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Abstract: The Hessian fly (HF) is an invasive insect that has caused millions of dollars in yield losses
to southeastern US wheat farms. Genetic resistance is the most sustainable solution to control HF.
However, emerging biotypes are quickly overcoming resistance genes in the southeast; therefore,
identifying novel sources of resistance is critical. The resistant line “UGA 111729” and susceptible
variety “AGS 2038” were crossbred to generate a population of 225 recombinant inbred lines. This
population was phenotyped in the growth chamber (GC) during 2019 and 2021 and in field (F) trials
in Georgia during the 2021–2022 growing seasons. Visual scoring was utilized in GC studies. The
percentage of infested tillers and number of pupae/larvae per tiller, and infested tiller per sample
were measured in studies from 2021 to 2022. Averaging across all traits, a major QTL on chromosome
3D explained 42.27% (GC) and 10.43% (F) phenotypic variance within 9.86 centimorgans (cM). SNP
marker IWB65911 was associated with the quantitative trait locus (QTL) peak with logarithm of odds
(LOD) values of 14.98 (F) and 62.22 (GC). IWB65911 colocalized with resistance gene H32. KASP
marker validation verified that UGA 111729 and KS89WGRC06 express H32. IWB65911 may be used
for marker-assisted selection.

Keywords: wheat; hessian fly; quantitative trait locus; KASP; H24; H32

1. Introduction

The Hessian fly (HF), or Mayetiola destructor Say [1], is one of the oldest recorded
invasive species in North America. It can cause substantial economic damage wherever
wheat is grown [2]. The US experienced major HF epidemics in the past, so the government
started programs to control this catastrophic pest in large wheat-growing regions [1]. Six-
teen million acres of HF-resistant wheat were planted nationwide in 1974 [1]. HF infestation
usually lowers grain yield more than quality. If over five percent of tillers are infested
during the early tillering stage, yield loss can be considered significant [3]. HF has caused
millions of dollars in damage to US wheat. South Carolina lost approximately $4 million
annually from 1984 to 1989, and Georgia lost roughly $20 million from 1988 to 1989 [4]. HF
can cause annual GA field losses of up to 10% [5]. In Plains and Tifton, GA, single-stem
samples of wheat averaged 1.97 larvae for each infested stem [5]. HF lowered the average
grain weight of infested stems by 41.3% [5]. In Oklahoma, one immature HF per tiller can
lead to approximately 31.27 kilograms (kg) per hectare (ha) in losses [4]. This pest can infest
quack grass [6], barley, rye, and wheat [7].
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HF adult females may lay 100–400 eggs on leaf adaxial surfaces for around three
hours [8]. After three to four days, larvae emerge from the eggs at 20 ◦C [8] to crawl down
to the closest node to feed for two to three weeks in the first and second instar stages [4].
Larvae are more likely to survive on younger leaves because there are more responsive cells
that larvae can convert to galls for better nutrition [9]. Third-instar larvae pupate, and this
stage lasts for 7–35 days [4]. However, pupae can remain dormant for three to four months
in wheat stubble [10]. If temperatures stay at least 21 ◦C and humidity remains high for
10–14 days, adults usually emerge from pupae to mate and lay eggs. This temperature
is ideal for HF to develop [4]. The larval stage is when damage is inflicted on wheat. As
larvae feed, they turn the base of wheat plants into nutritive tissue, stunting their tiller
growth [3]. They can also cause lodging, smaller wheat kernels and spikes, and fewer
kernels per spike [1]. Other infestation symptoms include unusually short leaf blades,
sheaths, and internodes, as well as darker green leaf color [3].

Resistant cultivars are the most cost-effective control option [3], especially in the
Southeast (SE) of the US where fly-free dates are less effective [11]. The SE has a more
optimal climate for HF to produce more generations than in other regions [11]. While 37 HF
R genes were identified [12], only a few, such as H13, work well in the SE. Genes that used
to confer higher resistance to HF in soft red winter wheat (SRWW) in the SE, including
H3, H5, H6, H7, and H8, are no longer as effective [13]. H9 is losing its efficacy in parts
of the SE, and H18 is temperature-sensitive [14]. Microsatellite data [15] and virulence
assays [13] indicated that there is just one major population of HF in the SE US with
population structure as well as microscale diversity [13,15]. HF populations from Holmes
County, Mississippi, and Florence County, South Carolina, had a different population
identity when compared to populations from other counties from SE states [16]. The H12,
H13, H18, H24–H26, H31–H33, and Hdic genes are still effective in multiple SE counties, but
H24–H26 can be associated with undesirable agronomic traits [14]. Recently discovered
quantitative trait locus (QTL), QHft.nc-7D, has been linked with partial field resistance in
North Carolina (NC) [17]. More sources of resistant germplasm are needed to combat HF
and avoid overcoming the few available effective R genes in the SE.

Several diversity panels as well as biparental populations were developed to conduct
GWAS and QTL analysis and identify genomic regions involved with HF resistance. A
diversity panel of hard red spring (HRS), soft white spring (SWS), and soft white club
spring (SWC) wheat evaluated for seedling HF resistance in Moscow, Idaho (ID), revealed
IWA6803, a significant SNP closely linked to H34 on chromosome 6B, and a novel QTL,
QHf.pnw.2B, on chromosome 2B [18]. Winter wheat diversity panel AM203 in Manhattan,
Kansas, was used to validate KASP-3B3797431 and KASP-3B4525164, which could be near
diagnostic markers to detect QHf.hwwg-3B, a QTL on chromosome 3B mapped to 6.79 Mb,
explaining up to 46.7% phenotypic variation (PV) for HF resistance [19]. Analysis from a
diversity panel, biparental population, and elite ICARDA lines all of durum wheat revealed
QHara.icd-6B, a locus explaining 83% PV with a 54.5 logarithm of odds (LOD) value that
did not demonstrate yield drag when evaluated across locations [20].

Recombinant inbred line (RIL) population Seneca, developed from a cross between HF-
resistant spring wheat variety Bobwhite and winter wheat variety Seneca (CI 12529), was
used in conjunction with genotyping-by-sequencing (GBS) SNPs for mapping to reassign
H7, a major gene explaining up to 78.3% PV, from chromosome 5D to 6A [21]. H35 from
chromosome 3BS and H36 from chromosome 7AS were two HF resistance genes detected
using a 154 RIL population generated from resistant HRWW line SD06165 and susceptible
line OK05312. H35 was a major QTL explaining up to 36% PV, and H36 was a minor QTL
explaining up to 13.1% PV [12]. The major QTL QHf.wak-1A was mapped in a registered
spring wheat RIL population [22] produced from a cross between resistant line Louise and
susceptible line Penawawa, which explained up to 90% PV for HF resistance [23].

Breeding efforts in the US have led to the release of several HF-resistant cultivars. In
the SE region, resistance to HF is necessary, and breeding programs releasing cultivars for
this region must incorporate genes for HF resistance in the newly developed cultivars. The



Genes 2023, 14, 1812 3 of 24

UGA breeding program has released numerous cultivars adapted to the SE region with H13
and H9 genes that confer resistance to HF in GA and the SE. This includes recently released
cultivars in 2020 (AGS 2021, PGX 20-15, and AP 1983) and in 2022 (AGS 3026, AGS 4023,
and USG 3725) (Mergoum, Personal communication). H24 is one of the R genes still highly
effective against SE HF field collections [14]. HF resistance on wheat line KS89WGRC06
was deemed to be governed by H24 on the long arm of chromosome 3D via monosomic
analysis [24,25] and RFLP marker validation in the early 1990s. The H24 linked RFLP
markers were XcnlBCD451, XcnlCDO482, and XksuG48 [26].

