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Abstract: Maternal smoking in pregnancy (MSP) affects the offspring’s DNA methylation (DNAm).
There is a lack of knowledge regarding individual differences in susceptibility to exposure to MSP.
Glutathione S-transferase (GST) genes are involved in protection against harmful oxidants such as
those found in cigarette smoke. This study aimed to test whether polymorphisms in GST genes influ-
ence the effect of MSP on offspring DNAm. Using data from the Isle of Wight birth cohort, we assessed
the association of MSP and offspring DNAm in 493 mother-child dyads (251 male, 242 female) with
the effect-modifying role of GST gene polymorphism (at rs506008, rs574344, rs12736389, rs3768490,
rs1537234, and rs1695). MSP was assessed by levels of nicotine and its downstream metabolites (coti-
nine, norcotinine, and hydroxycotinine) in maternal sera. In males, associations of hydroxycotinine
with DNAm at cg18473733, cg25949550, cg11647108, and cg01952185 and norcotinine with DNAm at
cg09935388 were modified by GST gene polymorphisms (p-values < 0.05). In females, associations
of hydroxycotinine with DNAm at cg12160087 and norcotinine with DNAm at cg18473733 were
modified by GST gene polymorphisms (p-values < 0.05). Our study emphasizes the role of genetic
polymorphism in GST genes in DNAm’s susceptibility to MSP.

Keywords: smoking; pregnancy; DNA methylation; genetic polymorphism; glutathione S-transferase

1. Introduction

Despite being associated with a multitude of adverse health outcomes both for the
mother and the offspring, maternal cigarette smoking in pregnancy (MSP) is prevalent
around the world [1]. According to a global meta-analysis, the prevalence of MSP exceeded
10% in 29 of 174 countries and exceeded 20% in 12 other countries [1]. In Western countries,
the estimated prevalence of MSP is 8%, showing significant variation between countries:
16% in France, 12% in the UK, 9% in Germany, and 7% in the US, respectively [2].
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Epidemiological studies have shown that offspring exposed to in-utero cigarette
smoking are at increased risk of adverse development of the respiratory system [3]. MSP is
a leading preventable cause of suboptimal in-utero development of the lungs, leading to
a future risk of decreased lung function parameters, wheezing, asthma, and respiratory
infections [3]. Awareness of the newborn’s prenatal exposure to cigarette smoking is critical
to identifying those at risk of developing adverse health outcomes [4].

Cigarette smoke is composed of a wide variety of toxic chemicals such as ammonia,
benzene, acrolein, carcinogenic nitrosamines, quinones, polycyclic aromatic hydrocarbons [5],
and nicotine [6]. Nicotine is a major addictive ingredient in tobacco plant leaves that
impedes smokers’ efforts to quit [7]. After inhalation of cigarette smoke, nicotine is absorbed
from the lungs’ alveoli and reaches the bloodstream. It is then metabolized by the liver
enzyme CYP2A6 to cotinine, a downstream metabolite [7]. Nicotine and its downstream
metabolites such as cotinine, norcotinine, and hydroxycotinine cross the placenta and reach
the fetal bloodstream [8]. Nicotine and its metabolites have been used as biomarkers of
smoking exposure. Since nicotine has a short half-life (1–2 h) and is quickly removed
from the bloodstream, its downstream metabolites such as cotinine, norcotinine, and
hydroxycotinine might provide more reliable biomarkers (half-life: 13–19 h) [8].

Although epidemiological studies have shown adverse effects of MSP on offspring
health, the underlying mechanisms remain unclear. One potential mechanism is through
changes in DNA methylation (DNAm) [9]. This involves transferring methyl groups to
cytosine. Changes in DNAm can be detected on cytosines preceding a guanine nucleotide,
called ‘CpG sites’ [10]. These C-G rich segments of the DNA influence gene expression
through their levels of methylation [11]. In addition, DNAm has been shown to have an
impact on gene expression by impeding the binding of transcription factors to the DNA
and on alternative splicing by marking exons through hypermethylation [12]. Methy-
lation of DNA can also occur in the bodies of genes such as the hydrocarbon receptor
repressor (AHRR) gene involved in the metabolism of toxic substances, including those
in cigarette smoke [13], although the functional consequences of this methylation are still
unknown. Through these mechanisms, DNAm leads to variations in metabolic processes
and cellular behavior [14].

It is assumed that during the formation of the zygote, DNAm marks are removed [15].
Subsequently, DNAm is reestablished during embryonic development [16]. DNAm is
critical for the differentiation of cells into distinct lineages from a single zygote [16]. Addi-
tionally, DNAm has been linked to the development of a range of diseases and other health
conditions [16]. The establishment of DNAm is highly influenced by environmental factors
to which the growing embryo is exposed [17].

