA 0 0 578 15.28
All datasets were run with 32 threads on the same computer.

Upon evaluating the results of all software using QUAST and custom metrics, we
identified FGAP as the top-performing software. It performed exceptionally well across
all six metrics. Moreover, compared to DENTIST, which did not fill any gaps, it did
not introduce misassemblies, maintaining both accuracy and completeness. However, it
is essential to note that Pgcloser exhibited starkly different results in terms of QUAST
evaluations compared to the custom metrics, and the loss of sequences resulted in lower
QUAST indicators in the evaluation. Since the lost sequences might include portions
with misassemblies, the reduction in misassemblies was also compromised. Upon closer
examination of the Pgcloser results, we identified a significant loss of genomic sequences
after generating results. This led to lower values when assessing completeness and accuracy.
The reason for the sequence loss was found to be a lack of compatibility with all platforms,
resulting in low portability. This caused certain commands to execute erroneously without
returning the correct error status, allowing the program to continue running. With Pgcloser
excluded from consideration, the software with the least favorable performance was TGS-
GapCloser, which exhibited the highest number of misassemblies. This indicated that,
during the gap-filling process, TGS-GapCloser introduced a significant number of errors
into the genome, thereby diminishing the overall quality. Similar issues were observed
for LR_GapCloser and Rffiller. Although both DENTIST and SAMBA ultimately failed to
fill any gaps, SAMBA’s scaffold fragmentation and remounting process led to a decrease
in both completeness and accuracy. In contrast, DENTIST, without performing any such
operations, represents the level of scaffolding after chromosome mounting (Figure 3).
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4. Discussion

With the advancement of sequencing technologies and the progress of genome as-
sembly software, assembling a complete genome is no longer an insurmountable task.
However, inevitable gaps arise during the genome assembly process. Determining the most
effective method and software for gap filling requires extensive experimental testing. We
evaluated seven genome gap-filling tools on different datasets using comprehensive met-
rics. According to our experimental results, the least effective software was RFfiller. Despite
its ability to fill over 99% of the gaps, the majority of the filled gaps, as assessed by Quast
and our proposed metrics, were erroneous. Upon inspection of the ‘filled_gaps_seq.txt’
file generated by RFfiller, a substantial portion of the filled sequences had lengths iden-
tical to the initial ‘N’ lengths in the sequences, which were generated by the scaffolding
software and did not accurately represent the true gap lengths. We speculate that RFfiller
fills sequences based on gap lengths and is heavily influenced ‘N’ length. Thus, using
RFfiller requires prior knowledge of the actual gap lengths, which is challenging to de-
termine during the genome assembly process. FGAP, while filling fewer gaps, adopts a
conservative strategy, resulting in higher accuracy based on the six metrics we selected.
PGcloser exhibited relatively high accuracy across various metrics; however, the software
discarded some sequences during the run; we cannot anticipate the impact of losing these
sequences on the quality of genome assembly. Based on our results, this will lead to a
decrease in genome integrity. TGS-GapCloser consumed the most resources, and although
it filled most of the gaps, its accuracy in gap filling was comparatively low based on our
evaluation metrics. All software tools were significantly affected by the sequencing depth
of the reads, particularly, SAMBA and DENTIST. Our experimental results suggest that
these two tools are ineffective in gap filling when the sequencing depth is low. Despite
being designed for 10–30× long-read sequencing, SAMBA’s performance may suffer at
lower sequencing depths, potentially compromising the quality of the original assembly.
Adequate sequencing depth improves SAMBA’s ability to correct errors introduced by
scaffolding, enhancing the overall genome quality. The existing software for gap filling
using long reads still have considerable room for improvement to achieve a better balance
between introducing misassemblies and effectively filling gaps. In the genome assembly
process, it is crucial not only to prioritize completeness but also to consider accuracy. Accu-
racy is particularly important, as, even if completeness is low, it can be enhanced through
manual interventions. However, low accuracy makes it challenging to precisely identify
problematic assembly regions.

In addition, the existing evaluation metrics proposed by the current software, includ-
ing those introduced in our study, pose challenges when comprehensively assessing the
quality of genome assemblies. These tools provide only a rough assessment of overall
genome quality and lack the capability to discern the quality of specific assembly regions.
Additionally, if the initial genome assembly quality is poor, it will result in lower values for
all evaluation metrics. Evaluating the gap-filling performance of these assembly software
tools, also with the use of our assessment metrics, does not accurately reflect the individual
gap-filling success for each gap. Indeed, evaluating single-gap filling is a challenging task.
When dealing with short gap sequences, the current approach of assessing overall genome
assembly quality may not accurately reflect limited improvements in various metrics and
may fail to reveal differences before and after gap filling. For instance, some software
obtained very similar values for a single metric, making it challenging to discern differ-
ences between them. In such cases, a comprehensive consideration of multiple metrics
is required to identify the best-performing software. The current methods for evaluat-
ing overall genome assembly quality still lack specificity when it comes to assessing the
detailed aspects of genome assembly. There is currently no well-established standard in
the existing evaluation tools for the detailed assessment of assembly nuances, and we are
actively exploring such criteria.