Chromosome 3D also has R genes H26 and H32, derived from wheat lines KSWRCG26
and W-7984, respectively [14]. Seedlings with single R genes H24, H26, or H32 exposed to
HF populations from AL, GA, and NC demonstrated 75–100%, 87.8–100%, and 83.2–99.5%
resistance, respectively [14]. H32 has been mapped in between flanking simple-sequence
repeat (Xgwm3 and Xcfd223) [27], sequence-tagged site (Xrwgs10 and Xrwgs12) [28], and
SNP markers (IWB65911 and IWB37580) [29]. Xrwgs10 and Xrwgs12 are also tightly linked
to H26 [30], so H26 and H32 can be easily introgressed together [10]. Since H24 and H26 can
be associated with unideal agronomic traits due to linkage drag, H32 may be an alternative
that does not lower yield as much [14].

Kompetitive Allele-Specific PCR (KASP) markers were created for some R genes to
quickly, cheaply, and accurately screen cultivars and accelerate marker-assisted selection
(MAS) for plant breeding. KASP primer sets were developed for SNP IWB65911 that
cosegregates with H32, and it has differentiated HF-susceptible cultivars from resistant
ones with high sensitivity as well as specificity [29]. R genes h4, H7, H35, and H36 also
have KASP markers, but validation is needed before using these markers for MAS [10].
KASP-6B7901215 and KASP-6B112698 were validated to deploy QHf.hwwg-6BS, a major
QTL explaining up to 84% PV that was derived from the cultivar Chokwang [31]. Using
KASP markers and other techniques, such as crossing durum wheat to bread wheat and
doubling F1 chromosomes via colchicine, can expedite the introgression of new HF R
genes [10,32].

UGA 111729 and AGS 2038 are elite SRWW breeding lines developed by the University
of Georgia (UGA) Small Grains Breeding Program (UGA-SGBP). AGS 2038 was developed
from a cross between Pioneer 26R61 and GA 961581, and it was released to AGSouth
Genetics in 2011 [33]. Pioneer 26R61 has HF resistance QTL QHf.uga-2AS, QHf.uga-3DL,
and QHf.uga-6AL on chromosomes 2A, 3DL, and 6A, respectively. QHf.uga-6AL is a major
QTL flanked by SSR marker Xgwm427 and DArT marker wPt-731936 that explained up
to 63% average PV. QHf.uga-2AS is a minor QTL flanked by SSR markers Xgwm359 and
Xbarc124. QHf.uga-3DL was considered different from H24, H26, and H32 and significant
during the late seedling growth stage since PV and LOD values increased as seedlings
aged [34]. UGA 111729 was developed by backcrossing KS89WGRC06 to AGS 2038. Thus,
it is presumed to carry H24. These two cultivars were crossed to develop a biparental RIL
population that was first studied for leaf rust resistance [33].

Therefore, in this study, the objectives were to identify genomic regions involved
with HF resistance using the SRWW UGA 111729 × AGS 2038 biparental RIL population
for QTL analysis and to determine the most significant marker intervals influencing HF
resistance that could be used for MAS.

2. Materials and Methods
2.1. Plant Materials

A biparental RIL F6 population of 225 lines derived from a cross between HF-susceptible
parent AGS 2038 and HF-resistant parent UGA 111729 was used in this study along with
cultivars AGS 3030 as a resistant check [35] and USG 3555 as a susceptible check [36]. UGA
111729 is thought to have HF R gene H24 because its progenitor, KS89WGRC06, carries
it [25,26]. The UGA-SGBP developed all these genotypes except USG 3555. While UGA
111729 is an elite line, AGS 3030 (GAJT141-14E45) and AGS 2038 (GA001138-8E36) were
released by UGA in 2017 [35] and 2011 [33], respectively, and were both licensed to AgSouth
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Genetics [33,35]. USG 3555 (VA02W-555) (PI 654454) is an SRWW line developed by the
Virginia Agricultural Experiment Station and released in 2007 [36]. This population was
genotyped, and its linkage map was constructed, as described by Sapkota et al. [33], with a
90K SNP array and 8,800 selected polymorphic markers.

2.2. Field Experimental Design

Field experiments were conducted at the University of Georgia (UGA) Southwest-
ern Research and Education Center (SWREC) in Plains, GA (32.04723600057329◦ N,
−84.36617512994249◦ W), and Bledsoe Research Farm in Williamson, GA (33.173149812149354◦ N,
−84.40675154213565◦ W), during the 2021 growing season with two replicates. For the 2022
growing season, one replicate was planted in Williamson for QTL validation. Two checks
were added to the study, and a check was replicated and distributed for every 20 rows in
the study. Including RILs and parents, each block had 237 lines. A randomized complete
block design (RCBD) was implemented for each field with three filler rows of variety USG
3555 at the end of each block (Tables S1 and S2). The UGA SWREC field plot has Greenville
sandy clay loam soil [37], and the Bledsoe field plot has Cecil sandy loam soil [38]. In 2020,
seed was planted in Williamson on November 6 and in Plains on November 20. In 2021,
seed was planted in Williamson on October 27. The fields were irrigated to ensure adequate
and consistent germination across the field. Each field alleyway had a 1.5 m spacing. One
row was 1 m long. Any four rows planted together had 30 cm of space between each other.
Natural HF damage was relied upon for the plots. Susceptible wheat variety USG 3555
used as HF trap crops were planted around the experimental fields at both locations in late
August of each year (Mergoum Lab, Personal communication).

A pre-plant fertilizer, including Nitrogen (N) at 22.97 kg of urea N per ha, 20.17 kg of
phosphorus (P), and 57.15 kg of potassium (K), was applied at 459.46 kg/ha in October–
November each year. Zidua, a granular pre-emergence herbicide, and ProwlH2O were
applied at 46.23 g/ha and 2.24 kg/ha after planting in early November, respectively. In
early February, usually the wet time of the year, both plots were top-dressed with 36.28 kg of
urea ammonium nitrate (UAN) in liquid form at 211.37 L/ha. Harmony Extra, a broad-leaf
herbicide, was applied around the same time at 146.15 mL/ha.