Prenatal smoking exposure has been shown to affect offspring DNAm in several
studies [2]. In a meta-analysis by Joubert et al., over 6000 differentially methylated CpG
sites were identified to be associated with MSP [18]. Given the effect of prenatal smoking
exposure on the offspring’s DNAm and the potential association of differential DNAm
with health conditions, Joubert et al. suggested that influencing DNAm could be a po-
tential mechanism by which prenatal smoking exposure affects the risk of future adverse
health outcomes [18].

However, one limitation of prior studies is the lack of knowledge on the impact
of individual genetic differences on the association of MPS with DNAm. For instance,
Glutathione S-transferase (GST) represents a gene family that encodes several proteins
involved in the detoxification of environmental pollutants and protection against reactive
oxygen species (ROS) [19]. Studies have shown that some GST genes, such as GSTA1,
GSTP1, and GSTM1, are highly expressed in the fetal liver and are responsible for mitigating
the effects of ROS produced as a result of exposure to toxic substances [20,21]. This study
aimed to test whether the effects of MSP on offspring DNAm are influenced by their
GST genetic polymorphism. We used data from the Isle of Wight birth cohort (IoWBC)
to examine whether GST gene polymorphisms have a modifying role in the association
between MSP and DNAm.
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2. Materials and Methods
2.1. Study Population

The IoWBC is a British birth cohort established in 1989 to investigate asthma and
allergic disorders on the Isle of Wight, UK [22]. The birth cohort has been approved
by both the local research ethics committee, specifically the NRES Committee of South
Central—Hampshire B, UK, and the University of Memphis IRB (Institutional Review
Board) in Memphis, U.S. (STUDY number: 2423). All individuals participating in recruit-
ment and follow-ups gave parental or personal written consent.

A total of 1536 children born between 1 January 1989 and 28 February 1990, were
identified on the Isle of Wight. After excluding those who declined to participate, peri-
natal deaths, and adoptions, 1456 remained in the study (F1 generation). Parents of the
cohort members (F1 generation) were included as the F0 generation. Mother-child dyads
(F0 mother-F1 child) were included in this study.

2.2. Assessment of Exposure: MSP

Information on MSP was obtained during pregnancy using questionnaires. In addition,
nicotine and its metabolites were measured from maternal blood serum drawn at delivery.

Assessment of Nicotine and Its Downstream Metabolites in Maternal Sera

Nicotine and its downstream metabolites, cotinine, norcotinine, and hydroxycotinine,
were assessed in maternal sera as markers of cigarette smoking during pregnancy. Process-
ing and analysis of maternal serum specimens were carried out in random order. Maternal
sera at delivery (20 µL aliquots) were obtained using a modified version of the Matyash
protocol [23] after addition of 25 pmol cotinine-d3 as an internal standard and metabolites
partitioned into water- and organic-soluble fractions. After separation of the fractions, a
SpeedVac vacuum centrifuge was used without applying heat to evaporate solvent from the
lower (polar) fraction. The collected residues were dissolved in 200 µL of acetonitrile/water
and subsequently transferred to an auto-sampler vial with a 200-microliter insert.

Polar fraction metabolites were profiled using LC/high resolution MS on a QExactive
mass spectrometer (Thermo Electron North America LLC, Madison, WI, USA) with a
Thermo Vanquish Flex binary pump. An auto-sampler equipped with an Acquity BEH
Amide column (measures: 10 cm × 1.0 mm, 1.7 µm, Waters, Milford, MA, USA) for
hydrophilic interaction liquid chromatography (HILIC) separation was used. Analyses
were performed in positive-ion mode with full scan/all-ion fragmentation. Chromato-
graphic separations were carried out using a gradient based on solvent A (100 mM ammo-
nium acetate + 0.4% ammonium hydroxide, pH 9.0 before mixing) in acetonitrile/water
(1:1 v/v) and Solvent B (containing 100 mM ammonium acetate + 0.04% ammonium hy-
droxide, adjusted to pH 9.0 before mixing) in acetonitrile/water (9:1 v/v). Gradient was
0.0–1.0 min (99% B); 7.0–10.0 min (50% B); 10.01 min (99% B); hold until 15 min. The pro-
cess of aligning, detecting, and normalizing serum constituents was carried out using
Progenesis QI v2.4 software provided by Waters, Nonlinear Dynamics, located in Newcas-
tle upon Tyne, NE1 2JE, UK. For metabolite annotation, a search of the extracted spectra
was carried out using Compound Discoverer software (Thermo) and the mzCloud database
(Thermo). Fragment ions presence characteristics in the high collision-energy mass spectra
were manually verified. From the Progenesis software, peak areas were exported. Further-
more, the dataset was filtered to remove signals with a high number of blanks and those
with RMD (relative mass defect) > 1200 ppm [24,25], which are generally inorganic salts.
Peaks after export were normalized based on areas of internal standard cotinine-d3. They
were scaled by multiplying by 1 × 104. Due to the similar properties of nicotine and its
downstream metabolites, their levels were all normalized by multiplication by 0.125 in
order to convert the signals to nM concentrations in the sera.