In conclusion, there is significant room for improvement for the existing long-read gap-
filling software. Striking a better balance between mitigating misassemblies and effectively
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filling gaps remains a challenge. Additionally, the evaluation of genome assembly quality,
including gap filling, requires more refined and specific metrics to provide accurate insights
into the success of gap filling at both the overall and the individual gap levels.

5. Conclusions

In this study, we conducted comprehensive benchmark tests on seven genome gap-
filling tools. We evaluated their performance across different ploidies and data types,
considering NG50, NGA50, misassemblies, genome fraction, completeness, and accuracy.
Our results demonstrated significant variations in the performance of these software tools
across different ploidy levels and data types. Therefore, users should carefully choose the
most appropriate gap-filling tool based on the specific characteristics of their data.

Author Contributions: X.Z. and W.P. designed the experiments and wrote the initial draft of the
manuscript. X.Z., F.L. and W.P. wrote the paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
32100501), the Shenzhen Science and Technology Program (Grant No. RCBS20210609103819020), and
the Innovation Program of the Chinese Academy of Agricultural Sciences.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The script that implements the two quality criteria can be obtained at
https://github.com/xianjia10/gap-filler_evaluation.git, accessed on 26 December 2023.

Acknowledgments: We thank Dong Xu from the Agricultural Genomics Institute at Shenzhen,
Chinese Academy of Agricultural Sciences. We also thank the funding support for this project.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chen, J.; Wang, Z.; Tan, K.; Huang, W.; Shi, J.; Li, T.; Hu, J.; Wang, K.; Wang, C.; Xin, B.; et al. A complete telomere-to-telomere

assembly of the maize genome. Nat. Genet. 2023, 55, 1221–1231. [CrossRef] [PubMed]
2. Shang, L.; He, W.; Wang, T.; Yang, Y.; Xu, Q.; Zhao, X.; Yang, L.; Zhang, H.; Li, X.; Lv, Y.; et al. A complete assembly of the rice

Nipponbare reference genome. Mol. Plant 2023, 16, 1232–1236. [CrossRef] [PubMed]
3. Zhang, Y.; Fu, J.; Wang, K.; Han, X.; Yan, T.; Su, Y.; Li, Y.; Lin, Z.; Qin, P.; Fu, C.; et al. The telomere-to-telomere gap-free genome of

four rice parents reveals SV and PAV patterns in hybrid rice breeding. Plant Biotechnol. J. 2022, 20, 1642–1644. [CrossRef]
4. Wang, L.; Zhang, M.; Li, M.; Jiang, X.; Jiao, W.; Song, Q. A telomere-to-telomere gap-free assembly of soybean genome. Mol. Plant

2023, 16, 1711–1714. [CrossRef] [PubMed]
5. Wang, Y.-H.; Liu, P.-Z.; Liu, H.; Zhang, R.-R.; Liang, Y.; Xu, Z.-S.; Li, X.-J.; Luo, Q.; Tan, G.-F.; Wang, G.-L.; et al. Telomere-to-

telomere carrot (Daucus carota) genome assembly reveals carotenoid characteristics. Hortic. Res. 2023, 10, uhad103. [CrossRef]
[PubMed]

6. Piro, V.C.; Faoro, H.; Weiss, V.A.; Steffens, M.B.; Pedrosa, F.O.; Souza, E.M.; Raittz, R.T. FGAP: An automated gap closing tool.
BMC Res. Notes 2014, 7, 371. [CrossRef]

7. Xu, G.C.; Xu, T.J.; Zhu, R.; Zhang, Y.; Li, S.Q.; Wang, H.W.; Li, J.T. LR_Gapcloser: A tiling path-based gap closer that uses long
reads to complete genome assembly. Gigascience 2019, 8, giy157. [CrossRef] [PubMed]

8. Xu, M.; Guo, L.; Gu, S.; Wang, O.; Zhang, R.; Peters, B.A.; Fan, G.; Liu, X.; Xu, X.; Deng, L.; et al. TGS-GapCloser: A fast and
accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 2020, 9, giaa094. [CrossRef]

9. Lu, P.; Jin, J.; Li, Z.; Xu, Y.; Hu, D.; Liu, J.; Cao, P. PGcloser: Fast Parallel Gap-Closing Tool Using Long-Reads or Contigs to Fill
Gaps in Genomes. Evol. Bioinform. Online 2020, 16, 1176934320913859. [CrossRef]