2.3. Growth Chamber Experimental Design

Growth chamber experiments were conducted at UGA, Griffin Campus (33.26445975342215◦

N, −84.28409533175976◦ W). The experiments included the same lines studied in the field,
arranged in an RCBD, in two and three replicates in March 2019 and October 2021, re-
spectively [39]. Seeds were planted in cones in cone-tainer trays (Stuewe and Sons, Inc.,
Tangent, OR). Each cone-tainer tray was 30.48 cm × 60.96 cm × 17.15 cm and held 98 cones,
with each cone being 3.81 cm in diameter at the largest point and approximately 10.16 cm
tall. The cones were filled with Pro-Mix growing mix (Pro-Mix Gardening, Quakertown,
PA) and subjected to 14 h days, 10 h nights, and 18 ± 3 ◦C in the greenhouse [12]. Three
seeds per line were planted in each cone. Once the first true leaf expanded and the second
leaf emerged from each seedling (Feekes stage 1) [40], the cone-tainers were moved to a
PGR15 growth chamber (Conviron, Pembina, ND), and third-instar HF larvae of biotype L
obtained from Purdue University (40.4235665310146◦ N, −86.92151646777332◦ W) were
put in metal pans beside the cone-tainers. The larvae pupated, and adult HF emerged
approximately a couple of days after they arrived at their destination. Stored adults were
not sent because they had lower fecundity than third-instar larvae (Cambron, Personal
communication). An amount of 1050–1500 pupae was used to induce high infestation
pressure for each growth chamber experiment. Growth chamber conditions included a 14 h
photoperiod with 20 ◦C, 875 µMol, and level 4 incandescent light intensity during the day
and no light and 15 ◦C at night. These conditions were used to simulate field conditions for
the seedlings as closely as possible (Mergoum Lab, Personal Communication).
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2.4. Data Collection

Field data collection was conducted at Feekes stage 10.5 [40]. We sampled 20 plants
from each entry and block. In 2021 in Plains, the two replicates were collected in April. All
entries from Williamson were sampled in June 2021 and May 2022. The adult samples were
then scored for HF larvae and pupae infestation by averaging the HF count of the 20 plants
from each sample, also known as the number of larvae/pupae (NOP) [17]. Percent infested
tillers per sample (PIT), a trait describing pest instance in a sample, indicates how many
tillers were infested by at least one HF larva. Based on PIT per sample, if the susceptible
check and susceptible parent have less than 40–50% PIT, this threshold scale is used as
follows: resistant = 0–10%, intermediate = 11–20%, and susceptible ≥20%. If susceptible
checks and parents have at least 40–50% PIT, this scale is used as follows: resistant = 0–10%,
moderately resistant = 11–20%, moderately susceptible = 21–30%, and susceptible ≥30%
(Buntin, Personal communication). The number of larvae or pupae per tiller is NOP divided
by the total number of tillers in a sample (NOPPT). Number of larvae or pupae per infested
tiller is the total number of pupae or larvae divided by the number of infested tillers per
line (NOPIT). NOPPT and NOPIT are traits that reveal pest severity in a line [17]. For
NOPPT and NOPIT, RILs were assigned to class resistant, intermediate, or susceptible by
comparing their values to their parents. The NOPPT scale for Plains and Williamson was
resistant = 0–<0.5625, intermediate = 0.5625–<1.125, and susceptible ≥ 1.125; the NOPIT
scale was resistant = 0–<1.807, intermediate = 1.807–<3.614, and susceptible ≥ 3.614 (Bahri,
Personal communication).

Growth chamber data were collected three weeks after infestation from HF. Data were
collected by scoring plant morphology in both the 2019 and 2021 experiments. Stunted,
dark green seedlings were counted as susceptible, while non-stunted, light green plants
were counted as resistant [12]. The percentage of resistant plants (Res) for each line was
recorded for QTL analysis [12]. Res was the only trait documented in the 2019 experi-
ment. In the 2021 experiment, PIT, NOPPT, NOPIT, and Res were evaluated for each line.
RILs were assigned to class resistant, intermediate, or susceptible for PIT, NOPPT, and
NOPIT by comparing their values to their parents and the checks. The PIT scale was
resistant = 0–<48.15%, intermediate = 48.15–<70.37%, and susceptible = 70.37–100%; the
NOPPT scale was resistant = 0–<2.96, intermediate = 2.96–<5.07, and susceptible ≥ 5.07;
and the NOPIT scale was resistant = 0–<1.56, intermediate = 1.56–<2.01, and susceptible ≥ 2.01
(Bahri, Personal communication).

2.5. Phenotypic Data Analysis

Phenotypic analyses were conducted in R version 4.2.2 (Posit Software, Boston, MA)
and Microsoft Excel. Type I analysis of variance (ANOVA), Chi-square (X2), and Pearson
correlation analyses were conducted in base R. The significance level for each individual
Pearson correlation was computed using R package Hmisc [41], and Type II and III ANOVA
were conducted using R package car [42]. Correlations and their statistical significance
were visualized together using Microsoft Excel. ANOVA was conducted to check for
statistical differences between means of RILs. Type I ANOVA was used for datasets with
no missing values and when no interactions between variables were statistically significant;
Type II ANOVA was used for datasets with missing values and no statistically significant
interactions between variables; and Type III ANOVA was used for datasets with missing
values and statistically significant interactions. X2 analysis was conducted to compare
differences between observed and expected results for all traits and if the differences could
be due to single-gene or multiple-gene influence. Correlation analysis was conducted to
detect linear relationships among all variables. Frequency distributions were generated in
Microsoft Excel to visualize the segregation of HF resistance or susceptibility in the RIL
population. The Shapiro–Wilk test was used to check the data for normality. Levene’s test
helped test data for homogeneity [43].
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Broad-sense heritability (H2) was calculated using the R package lme4 [44]. If the field
data were homogeneous, H2 for field plots was calculated with the following equation [33]

H2 =
σ2

G

σ2
G +

σ2
GE
r +

σ2
GY
r +

σ2
GEY
r + σ2

e
eyr

(1)

where σ2
G = genotypic variance, σ2

GE = genotype by environment (G × E) interaction
variance, σ2

GY is genotype by year variance, σ2
GEY = G × E by year interaction variance,

σ2
e = error variance, G = genotype, e = environment, y = year, r = replicate, and e = error. If

the data were not homogeneous, this H2 formula was used instead [33]

H2 =
σ2

G

σ2
G + σ2

e
r

(2)

If greenhouse data were homogeneous across years, H2 for greenhouse studies was
calculated with the following equation [33]

H2 =
σ2

G

σ2
G +

σ2
GY
r + σ2

e
yr

(3)

where σ2
G = genotypic variance, σ2

GY is genotype by year interaction variance, σ2
e = error

variance, G = genotype, y = year, r = replicate, and e = error. If greenhouse data were
heterogeneous, Equation (2) was used. There is no G × E interaction component here
because important environmental factors can be controlled in a greenhouse environment.
Narrow sense heritability (h2) was calculated using the R package rrBLUP [45]. This
formula for h2 was used if field data were homogeneous [33] as follows:

h2 =
σ2

A

σ2
G +

σ2
GE
r +

σ2
GY
r +

σ2
GEY
r + σ2

e
eyr

(4)

For h2, additive genetic variance (σ2
A) replaced genetic variance σ2

G in the numer-
ator for Equations (4)–(6). If the data were not homogeneous, this h2 formula was used
instead [33] as follows:

h2 =
σ2

A

σ2
G + σ2

e
r

(5)

If greenhouse data were homogeneous across years, h2 was calculated with this
equation [33] as follows:

h2 =
σ2

A

σ2
G +

σ2
GY
r + σ2

e
yr

(6)

If greenhouse data were heterogeneous, Equation (5) was used.

2.6. QTL Analysis, Candidate Gene Identification, and Linkage Disequilibrium Decay Analysis

QTL analysis for traits PIT, NOPPT, NOPIT, and Res for each block, the average
between blocks, location, and year was conducted using the QTL IciMapping BIP function
for bi-parental populations [46]. QTL was detected with 1 cM walk speed, 0.001 stepwise
regression probability, 1,000 permutations to make LOD thresholds, type 1 error of 0.05,
and the inclusive composite interval mapping of additive QTL method [33]. R package
LinkageMapView was used to visualize linkage maps [47].