Nicotine and some of its metabolites exhibited a relatively high percentage of zero
values, exceeding 30%. These zeros could be attributed to either technical factors, such
as values falling below the limit of detection or accidental errors in detecting peak or
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thresholding, or biological factors, such as zero or near-zero abundance in non-smokers. To
handle the substantial number of values below the detection limit while minimizing the
impact on relatively rare exposure markers, we could have employed a QRILC approach
(quantile regression imputation of left-censored data) [26] for the imputation of missing
values. This approach, however, would introduce a challenge. The metabolite levels exhibit
strong right-skewness due to the presence of severe outliers. If we treat measurements of
metabolites as continuous data, it would be necessary to apply a log transformation before
conducting any statistical analyses that depend on normality assumptions. However, if a
significant proportion of zeros (>30%) were imputed with small random values, the log
transformation can amplify the influence of these artificially imputed values, potentially
biasing the estimation of parameters in subsequent analyses. Rather than imputing the
excessive zeros (>30%), we decided to rank nicotine and its metabolites based on signal
abundances using the PROC RANK in SAS, allowing for up to five ranks (0/1/2/3/4).
This conservative approach also helps minimize the impact of outliers [27]. To control for
the variation among batches of nicotine and its metabolites, analyses were adjusted by a
batch variable.

2.3. Assessment of the Outcome: DNAm of the F1 Offspring

DNA from the F1 generation was extracted from dried blood spots obtained from heel
prick tests collected on Guthrie cards after birth following the procedure by Beyan et al. [28].
Briefly, QIAamp DNA Investigator kits (Qiagen Inc., Germantown, MD, USA) were utilized
for DNA extraction from three 6mm samples that were punched from Guthrie cards
following the manufacturing company’s protocol. The measurement of DNA concentration
was performed using a Qubit spectrophotometer. Samples with a concentration equal to or
higher than 1.14 ng/uL were chosen for further processing. Infinium Methylation EPIC
BeadChip arrays (Illumina Inc., San Diego, CA, USA) were used for DNAm measurements,
which provided about 850,000 DNAm sites. There were eight total batches from the F1
generation’s DNAm data. DNAm intensities underwent quality control and pre-quantile
normalization following the CPACOR pipeline [29]. ComBat [30] was used to remove the
batch effect. In addition, we excluded CpG sites containing probe-SNPs within ten base
pairs and those CpGs that had a MAF (minor allele frequency) less than 0.007. Finally,
551,710 CpGs remained for further analysis. DNAm levels in β values were assigned
to each CpG locus based on the BeadStudio software methylation module. β values
(β = methylated/(methylated + unmethylated + c)) signify the proportions of methylated
on the total methylated and unmethylated CpG loci. Herein, c is a constant to avoid
division by zero [28]. M values were calculated as the logit-transformed β-values of DNAm
(M = log2 (β/1 − β)). In regression analyses, M values were used to alleviate severe
heteroscedasticity in β values [31].

Because of the different compositions of cell-type populations, analyses were ad-
justed for proportions of cell types to remove their confounding effect on DNAm assess-
ment [32]. For estimating cell-type proportions of blood, the R-package “minfi” was
used [33]. Eosinophils’ proportions were further estimated indirectly using a DNAm pro-
file based on the Houseman approach [34] incorporated into the “minfi” R package. We
adjusted for estimations of cell-type proportions including CD4+ T, B-cells, monocytes,
natural killer cells, neutrophils, and eosinophils in statistical models using DNAm data.

This investigation focuses on DNAm CpG sites known to be associated with maternal
smoking. Hence, CpGs were extracted from the meta-analysis by Joubert et al. [18]. Based
on the meta-analysis of data from 13 cohorts using the Illumina 450 k methylation array,
Joubert et al. identified 6073 CpG sites that had a significant association with MSP, of which
568 survived Bonferroni adjustments [18]. Among the 551,710 CpGs in the IoWBC, 460 of
the 568 CpGs were available and included in our analyses.
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2.4. Assessment of Covariates

Due to sex-specific differences in DNAm [35,36], analyses were conducted with a
sex-stratified approach. Covariates used in all models include maternal age at delivery,
maternal body mass index (BMI), and the child’s socioeconomic status (SES) during child-
hood/adolescence. The weight and height of the mothers were assessed during pregnancy
and used to calculate BMI (BMI = weight (kg)/height2 (m)). Hospital records were used to
obtain mothers’ ages at delivery and the gender of their offspring. SES was derived from
three variables: British socioeconomic classes determined by the occupation of the parents
(1–6), the total income of the family, and the number of children residing in the bedroom of
the index child. SNPs of the GST gene were evaluated as potential effect modifiers of the
association between nicotine and its metabolites and offspring DNAm.