10. Ludwig, A.; Pippel, M.; Myers, G.; Hiller, M. DENTIST-using long reads for closing assembly gaps at high accuracy. Gigascience
2022, 11, giab100. [CrossRef]

11. Midekso, F.D.; Yi, G. RFfiller: A robust and fast statistical algorithm for gap filling in draft genomes. PeerJ 2022, 10, e14186.
[CrossRef] [PubMed]

12. Zimin, A.V.; Salzberg, S.L. The SAMBA tool uses long reads to improve the contiguity of genome assemblies. PLoS Comput. Biol.
2022, 18, e1009860. [CrossRef] [PubMed]

13. Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [CrossRef]

https://github.com/xianjia10/gap-filler_evaluation.git
https://doi.org/10.1038/s41588-023-01419-6
https://www.ncbi.nlm.nih.gov/pubmed/37322109
https://doi.org/10.1016/j.molp.2023.08.003
https://www.ncbi.nlm.nih.gov/pubmed/37553831
https://doi.org/10.1111/pbi.13880
https://doi.org/10.1016/j.molp.2023.08.012
https://www.ncbi.nlm.nih.gov/pubmed/37634078
https://doi.org/10.1093/hr/uhad103
https://www.ncbi.nlm.nih.gov/pubmed/37786729
https://doi.org/10.1186/1756-0500-7-371
https://doi.org/10.1093/gigascience/giy157
https://www.ncbi.nlm.nih.gov/pubmed/30576505
https://doi.org/10.1093/gigascience/giaa094
https://doi.org/10.1177/1176934320913859
https://doi.org/10.1093/gigascience/giab100
https://doi.org/10.7717/peerj.14186
https://www.ncbi.nlm.nih.gov/pubmed/36262414
https://doi.org/10.1371/journal.pcbi.1009860
https://www.ncbi.nlm.nih.gov/pubmed/35120119
https://doi.org/10.1093/nar/25.17.3389


Genes 2024, 15, 127 12 of 12

14. Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26, 589–595.
[CrossRef] [PubMed]

15. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29,
1072–1075. [CrossRef]

16. Hou, Y.; Wang, L.; Pan, W. Comparison of Hi-C-Based Scaffolding Tools on Plant Genomes. Genes 2023, 14, 2147. [CrossRef]
[PubMed]

17. Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly using phased assembly graphs
with hifiasm. Nat. Methods 2021, 18, 170–175. [CrossRef]

18. Zhou, C.; McCarthy, S.A.; Durbin, R.; Alkan, C. YaHS: Yet another Hi-C scaffolding tool. Bioinformatics 2023, 39, btac808.
[CrossRef]

19. Sun, R.; Li, S.; Chang, L.; Dong, J.; Zhong, C.; Zhang, H.; Wei, L.; Gao, Y.; Wang, G.; Zhang, Y.; et al. Chromosome-level genome
assembly of Fragaria pentaphylla using PacBio and Hi-C technologies. Front. Genet. 2022, 13, 873711. [CrossRef]

20. Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden,
A.P. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 2017, 356, 92–95.
[CrossRef]

21. Guan, D.; McCarthy, S.A.; Ning, Z.; Wang, G.; Wang, Y.; Durbin, R. Efficient iterative Hi-C scaffolder based on N-best neighbors.
BMC Bioinform. 2021, 22, 569. [CrossRef] [PubMed]

22. Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile genome assembly evaluation with QUAST-LG.
Bioinformatics 2018, 34, i142–i150. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/bioinformatics/btp698
https://www.ncbi.nlm.nih.gov/pubmed/20080505
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.3390/genes14122147
https://www.ncbi.nlm.nih.gov/pubmed/38136968
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1093/bioinformatics/btac808
https://doi.org/10.3389/fgene.2022.873711
https://doi.org/10.1126/science.aal3327
https://doi.org/10.1186/s12859-021-04453-5
https://www.ncbi.nlm.nih.gov/pubmed/34837944
https://doi.org/10.1093/bioinformatics/bty266
https://www.ncbi.nlm.nih.gov/pubmed/29949969

	Introduction 
	Materials and Methods 
	Datasets 
	Synthetic Datasets with Haploid Genome 
	Real Datasets with Diploid Genome 
	Synthetic Datasets with Tetraploid Genome 

	Software Running Details 
	Evaluations 
	Runtime and Memory Usage 

	Results 
	Experiments on Synthetic Haploid Datasets 
	Experiments on Real Diploid Datasets 
	Experiments on Synthetic Tetraploid Datasets 

	Discussion 
	Conclusions 
	References