QTL was significant if SNP peaks surpassed the LOD threshold calculated by the
permutation analysis, pairwise SNP estimates surpassed the half LD decay critical value
(r2 > 0.24), and these pairwise estimates were within the map distance for half LD decay.
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After detecting SNP markers flanking novel QTL, GrainGenes (https://wheat.pw.usda.
gov/GG3/ (accessed on 10 July 2023)) and the literature were searched using the names of
the flanking SNP markers. Linkage disequilibrium (LD) for linkage groups with significant
QTL, 3A1 and 3D, were analyzed using TASSEL [48] and visualized using base R. LD
parameters in TASSEL were set to a sliding window size of 50 [49]. LD decay was plotted
over cM distance according to Hill and Weir [50]. Half the maximum LD decay, where r2

and the locally weighted polynomial regression (LOESS) curve intersect, was considered
the r2 critical value [51].

2.7. KASP Validation of H32

KASP markers already developed for H32 were used for validation in Spring 2023.
Marker information was obtained from Tan et al. [29]. Primers were ordered from Eurofins
Genomics LLC. Genomic DNA from parent lines, KS89WGRC06, a synthetic H32 line,
and 29 RILs that were either consistently resistant or susceptible were extracted using
a modified cetyltrimethylammonium bromide (CTAB) protocol [52] and then diluted to
50 ng/µL [33]. Chosen RILs were either consistently resistant (RILs 5, 63, 79, 122, 146,
148, 202, and 218) or susceptible (RILs 7, 23, 26, 29, 31, 96, 101, 108, 113, 114, 174, 183, 184,
185, 205, 206, 209, 211, 213, 223, and 225) across years for greenhouse experiments for Res.
KS89WGRC06 and the synthetic H32 line were included in the KASP study as resistant
checks. The following PCR program was used for KASP marker validation: 30 ◦C for 1 min
during the pre-read stage; 95 ◦C for 10 min during the preheating stage, followed by a
touchdown program of 10 denaturation cycles at 95 ◦C for 20 s; annealing/extension at
61 ◦C for 1 min with a 0.6-degree reduction every cycle; plus 30 cycles of 95 ◦C for 29 s
and 56 ◦C for 1 min. Temperature was reduced to 30 ◦C for 1 min and 30 s during the
post-read stage. HEX dye was used for the resistant allele, and FAM dye was used for
the susceptible allele. Fluorescent signals were collected at the pre-read and post-read
stages at 30 ◦C (Chen, Personal communication). Results were visualized by plotting levels
of expression of the resistant allele against levels of expression of the susceptible allele.
Phenotypic validation in a growth chamber was conducted simultaneously. AGS 3030 was
included as a resistant check, and USG 3555 was included as a susceptible check. All lines
included in the KASP marker study except KS89WGRC06 and the synthetic H32 line were
phenotypically validated.

3. Results
3.1. Phenotype Results and Frequency Distributions

Frequency distributions were drawn for all traits at each location and year. Overall,
on average, HF-resistant parent UGA 111729 was 97.42% more resistant to HF than HF-
susceptible parent AGS 2038 in Plains, while both parents demonstrated a similar response
to HF in Williamson. In Plains, UGA 111729 had an average of 0.01 NOPPT (Figure 1a),
0.83 PIT (Figure 1b), and 0.17 NOPIT (Figure 1c), while AGS 2038 had an average of
1.13 NOPPT (Figure 1a), 35 PIT (Figure 1b), and 3.61 NOPIT (Figure 1c). Averaging across
both years in Williamson, UGA 111729 had an average of 0 for NOPPT (Figure 2a,b),
PIT (Figure 2c,d), and NOPIT (Figure 2e,f, Table 1), while AGS 2038 had an average of
0.13 NOPPT (Figure 2a,b), 4.17 PIT (Figure 2c,d), and 1.5 NOPIT (Figure 2e,f, Table 1). The
parents likely had minor differences between the measured traits in Williamson compared
to Plains due to lower insect pressure. On average, for growth chamber data, UGA 111729
was 46.03% more resistant to HF than AGS 2038. For 2019, UGA 111729 had an average of
100% Res, and AGS 2038 had an average of 0% Res (Figure 3a). For 2021, UGA 111729 had
an average of 62.96% Res (Figure 3b), 2.96 NOPPT (Figure 3c), 48.15 PIT (Figure 3d), and
1.56 NOPIT (Figure 3e), and AGS 2038 had an average of 7.41% Res (Figure 3b), 5.07 NOPPT
(Figure 3c), 70.37 PIT (Figure 3d), and 2.01 NOPIT (Table 1; Figure 3e).

https://wheat.pw.usda.gov/GG3/
https://wheat.pw.usda.gov/GG3/
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Table 1. Parental means of UGA 111729 × AGS 2038 recombinant inbred line (RIL) population for
each trait and their standard errors (SE).

Trait Location Year Abbreviation UGA 111729 AGS 2038

Mean SE Mean SE

PIT Plains 2021 P21_PIT 0.83 0.83 35 5
Williamson 2021 W21_PIT 0 0 1.67 0.83

2022 W22_PIT 0 0 6.67 3.33
Growth chamber 2021 G21_PIT 48.15 3.70 70.37 13.35

NOPPT Plains 2021 P21_NOPPT 0.01 0.01 1.13 0.03
Williamson 2021 W21_NOPPT 0 0 0.04 0.02

2022 W22_NOPPT 0 0 0.22 0.15
Growth chamber 2021 G21_NOPPT 2.96 1.58 5.07 1.84

NOPIT Plains 2021 P21_NOPIT 0.17 0.17 3.61 0.66
Williamson 2021 W21_NOPIT 0 0 0.83 0.44

2022 W22_NOPIT 0 0 2.17 1.48
Growth chamber 2021 G21_NOPIT 1.56 0.62 2.01 0.52

Res Growth chamber 2019 G19_Res 100 0 0 0
2021 G21_Res 62.96 7.41 7.41 7.41Genes 2023, 14, x FOR PEER REVIEW 9 of 25 
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Figure 1. Frequency distributions for Plains. (a) Number of pupae/larvae per tiller (NOPPT),
(b) percent infested tillers (PIT) per sample, and (c) number of pupae/larvae per infested tiller per
sample in 2021 in Plains. Arrows indicate the scale for RILs that are resistant (R—NOPPT: 0–0.56,
PIT: 0–10%, NOPIT: 0–1.81), intermediate in resistance (I—NOPPT: 0.56–1.13, PIT: 0–20%, NOPIT:
1.81–3.61), and susceptible (S—NOPPT: >1.13, PIT: >20%, NOPIT: >3.61) for each trait. Thresholds for
each trait are included in parentheses.
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Figure 2. Frequency distributions for Williamson. (a) NOPPT in (a) 2021 and (b) 2022; (c) PIT in
(c) 2021 and (d) 2022; (e) NOPIT in (e) in 2021 and (f) 2022. Arrows indicate the scale for RILs that
are R (R—NOPPT: 0–0.56, PIT: 0–10%, NOPIT: 0–1.81), I (I—NOPPT: 0.56–1.13, PIT: 0–20%, NOPIT:
1.81–3.61), and S (S—NOPPT: >1.13, PIT: >20%, NOPIT: >3.61) for each trait. Thresholds for each trait
are included in parentheses.