2.5. Assessment of Effect Modifiers (GST Gene Polymorphisms)

DNA was extracted from the whole blood or saliva of IoWBC participants for genotyp-
ing (N = 1211), as previously described [37]. Single nucleotide Polymorphisms (SNPs) in
GST genes were genotyped using Illumina GoldenGate assays [38]. GST SNPs with avail-
able data were rs929166, rs10735234, rs11807, rs12024479, rs12736389, rs1537234, rs1537236,
rs1695, rs366631, rs3768490, rs506008, rs560018, rs574344, rs638820, and rs7483.

To decrease the number of multiple tests, particularly for correlated SNPs, the num-
ber of SNPs was reduced to haplotype blocks based on linkage disequilibrium (LD) [39].
To identify haplotype blocks, Haploview [40] was used. The GST SNPs were statisti-
cally grouped into six blocks of LD (Table 1). SNPs used in the analysis are underlined.
The SNP rs1695 did not belong to any block but represented the GSTP1 gene and was
analyzed accordingly.

Table 1. Blocks of linkage disequilibrium (LD) between genetic variants of GST genes.

Block of LD and GST Gene GST SNP Variants

Block 1 (GSTM4, GSTM2) rs506008, rs638820

Block 2 (GSTM2) rs574344, rs12024479

Block 3 (GSTM5) rs12736389, rs929166

Block 4 (GSTM5) rs3768490, rs11807

Block 5 (GSTM3) rs1537234, rs1537236, rs7483, rs10735234

GSTP1 * rs1695
* rs1695 (GSTP1) does not belong to any block and was analyzed additionally.

2.6. Statistical Analysis

All analyses were carried out using the F0 (mothers) and F1 (offspring) generations
of the IoWBC using SAS (version 9.0) and Haploview [40]. To show the differences in the
methylation proportion for different levels of the nicotine metabolites, we compared the
DNAm of the lowest with the highest rank of the metabolites.

The association of nicotine and its metabolites with offspring DNAm was assessed
using linear regression models with nicotine and its metabolites in maternal sera as the
predictors, the offspring GST SNP as a predictor and potential effect modifier, and the
DNAm of the offspring as the outcome. The linear regression models were adjusted with
the following covariates: maternal age, BMI, SES, and a variable presenting batch groups
of nicotine metabolites.

To assess the goodness of fit of the regression models, the explained variance (R2) was
calculated for three models. Model 1 included nicotine and its metabolites and confounders.
Model 2 additionally addressed the GST SNPs. Model 3 included nicotine metabolites, GST
SNPs, and the interaction between nicotine metabolites and GST SNPs. Model 1 explains
how much variability in the offspring’s DNAm is related to exposure to nicotine and its
metabolites. Comparing models 1 and 2 shows whether GST polymorphisms add to the
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explanatory power of the model. Comparing models 3 and 2 shows the role of interaction
terms in explaining a part of the DNAm variability.

The False Discovery Rate (FDR) method [25] was utilized to account for multiple test-
ing during the assessment of the association between nicotine metabolites and offspring
DNAm [32]. A significance level of p < 0.05 was employed to determine statistical significance.

3. Results

After excluding those with missing information on biomarkers of MSP or offspring
DNAm, 493 mother-child dyads from F0–F1 generations were included in the study. There
was no statistical difference in characteristics between the analyzed sample and the total
cohort for males and females (Table 2).

Table 2. Characteristics of the total Isle of Wight birth cohort and the analyzed samples.

Males Females

Total Cohort
(N = 786)

Analyzed Samples
(n = 251) p Value Total Cohort

(N = 750)
Analyzed Samples

(n = 242) p Value

Maternal age (years) (N = 609)
29.6 (0.32)

(n = 227)
29.5 (0.26) 0.14 (N = 584)

29.6 (0.33)
(n = 207)

29.5 (0.25) 0.12

Maternal BMI (kg/m2)
(N = 226)
23.7 (3.7)

(n = 198)
23.7 (3.6) 0.93 (N = 242)

24.6 (4.2)
(n = 200)
23.8(5.3) 0.69

Socioeconomic status:
High

Medium
Low

(N = 684)
61 (8.9%)

517 (75.6%)
106 (15.5%)

(n = 247)
21 (8.5%)

187 (75.7%)
39 (15.8%)

0.06

(N = 673)
50 (7.4%)

520 (77.3%)
103 (15.3%)

(n = 240)
22 (9.2%)

189 (78.8%)
29 (12%)

0.26

MSP (yes vs. no) (N = 778)
25.2%

(n = 251)
19.5% 0.06 (N = 743)

25.3%
(n = 242)

19.4% 0.06

Serum nicotine (nM) (N = 288)
0.982 (2.403)