Given that resistant parents and checks were mainly below 40% PIT in the field,
the following susceptibility thresholds were given to RILs: resistant with PIT at most
10%; intermediate with PIT >10–20%; and susceptible with PIT >20% (Buntin, Personal
communication). Susceptibility thresholds were confirmed arbitrarily for Res from the
growth chamber studies by comparing RIL data to the parents and checks. Susceptible was
0% Res; moderately susceptible was >0–50% Res; moderately resistant was >50–80% Res;
and resistant was >80% Res [21,31].

In Plains, 85.8%, 5.8%, and 8.4% of RILs were considered resistant, intermediate in
resistance, and susceptible for PIT, respectively (Figure 1b); 94.7%, 4.4%, and 0.9% were
resistant, intermediate in resistance, and susceptible for NOPPT, respectively (Figure 1a);
and 88%, 12%, and 0% were resistant, intermediate in resistance, and susceptible for NOPIT,
respectively (Figure 1c). In Williamson, averaging across years, 94.4%, 4.7%, and 0.9%
were considered resistant, intermediate in resistance, and susceptible for PIT, respectively
(Figure 2c,d); 99.3%, 0.2%, and 0.4% were considered resistant, intermediate in resistance,
and susceptible for NOPPT, respectively (Figure 2a,b); and 98.4%, 1.3%, and 0.2% were
considered resistant, intermediate in resistance, and susceptible for NOPIT, respectively
(Figure 2e,f). In March 2019, for growth chamber data, 24.9% and 75.1% were considered
resistant and susceptible for Res, respectively (Figure 3a). In October 2021, for growth
chamber data, 40% and 60% were considered resistant and susceptible for Res, respectively
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(Figure 3b); 58.2%, 21.3%, and 20.4% were considered resistant, intermediate in resistance,
and susceptible for PIT, respectively (Figure 3d); 63.1%, 22.2%, and 14.7% were considered
resistant, intermediate in resistance, and susceptible for NOPPT, respectively (Figure 3c);
and 65.8%, 12.4%, and 21.8% were considered resistant, intermediate in resistance, and
susceptible for NOPIT, respectively (Figure 3e).

Figure 3. Frequency distributions for growth chamber experiments. (a) Percent resistant tillers (Res)
according to visual scoring in (a) March 2019 and (b) October 2021; (c) NOPPT, (d) PIT, and (e) NOPIT
in October 2021. Arrows indicate the scale for RILs that are R (R—Res: >80% for multi-gene ratio,
>50% for single-gene ratio, NOPPT: 0–2.96, PIT: 0–48.15%, NOPIT: 0–1.56), moderately resistant
(MR—Res: >50–80%), I (I—PIT: 48.15–70.37%, NOPPT: 2.96–5.07, NOPIT: 1.56–2.01), moderately
susceptible (MS—Res: >0–50%), and S (S—Res: 0% for multi-gene ratio, 0–50% for single-gene ratio,
NOPPT: >5.07, PIT: 70.37–100%, NOPIT: >2.01) for each trait. Thresholds for each trait are included in
parentheses.

3.2. X2 Tests, Normality Tests, and Heritability

For Res growth chamber data, to test for single gene segregation ratio, susceptible
and moderately susceptible and resistant and moderately resistant were combined into
susceptible and resistant, respectively. X2 results were calculated for all traits for all datasets.
For all replicates and averages, while X2 values for both segregation ratio options (1:1 and
1:1:1:1) succeeded their respective critical values, single gene segregation had smaller values
than multiple gene segregation (X2

(0.01,1) = 0.05 < 6.63, p > 0.01; X2
(0.01,2) = 0.05 < 9.210,

p > 0.01; X2
(0.01,3) = 0.05 < 11.345, p > 0.01) (Table 2). For PIT, NOPPT, and NOPIT field and

growth chamber data, all X2 values were larger than their corresponding critical values.
Growth chamber X2 values were consistently the smallest, and Williamson X2 values were
the largest (Table 3).
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Table 2. Chi-square (X2) test of one gene or multiple gene segregation ratios for HF resistance in UGA
111729 × AGS 2038 RIL population for percent resistant tillers per cone for growth chamber results.

Trait Year Rep. S S Total R R Total S:R = 1:1 S:MS:MR:R = 1:1:1:1

S MS MR R X2 p X2 p

Res

2021 1 85 55 140 27 57 84 14 0 30.07 1.33 × 10−6

2 90 44 134 45 46 91 8.22 0 27.04 5.79 × 10−6

3 95 39 134 48 43 91 8.22 0 36.32 6.42 × 10−8

Avg. 44 91 135 61 29 90 9 0 37.74 3.21 × 10−8

2019 1 141 24 165 24 32 56 53.76 2.27 × 10−13 178.22 <2.2 × 10−16

2 124 28 152 26 46 72 28.57 9.03 × 10−8 114.43 <2.2 × 10−16

Avg. 112 57 169 24 32 56 56.75 4.95× 10−14 84.21 <2.2 × 10−16

Susceptible (S), Moderately susceptible (S), Moderately resistant (MR), Resistant (R), Replicate (R), Average
(Avg.).

Table 3. Chi-square (X2) test of one gene or multiple gene segregation ratios for HF resistance in UGA
111729 × AGS 2038 RIL population for PIT, NOPPT, and NOPIT for field results.

Trait Year Loc. Rep. R I S Total S:I:R 1:1:1

X2 p

PIT
2021

P
Rep 1 186 23 16 225 246.75 <2.2 × 10−16

Rep 2 189 17 18 224 262.62 <2.2 × 10−16

Average 193 13 19 225 278.72 <2.2 × 10−16

W
Rep 1 219 6 0 225 414.96 <2.2 × 10−16

Rep 2 218 2 4 224 412.75 <2.2 × 10−16

Average 218 7 0 225 409.31 <2.2 × 10−16

GC

Rep 1 128 57 40 225 58.11 2.41 × 10−13

Rep 2 128 59 38 225 59.12 1.45 × 10−13

Rep 3 111 61 53 225 26.35 1.90 × 10−6

Average 131 48 46 225 62.75 2.37 × 10−14

2022 W Rep 1 206 14 4 224 347.18 <2.2 × 10−16

NOPPT 2021

P
Rep 1 215 6 4 225 392.03 <2.2 × 10−16

Rep 2 211 10 3 224 373.72 <2.2 × 10−16

Average 213 10 2 225 381.31 <2.2 × 10−16

W
Rep 1 225 0 0 225 450 <2.2 × 10−16

Rep 2 222 2 0 224 436.11 <2.2 × 10−16

Average 225 0 0 225 450 <2.2 × 10−16

GC

Rep 1 165 34 26 225 162.43 <2.2 × 10−16

Rep 2 170 35 20 225 182 <2.2 × 10−16

Rep 3 142 50 33 225 52.67 3.66 × 10−12

Average 142 50 33 225 91.71 <2.2 × 10−16

2022 W Rep 1 222 1 2 225 432.19 <2.2 × 10−16
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Table 3. Cont.

Trait Year Loc. Rep. R I S Total S:I:R 1:1:1

X2 p

NOPIT 2021

P
Rep 1 187 33 5 225 256.11 <2.2 × 10−16

Rep 2 195 25 4 224 293.85 <2.2 × 10−16

Average 198 27 0 225 307.44 <2.2 × 10−16

W
Rep 1 214 9 2 225 414.96 <2.2 × 10−16

Rep 2 212 10 2 224 412.75 <2.2 × 10−16

Average 218 6 1 225 409.31 <2.2 × 10−16

GC

Rep 1 160 20 45 225 58.11 2.41 × 10−13

Rep 2 168 24 33 225 173.52 <2.2 × 10−16

Rep 3 118 27 80 225 55.71 8.01 × 10−13

Average 148 28 49 225 109.52 <2.2 × 10−16

2022 W Rep 1 225 0 0 225 347.18 <2.2 × 10−16

S = susceptible, I = intermediate, R = resistant, Loc. = location, Rep. = replicate, p = p-value, P = Plains,
W = Williamson, GC = growth chamber.