(n = 251)
0.931 (2.440) 0.71 (N = 295)

0.904 (2.251)
(n = 242)

0.842 (1.813) 0.27

Serum cotinine (nM) (N = 288)
5.135 (8.836)

(n = 251)
4.994 (9.148) 0.71 (N = 295)

5.041 (9.456)
(n = 242)

4.354 (8.356) 0.40

Serum norcotinine (nM) (N = 288)
0.038 (0.109)

(n = 251)
0.038 (0.105) 0.90 (N = 288)

0.043 (0.116)
(n = 242)

0.036 (0.111) 0.48

Serum hydroxycotinine (nM) (N = 288)
0.190 (0.266)

(n = 251)
0.190 (0.234) 0.95 (N = 288)

0.191 (0.450)
(n = 242)

0.179 (0.296) 0.27

Normally distributed variables (maternal age and BMI) are represented as the mean (SD). Skewed variables
(nicotine and its downstream metabolites) are presented as medians (IQR). MSP: maternal smoking in pregnancy;
SES: socioeconomic status.

The SNP rs506008 has three genotype groups: AA, AC, and CC (Table 3). Since AA was
a rare occurrence (3 in 233 males and 4 in 227 females, respectively), it will cause a violation
of the 5% rule for the chi-square test or a reduced sample size for regression analysis. Due
to the rarity of individuals with the AA genotype, we combined AA with AC.

Similarly, two other GST SNPs (rs574344 and rs12736389) had sparse data for one of
their variants. For rs574344, the AA genotype was combined with AT and compared to TT.
For rs12736389, the CC genotype was added to CG and compared to GG.

To check if combining the rare genotype affects the results of the regression analysis, we
further assessed the three regression models with and without the combination of the rare
variant and excluding the rare variant. For example, in males, the rs12736389 polymorphism
(genotypes: CC, CG, and GG) is an effect modifier of the association between maternal
serum norcotinine and offspring DNAm level at cg09935388. Three regression models were
run with (a) CC separated from CG, (b) CC combined with CG, and (c) CC removed from
the dataset. The effect estimates and p values of the CG group compared to the reference
group (GG) were (a) β = 0.334, p = 0.098; (b) β = 0.335, p = 0.096; and (c) β = 0.334, p = 0.098.
The effect estimates and p values of the interaction term were (a) β = −0.174, p = 0.04;
(b) β = −0.176, p = 0.04; and (c) β = −0.174, p = 0.04. Since combining the CC genotype
with the CG genotype did not change the statistics, we took the approach explained above.
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Table 3. GST genotypes of the total Isle of Wight birth cohort and the analyzed samples.

Males Females

Total Cohort
(N = 786)

Analyzed Samples
(n = 251) p Value Total Cohort

(N = 750)
Analyzed Samples

(n = 242) p Value

rs506008
AA
AG
GG

(N = 576)
10 (1.7%)

134 (23.3%)
432 (75%)

(n = 233)
3 (1.3%)

53 (22.7%)
177 (76%)

0.73 *

(N = 580)
14 (2.4%)

146 (25.2%)
420 (72.4%)

(n = 227)
4 (1.8%)
50 (22%)

173 (76.2%)

0.20 *

rs574344
AA
AT
TT

(N = 579)
2 (0.4%)

79 (13.6%)
498 (86%)

(n = 233)
1 (0.4%)
28 (12%)

204 (87.6%)

0.49 *

(N = 586)
4 (0.7%)

86 (14.7%)
496 (84.6%)

(n = 229)
4 (1.8%)

26 (11.3%)
199 (86.9%)

0.34 *

rs12736389
CC
CG
GG

(N = 576)
16 (2.8%)

162 (28.2%)
398 (69%)

(n = 230)
2 (0.9%)
69 (30%)

159 (69.1%)

0.97 *

(N = 576)
17 (3%)

166 (28.8%)
393 (68.2%)

(n = 228)
9 (4%)

69 (30.2%)
150 (65.8%)

0.43 *

rs3768490
AA
AC
CC

(N = 575)
64 (11.1%)

245 (42.6%)
266 (46.3%)

(n = 230)
26 (11.3%)

110 (47.8%)
94 (40.9%)

0.23

(N = 579)
56 (9.7%)

267 (46.1%)
256 (44.2%)

(n = 224)
19 (8.5%)

104 (46.4%)
101 (45.1%)

0.82

rs1537234
AA
AC
CC

(N = 575)
102 (17.7%)
275 (47.8%)
198 (34.5%)

(n = 231)
41 (17.8%)

125 (54.1%)
65 (28.1%)

0.10

(N = 574)
101 (17.6%)
275 (47.9%)
198 (34.5%)

(n = 225)
41 (18.2%)

109 (48.4%)
75 (33.4%)