All data were tested for normality utilizing the Shapiro–Wilk test and homogeneity
with Levene’s test. All the data deviated significantly from a normal distribution and were
heterogeneous. Thus, H2 and h2 were calculated separately for each dataset, not across
environments or years. Equations (2) and (5) were used for H2 and h2, respectively. For
Plains, NOPPT and PIT had higher H2 than NOPIT (0.60 vs. 0.64 vs. 0.29) as well as h2 (0.47
vs. 0.52 vs. 0.18). Traits from Plains had higher H2 (NOPPT: 0.60 vs. 0.12, PIT: 0.64 vs. 0.16,
NOPIT: 0.29 vs. 0.19) and h2 (NOPPT: 0.47 vs. 0.03, PIT: 0.52 vs. 0.03, NOPIT: 0.18 vs. 0.06)
than Williamson. For growth chamber data, Res and PIT H2 were higher than NOPPT and
NOPIT (0.88 vs. 0.70 vs. 0.47 vs. 0.39) (Table 4).

Table 4. Broad-sense (H2) and narrow-sense (h2) heritability for all experiments conducted except the
Williamson validation replicate from 2022.

Trait Location Year Abbreviation H2 h2

NOPPT

Plains 2021

P21_NOPPT 0.60 0.47

PIT P21_PIT 0.64 0.52

NOPIT P21_NOPIT 0.29 0.18

NOPPT

Williamson 2021

W21_NOPPT 0.12 0.03

PIT W21_PIT 0.16 0.03

NOPIT W21_NOPIT 0.19 0.06

Res

Growth chamber

2019 G19_Res 0.77 0.74

Res

2021

G21_Res 0.88 0.79

NOPPT G21_NOPPT 0.47 0.33

PIT G21_PIT 0.70 0.67

NOPIT G21_NOPIT 0.39 0.27

3.3. Correlation between Phenotypic Traits and ANOVA Results

Overall, for trait averages, 77 statistically significant (p < 0.05) correlations were recorded
across traits, environments, and years. The Pearson correlation coefficient ranged from −0.84
to 0.95. The highest correlation, 0.95, was observed for PIT vs. NOPPT in Plains 2021, while
the lowest correlation, −0.84, was observed for PIT vs. Res for October 2021 growth chamber
results (Table 5). Res was negatively correlated with PIT, NOPPT, and NOPIT (Table S3).
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Table 5. Correlations between trait averages for HF response. Negative correlation is red, positive correlation is blue, and numbers on the top right half are p-values
indicating statistical significance. Correlation coefficients are displayed in the bottom half. Darker red indicates a stronger negative correlation; lighter pink indicates
a weaker negative correlation; lighter blue indicates a weaker positive correlation; and darker blue indicates a stronger positive correlation. Orange indicates
statistically significant p-values.
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Table 5. Cont.
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Table 5. Cont.
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G19 = growth chamber 2019, G21 = growth chamber 2021, P21 = Plains 2021, W21 = Williamson 2021, W22 = Williamson 2022, Avg = Avg., R1 = Replicate 1. W22 only had one replicate.
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For ANOVA across both fields for 2021, line and location were significant factors for all
traits. However, the line and location interaction were only significant for PIT and NOPPT.
The line was significant for all measured traits for Plains, and nothing was significant for
Williamson in either year. For growth chamber data, the line was significant for all traits for
all datasets; replicate was significant for NOPPT and NOPIT in 2021; and Res had replicate
as significant in 2019. Traits measured from the 2021 growth chamber trials were the only
ones analyzed with Type I ANOVA because those were the only traits with no missing data
(Table S4).

3.4. Quantitative Trait Locus and Linkage Disequilibrium Decay Analysis and Candidate Gene
Identification

PIT, NOPPT, and NOPIT measured in the growth chamber had higher LOD and
percent PV values than in the field. Res had the highest PV and LOD scores overall (LOD =
37.65, PV = 67.48%). NOPIT had the lowest PV and LOD scores for growth chamber results,
and NOPPT had the lowest PV and LOD scores for field notes. Averaging across every
trait, a major QTL within a 0.633 cM region on the long arm of chromosome 3D explained
10.43% and 37.92% PV in Plains and the growth chamber, respectively (Table 6 and Table
S5). No significant QTL was detected for Williamson during either year, but QTL peaks for
all traits measured were detected in the same genetic location in Williamson in 2022 on the
long arm of chromosome 3D. These peaks were just under the calculated LOD thresholds
(Figure S1).

SNP markers IWB65911 and IWB37580 were associated with the QTL peak with LOD
values of 14.98 and 37.54 for field and growth chamber data, respectively (Figure 4). One
QTL detected on chromosome 6B flanked by SNP markers IWB62788 and IWB59262 within
a region of 5.085 cM from 2019 Res data had a LOD value of 36.40 and explained 26.16%
PV. Two minor QTLs were detected on chromosome 3A. The most distal one, flanked by
IWA6387 and IWB62332 within a region of 4.992 cM, was from NOPPT from Plains 2021
data with a LOD value of 2.91 and 2.7% PV. The least distal one, flanked by IWB72257 and
IWB14875 within a region of 5.2 cM, was from NOPIT from October 2021 growth chamber
data with a LOD value of 4.12 and 5.9% PV (Table 6 and Table S5).

Genes 2023, 14, x FOR PEER REVIEW 18 of 25 
 

 

G21_NOPPT_Avg 

G21_PIT_R1 

G21_PIT_R2 

G21_PIT_R3 

G21_PIT_Avg 

G21_Res_R1 

G21_Res_R2 

G21_Res_R3 

G21_Res_Avg 

G21_NOPIT_R1 

G21_NOPIT_R2 

G21_NOPIT_R3 

G21_NOPIT_Avg 

QHf.ga.srww.3A 
P21_NOPPT_Avg 

3A1 
IWB14875/

22.285 

IWA6387/1.643–

IWB14875/22.285 

2.91– 

4.12 

2.72– 

5.91 

−0.04– 

0.28 G21_NOPIT_R1 

QHf.ga.srww.6B G19_Res_R2 6B2 
IWB59262/

68.412 

IWB62788/63.327–

IWB59262/68.412 
36.40 26.16 −30.43 

Chr. = chromosome, Pos. = position, R2 = percent phenotypic variation explained, Int. (cM) = interval 

in centimorgans (cM), The following are logarithm of odds (LOD) thresholds used to indicate sig-

nificant QTL: P21_NOPPT: 2.89, P21_PIT: 3.06, P21_NOPIT: 3.26, G19_Res: 33.78, G21_Res: 19.44, 

G21_NOPPT: 3.27, G21_PIT: 12.46, G21_NOPIT: 3.23, W21_NOPPT: 2.01, W21_PIT: 3.16, W21_NO-

PIT: 2.99, W22_NOPPT: 1.98, W22_PIT: 3.09, and W22_NOPIT: 2.94. 

 

Figure 4. Location of H32. (a) Visualization of a composite linkage map of the long arm of chromo-

some 3D with RFLP and SSR marker data for H24 and H32, respectively. Composite linkage map 

data were obtained from GrainGenes (https://wheat.pw.usda.gov/GG3/ (accessed on 15 March 

2023)). Numbers on the left are cM distances between markers. (b) Linkage map of chromosome 3D 

and the location of SNP markers IWB65911 and IWB35780 that flank H32. Numbers on the left are 

the positions of the markers in cM. (c) QTL plot of LOD values of traits measured from field and 

growth chamber experiments. 

Figure 4. Location of H32. (a) Visualization of a composite linkage map of the long arm of chromo-
some 3D with RFLP and SSR marker data for H24 and H32, respectively. Composite linkage map data
were obtained from GrainGenes (https://wheat.pw.usda.gov/GG3/ (accessed on 15 March 2023)).
Numbers on the left are cM distances between markers. (b) Linkage map of chromosome 3D and
the location of SNP markers IWB65911 and IWB35780 that flank H32. Numbers on the left are the
positions of the markers in cM. (c) QTL plot of LOD values of traits measured from field and growth
chamber experiments.
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Table 6. Significant QTL results from the linkage groups 3A1, 3D, and 6B2.

QTL Trait
Abbreviation Chr. Marker at

Peak/cM
Marker

Interval/cM LOD R2 Add.

QHf.ga.srww.3DL

P21_NOPPT_R1

3D IWB65911/132.957 IWB26378/126.977–
IWB19391/136.836 4.02–37.55 7.18–67.48 −29.23–22.16

P21_NOPPT_R2

P21_NOPPT_Avg

P21_PIT_R1

P21_PIT_R2

P21_PIT_Avg

P21_NOPIT_R1

P21_NOPIT_R2

P21_NOPIT_Avg

G19_Res_R2

G19_Res_Avg

G21_NOPPT_R1

G21_NOPPT_R2

G21_NOPPT_R3

G21_NOPPT_Avg

G21_PIT_R1

G21_PIT_R2

G21_PIT_R3

G21_PIT_Avg

G21_Res_R1

G21_Res_R2

G21_Res_R3

G21_Res_Avg

G21_NOPIT_R1

G21_NOPIT_R2

G21_NOPIT_R3

G21_NOPIT_Avg

QHf.ga.srww.3A
P21_NOPPT_Avg

3A1 IWB14875/22.285 IWA6387/1.643–
IWB14875/22.285 2.91–4.12 2.72–5.91 −0.04–0.28

G21_NOPIT_R1

QHf.ga.srww.6B G19_Res_R2 6B2 IWB59262/68.412 IWB62788/63.327–
IWB59262/68.412 36.40 26.16 −30.43

Chr. = chromosome, Pos. = position, R2 = percent phenotypic variation explained, Int. (cM) = interval in
centimorgans (cM), The following are logarithm of odds (LOD) thresholds used to indicate significant QTL:
P21_NOPPT: 2.89, P21_PIT: 3.06, P21_NOPIT: 3.26, G19_Res: 33.78, G21_Res: 19.44, G21_NOPPT: 3.27, G21_PIT:
12.46, G21_NOPIT: 3.23, W21_NOPPT: 2.01, W21_PIT: 3.16, W21_NOPIT: 2.99, W22_NOPPT: 1.98, W22_PIT: 3.09,
and W22_NOPIT: 2.94.

Across the entire genome for the RIL progenies, LD decay dropped halfway at 30 cM.
Thus, the population has large amounts of recombination, and most markers in the genome
are unlinked (Figure S2). For individual genomes, half LD decay distance was the longest
for the B genome (81 cM), while the D genome declined the fastest (14 cM). For individual
linkage groups, the slowest LD decline was in linkage group 2D2 (160 cM), while the
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fastest LD decline was in linkage group 3B (1 cM) (Figure S2). Given the r2 critical value
of 0.24, or half the maximum LD decay, all statistically significant loci from linkage group
3A1 were linked (Figure 5a), and all statistically significant loci from chromosome 3D
were linked (Figure 5b). The significant loci from linkage group 3A1 were named under
QTL QHf.ga.srww.3A; the significant loci from chromosome 3D were named under QTL
QHf.ga.srww.3DL; and the significant loci from linkage group 6B2 were named under QTL
QHf.ga.srww.6B.
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3.5. KASP Marker and Phenotypic Validation

IWB65911 was chosen for KASP marker validation because it was related to our
significant QTL peak on the long arm of chromosome 3D. Also, it was already tested in a
previous study (Table S6) [29]. AGS 3030 and USG 3555 were not validated with the KASP
marker. Res was used to compare lines for this validation study. The synthetic H32 line,
KS89WGRC06, and UGA 111729 all expressed the homozygous R allele, meaning that the
allele should be associated with resistance to HF. AGS 2038 expressed the homozygous
S allele, meaning that the allele should be associated with susceptibility to HF (Figure 6).
A percentage of 96.3% of homozygous lines tested with IWB65911 either had a consistent
resistant phenotype and genotype or a consistent susceptible phenotype and genotype
(Table S7).
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4. Discussion

HF is a highly damaging insect species to wheat in the US SE. Only six R genes are
highly effective for that region, and three of them may lower agronomic traits [14]. HF
can easily overcome these genes under high host selection pressure for HF virulence [32].
HF biotypes are constantly evolving and overcoming introduced R genes. Biotype L HF is
currently the dominant biotype in the US SE [17]. While HF R gene H13 is still effective
against it [53], biotype vH13 is overcoming this R gene, necessitating a search for novel
resistance [17]. HF-resistant cultivars were demonstrated during an infestation to save
$100/ha–$240/ha in damages compared to HF-susceptible cultivars [54], so finding novel
HF resistance benefits farmers.

In this study, an SRWW biparental population was used to identify genomic regions
involved with HF resistance. Yearly Res X2 values ratio were lower for a 1:1 segregation
than a 1:1:1:1 ratio, meaning observed Res values were more likely to fit 1:1 ratio X2. This
result means that one major QTL expressing HF resistance in UGA 111729 is more likely
than multiple QTL. This is similar to X2 results from Zhang et al. [31], which found a major
QTL that explained resistance to HF in the cultivar Chokwang.