0.93

rs1695
AA
AG
GG

(N = 573)
253 (44.2%)
238 (41.5%)
82 (14.3%)

(n = 234)
95 (40.6%)

112 (47.9%)
27 (11.5%)

0.12

(N = 581)
222 (38.2%)
271 (46.6%)
88 (15.2%)

(n = 226)
90 (39.8%)

105 (46.5%)
31 (13.7%)

0.79

p values calculated for Chi square tests. * Due to the rarity of the AA genotype for rs506008, individuals with
the AA genotype were combined with the AG genotype. Due to the rarity of the AA genotype for rs574344,
individuals with the AA genotype were combined with the AT genotype. Due to the rarity of the CC genotype for
rs12736389, individuals with the CC genotype were combined with the CG genotype.

GST gene polymorphisms did not affect the concentrations of nicotine metabolites
in maternal serum for any of the blocks (Supplementary Table S1), nor was there any
interaction of haplotype blocks with MSP for the concentration of nicotine metabolites
in maternal serum. These findings simplified the analyses on whether (b) GST gene
polymorphism of the offspring modifies the association of exposure to nicotine and its
metabolites with offspring DNAm since there is no need to account for the impact of GST
SNPs on nicotine metabolites in the analysis.

Next, a potential effect modification of GST gene polymorphism on the association
between nicotine metabolites in maternal serum (exposure) and offspring DNAm (outcome)
was assessed, adjusting for effect confounders and controlling for multiple testing (FDR).
From the meta-analysis by Joubert et al. [19], 460 CpGs were available in our DNAm dataset
(850 k), which were used for further analysis.

Table 4 shows the CpG sites whose methylation levels were associated with MSP and
with effect modification of GST gene polymorphisms (after FDR adjustment) for male and
female offspring, respectively (only statistically significant associations are shown).

Nicotine levels were not associated with differential DNAm at any of the 460 CpG sites.
However, cotinine, norcotinine, and hydroxycotinine levels were associated with different
levels of offspring DNAm; however, only norcotinine and hydroxycotinine showed signifi-
cant interactions with GST SNPs on DNAm. For male offspring, the associations of hydrox-
ycotinine with DNAm at cg18473733 (rs574344; GSTM2), cg25949550 (rs574344; GSTM2),
cg11647108 (rs1695; GSTP1), cg01952185 (rs1695; GSTP1), and maternal norcotinine with
DNAm at cg09935388 (rs12736389; GSTM5) were significantly modified by GST SNPs. For
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female offspring, the associations of hydroxycotinine with DNAm at cg12160087 (rs506008;
GSTM4, rs1537234; GSTM3) and norcotinine with DNAm at cg18473733 (rs506008; GSTM4)
were significantly modified by GST SNPs.

Table 4. Multiple linear regression with norcotinine and hydroxycotinine, GST SNPs, and their
interaction on CpG sites whose methylation levels are associated with nicotine and its metabolites in
male and female offspring.

CpG Site and
Associated
Gene Name

GST SNPs
Representing

Different Genes

Serum
Norcotinine GST SNP Norcotinine x

GST SNP
Serum Hydrox-

ycotinine GST SNP Hydroxycotinine
x GST SNP

Effect
Size (β) p Effect

Size (β) p Effect
Size (β) p Effect

Size (β) p Effect
Size (β) p Effect

Size (β) p

Males

cg18473733
KLF2

rs
57

43
44 AT/AA * - - - - - - −0.040 0.0001 −0.116 0.08 0.08 0.003

cg25949550
CNTNAP2 AT/AA * - - - - - - −0.048 0.01 0.279 0.05 −0.124 0.03

cg09935388
GFI1

rs
12

73
63

89

CG/CC * −0.099 0.02 0.345 0.09 −0.183 0.03 - - - - - -

cg11647108
ANXA11

rs
16

95

AA - - - - - - 0.473 0.0001 0.436 0.06 −0.401 0.001

AG - - - - - - 0.473 0.0001 0.579 0.01 −0.415 0.001

cg01952185
TIFAB

AA - - - - - - 0.192 0.0008 0.092 0.42 −0.129 0.03

AG - - - - - - 0.192 0.0008 0.216 0.05 −0.165 0.006

Females

cg12160087
CCDC64

rs
50

60
08 AG/AA - - - - - - −0.046 0.0001 −0.090 0.05 0.056 0.007

cg18473733
KLF2 AG/AA −0.031 0.03 0.130 0.05 −0.070 0.02 - - - - - -

cg12160087
CCDC64

rs
15

37
23

4 AA - - - - - - −0.037 0.03 −0.180 0.02 0.076 0.02

AC - - - - - - −0.037 0.03 0.024 0.60 −0.009 0.64

* Due to the rarity of the AA genotype for rs574344, for analysis, individuals with this genotype were combined
with those with the AT genotype (reference: TT). Due to the rarity of the CC genotype for rs12736389, individuals
with this genotype were combined with those with the CG genotype (reference: GG). Due to the rarity of the AA
genotype for rs506008, individuals with the AA genotype were combined with the AG genotype. For rs1695, AA
and AG genotypes had sufficient numbers to be analyzed as separate groups (reference: GG).

The following graphs (Figures 1 and 2) compare the difference in DNAm (β-values or
proportion of methylation) levels in the highest versus lowest ranks of hydroxycotinine
and norcotinine for different SNPs and genotypes. The mean difference in DNAm levels
and their 95% confidence interval comparing the highest rank (4) vs. the lowest rank (0) for
the interaction of the nicotine metabolite groups with GST genes were calculated.

The explained variance (R square) of the DNAm was calculated for regression models
with and without GST SNP and the interaction term between nicotine metabolite and GST
SNP (Table 5).

In regression models with norcotinine or hydroxycotinine as predictors and DANm as
outcome, the addition of GST polymorphism increased R2. The addition of the interaction
term between nicotine metabolite and GST SNP further increased R2 for both male and
female offspring. For example, in males, the addition of the rs1695 SNP and the interaction
term with hydroxycotinine increased the R2 by 39.6% (from 0.182 to 0.254) for DNAm at
cg11647108. In females, the addition of the rs1537234 SNP and the interaction term with
hydroxycotinine increased R2 by 27.5% (from 0.167 to 0.213) for DNAm at cg12160087.



Genes 2023, 14, 1644 9 of 16

Genes 2023, 14, x FOR PEER REVIEW 9 of 17 
 

 

showed significant interactions with GST SNPs on DNAm. For male offspring, the associ-
ations of hydroxycotinine with DNAm at cg18473733 (rs574344; GSTM2), cg25949550 
(rs574344; GSTM2), cg11647108 (rs1695; GSTP1), cg01952185 (rs1695; GSTP1), and mater-
nal norcotinine with DNAm at cg09935388 (rs12736389; GSTM5) were significantly mod-
ified by GST SNPs. For female offspring, the associations of hydroxycotinine with DNAm 
at cg12160087 (rs506008; GSTM4, rs1537234; GSTM3) and norcotinine with DNAm at 
cg18473733 (rs506008; GSTM4) were significantly modified by GST SNPs. 

The following graphs (Figures 1 and 2) compare the difference in DNAm (β-values 
or proportion of methylation) levels in the highest versus lowest ranks of hydroxycotinine 
and norcotinine for different SNPs and genotypes. The mean difference in DNAm levels 
and their 95% confidence interval comparing the highest rank (4) vs. the lowest rank (0) 
for the interaction of the nicotine metabolite groups with GST genes were calculated. 

Figure 1. Association of serum levels of norcotinine (A) and hydroxycotinine (B) in maternal sera and
male offspring DNAm for different SNPs of the GST gene. Lines show the proportion of methylation
and their 95% CI for the highest vs. lowest rank of hydroxycotinine. Statistically important differential
DNAm levels were identified using M-values; however, to present them as proportions, we used β

values in the graphs. Due to the rarity of the AA genotype for rs574344, for analysis, individuals with
this genotype were combined with those with the AT genotype. Due to the rarity of the CC genotype
for rs12736389, individuals with this genotype were combined with those with the CG genotype.
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Figure 2. Association of norcotinine (A) and hydroxycotinine (B) in maternal sera and female
offspring DNAm for different SNPs of the GST gene. Lines show the proportion of methylation and
their 95% CI for the highest vs. lowest rank of hydroxycotinine. Statistically important differential
DNAm levels were identified using M-values; however, to present them as proportions, we used β

values in the graphs. Due to the rarity of the AA genotype for rs506008, individuals with the AA
genotype were combined with the AG genotype.

Table 5. R square for different multiple linear regressions on nicotine downstream metabolites and
offspring DNAm with and without GST SNPs and the interaction terms between nicotine metabolites
and GST SNPs.

CpG Site and
Associated Gene

Name

GST SNPs
Representing

Different
Genes

Serum Norcotinine Serum Hydroxycotinine

without
GST

Genes
R2

with GST
Genes as

Covariate R2

Interaction
of GST and
Norcotinine

R2

Increase in
R2 #

without
GST

Genes
R2

with GST
Genes as
Covariate

R2

Interaction
of GST and
Hydroxyco-

tinine
R2

Increase
in R2 #

Males

cg18473733
(KLF2 gene)

rs
57

43
44 - - - - 0.502 0.505 0.532 5.98%

cg25949550
CNTNAP2 - - - - 0.309 0.311 0.332 7.44%

cg09935388
(GFI1 gene)

rs
12

73
63

89

0.1688 0.1689 0.196 16.11% - - - -

cg11647108
(ANXA11 gene)