Our QTL results and KASP and phenotypic validations revealed one major gene for HF
resistance in 3DL associated with the IWB65911 marker. The HF resistance in UGA 111729
was detected both in the growth chamber and field trials, suggesting it is expressed from the
seedling to the adult stage. IWB65911 was used for previous KASP marker validation for
HF studies, and they co-segregated with H32 [29]. This finding is interesting, considering
that UGA 111729 is supposed to carry H24, inherited from its progenitor KS89WGRC06.
H24 and H32 are at least 20 cM away from each other [27]. Since Tan et al. [29] reported that
IWB65911 demonstrated a specificity of 1 and sensitivity of 0.93–0.94, our findings validate
the efficacy of IWB65911 due to our 96.3% result. Since H24 does not currently have a
publicly available SNP marker, RFLP marker validation with flanking markers, Xcdo428
and Xbcd451, would need to be conducted to confirm that UGA 111729 has H24 [26]. Since
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Xrwgs10 and Xrwgs12 are linked to H26 as well as H32, STS marker validation can be used
to determine if UGA 111729 also has H26 [28].

As for our candidate genes from significant QTL, IWA6387, associated with QHf.ga.srww.3A,
was a flanking SNP with SSR marker Xbarc12 as part of an additive QTL, QShi.hwwgr-
3AS, that explained up to 5.6% PV for wheat grain quality in a F10–12 RIL winter wheat
population [55]. For QHF.ga.srww.6B, no candidate genes were found for SNPs IWB62788
and IWB59262. QHf.ga.srww.6B was a major growth chamber QTL in this study; however, it
was only detected in one replicate for 2019 results and not for 2021. QHf.ga.srww.6B should
be further investigated.

Data from Plains had higher heritability than Williamson, indicating Williamson had
higher environmental variance. Res and PIT H2 were higher than all other traits for growth
chamber data, meaning these two traits are more replicable than the other traits. In Plains,
genetic causes from multiple genes can explain NOPPT and PIT better than NOPIT since
NOPPT and PIT had higher H2 and h2. Winn et al. [17] had a similar observation and
suggested that PIT and NOPPT continue to be used to assess pest instance and pest severity,
respectively. This study is the first to assess the correlations between PIT, NOPPT, NOPIT,
and Res for HF resistance. All Res replicates and averages across years were negatively
correlated with all other trait replicates and averages across years. This is expected since
higher values for Res mean higher resistance vs. lower resistance for those higher values
for PIT, NOPPT, and NOPIT. Res was the most strongly correlated with PIT across the years.
When looking at correlations for averages within each individual year, PIT vs. NOPPT
consistently had stronger correlations than PIT vs. NOPIT. PIT is likely to help determine
how high or low NOPPT values will be. PIT should be the priority trait when phenotyping
because it is easier to assess than NOPPT and NOPIT and it is highly correlated with
NOPPT and Res.

The parents had smaller differences between the measured traits in Williamson vs.
Plains due to lower insect pressure. There was evident G × E interaction between Plains
and Williamson field results. One explanation for this G × E interaction and differences in
insect pressure could be the number of acres planted in Pike County and Sumter County,
where Williamson and Plains are located, respectively. The most recent publicly available
data on acres harvested for individual Georgia counties dates to 2017. For 2012, in which
there is data for both counties, Sumter County harvested 11,133 acres of wheat, and Pike
County harvested 492 acres of wheat. In 2017, Sumter County harvested 2,523 acres, while
there is no available information for Pike County (https://www.nass.usda.gov (accessed
on 9 August 2023)). HF are more likely to reproduce in areas with more wheat planted and
warmer climates (Mergoum Lab, Personal communication) [3,4]. There could have also
been a difference in biotype composition per county, considering that lines with H32 were
shown to be more effective against Sumter County biotypes than Tift County biotypes [13].
However, Cambron et al. [13] did not have any results for the effect of Pike County biotypes
on lines with H32.

There is not much literature to directly compare our LD decay results among RIL
populations for HF response QTL. Bassi et al. [20] studied durum wheat, and Ando et al. [18]
and Joukhadar et al. [56] used bread wheat diversity panels, but they did not compare
subgenome or individual linkage group LD decay. Also, these studies did not assess PIT,
NOPPT, or NOPIT. Pariyar et al. [57] used LD decay analysis with GWAS, considered 0.1
as their r2 critical value, and had LD decay values of 2 cM and 6 cM for chromosomes 3A
and 3D, respectively. Although their 3A LD decay value was smaller than ours at 23 cM,
our 3D LD decay value was equal to theirs [57].

H32 is still effective against HF biotypes in the US SE [14], which was also confirmed
in our study. Despite KS89WGRC06 (known to carry H24) being a progenitor of UGA
111729, this paper validated the presence of H32 in UGA 111729. This novel finding is
valuable, considering that a KASP marker was developed for H32 detection. Since the US
SE is losing effective HF R genes, IWB65911 should be used for MAS to introgress H32 into
new varieties for HF resistance, and the effect of H32 on yield should be evaluated. H32

https://www.nass.usda.gov
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should also be pyramided with other HF R genes for better resistance management against
quickly evolving biotypes. This study demonstrates the efficacy of QHf.ga.srww.3DL and
that breeders can use IWB65911 for MAS.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes14091812/s1: Table S1. Field layout for UGA 111729 ×
AGS 2038 RIL population in Plains, GA and Williamson, GA during the 2020-2021 growing season.
1001-1237 = 1st block; 2001-2237 = 2nd block; and F = USG 3555 filler row; Table S2. Field layout for
UGA 111729 × AGS 2038 RIL population validation block in Williamson, GA during the 2021–2022
growing season. F = UGS 3555 filler row; Table S3. Correlations between traits and averages and their
statistical significance values for all measurements for HF response. Red is a negative correlation,
blue is a positive correlation, and numbers on the top right half of the table are p-values. Darker red
indicates a stronger negative correlation; lighter pink indicates a weaker negative correlation; lighter
blue indicates a weaker positive correlation; and darker blue indicates a stronger positive correlation.
Orange is a statistically significant p-value; Table S4. Analysis of variance (ANOVA) results for all
traits measured except for the validation replicate in Williamson in 2022; Figure S1. LOD results
for Williamson 2022 (W22). (a) Linkage map of chromosome 3D and the location of SNP markers
IWB65911 and IWB35780 that flank H32. Numbers on the left are the positions of the markers in
centimorgans. (b) QTL plot of LOD values of traits measured from W22 data. The results are not
statistically significant, but IWB65911 and IWB37580 still underlie NOPIT and NOPPT from this
dataset; Table S5. Raw QTL results by location, LOD scores, percent phenotypic variation explained,
and estimated additive effect; Figure S2. LD decay results for all linkage groups, chromosomes,
separate genomes A, B, and D, and the entire wheat genome. The r2 critical value for all linkage
groups, chromosomes, and genomes is 0.24. The red line is the locally weighted polynomial regression
(LOESS) curve; the blue line represents the r2 critical value; and the green line represents the cM
distance at which the LOESS curve and r2 critical value intersect; Table S6. DNA sequences for
IWB65911 forward and reverse primers; Table S7. Phenotypes for RILs chosen for KASP marker
validation that had either consistently resistant or susceptible phenotypes for visual scoring across
years along with their genotypes from the KASP marker validation. AGS 3030 and USG 3555 were
only included for phenotypic validation, and KS89WGRC06 and the synthetic H32 line were only
included for KASP marker validation; Table S8. Wheat acreage planted in Pike County, Georgia
and Sumter County, Georgia during the 2007-2008 growing season according to a United States
Department of Agriculture National Agricultural Statistics Service survey.
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