rs
16

95 - - - - 0.182 0.191 0.254 39.56%

cg01952185
(TIFAB gene) - - - - 0.190 0.200 0.241 26.84%

Females

cg12160087
(CCDC64 gene)

rs
50

60
08 - - - - 0.1611 0.1612 0.201 24.77%

cg18473733
KLF2 gene) 0.4362 0.4633 0.483 10.73% - - - -

cg12160087
CCDC64 gene) rs1537234 - - - - 0.167 0.169 0.213 27.54%

Due to the rarity of the AA genotype for rs574344, individuals with this genotype were combined with those with
the AT genotype (reference: TT) for analysis. Due to the rarity of the CC genotype for rs12736389, individuals
with this genotype were combined with those with the CG genotype (reference: GG) for analysis. For rs1695,
AA and AG SNPs had sufficient frequencies to be analyzed as separate groups (reference: GG). # An increase in
R2 indicates the percentage increase in R2 from the model without GST SNPs to the model with GST SNPs and
interaction terms.
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4. Discussion

Since the concentrations of the four smoking metabolites in maternal sera were not
affected by the GST genotypes of the offspring, associations between nicotine metabolites,
GST genotypes, and their interactions on DNAm do not need adjustment for varying levels
of nicotine metabolites due to GST enzyme activity. This is not particularly surprising in
that GSTs have not been documented to play important direct roles in nicotine metabolism
but are likely involved in the metabolism of other tobacco smoke chemicals.

The results suggest that associations of nicotine metabolites in maternal sera with
offspring DNAm are partially influenced by GST gene polymorphism and their interac-
tion with tobacco constituent metabolites. Effect modification was observed for several
members of the GST gene family. Hence, the role of the enzymes encoded by the GST gene
family in the protection of the developing fetus from oxidative stress suggests individual
susceptibility to MSP based on genetic polymorphism.

We found that the interaction term improved the explained variance (R2) for all five
CpGs in males and two CpGs in females, respectively. This implies that for some CpGs,
the addition of interaction terms from GST gene polymorphisms with nicotine metabolites
improves the explanation.

We observed that the effect of modifications of GST SNPs on the association between
nicotine metabolites and offspring DNAm is sex-specific. This might be explained by
differences in the response of the placenta to oxidative stress based on the offspring’s
sex [41]. Research has indicated that when exposed to unfavorable maternal conditions
characterized by oxidative stress, the male placenta tends to exhibit a more prominent
response compared to the female placenta [42]. In rodents, high oxidative stress conditions
caused sexually dimorphic changes in placental morphology, gene expression, and enzymes
involved in DNAm [41]. Furthermore, glutathione metabolism is reported to be different
in male and female offspring [43]. O’Shaughnessy et al. have shown that MSP affects
the transcription of some GST genes in the fetal liver (GSTA1, GSTP1, and GSTM1) in a
sex-dependent manner [44].

We found that in male offspring, the AT genotype of rs574344 (GSTM2 gene) attenuated
the decrease in DNAm at cg18473733 by hydroxycotinine, but it amplified the decrease in
DNAm at cg25949550 by hydroxycotinine. Genetic polymorphisms of the GSTM2 gene
at different loci, including rs574344, have been studied in association with offspring lung
function after exposure to MSP [45]. No study, however, has investigated the modifying
role of GST SNPs on the association between MSP and offspring DNAm. The CpGs
cg18473733 and cg25949550 belong to the genes KLF2 and CNTNAP2, respectively. The
Krüppel-like factor 2 (KLF2) gene codes for a transcription factor that plays a crucial role
during the development of embryonic vasculature [46]. The Contactin-Associated Protein
2 (CNTNAP2) gene is involved in nervous system development and has been implicated in
disorders such as autism and intellectual disability in association with exposure to MSP [47].
The potential effect of GSTM2 polymorphism on health outcomes in offspring exposed to
MSP by altering specific DNAm remains to be addressed by future studies.

In males, the CG genotype of rs12736389 (GSTM5) amplified the decrease in DNAm
at cg09935388 by norcotinine. This CpG belongs to the growth factor independent 1 tran-
scriptional repressor (GFI1) gene and plays a role in developmental processes, including
hematopoiesis [48]. DNAm at cg09935388 has been reported to mediate the effects of
exposure to MSP on offspring birth weight [49]. The genetic polymorphism of GST5
has been associated with lung function measures (FEV1 and FVC) in interaction with
MSP exposure [38].

The AA and AG genotypes of rs1695 (GSTP1) attenuated the increase in DNAm at
cg11647108 (ANXA11) and cg01952185 (TIFAB) by hydroxycotinine. The gene ANXA11
codes for Annexin A11, a member of Annexins, i.e., phospholipid-binding proteins reg-
ulated by calcium with significant involvement in various cellular processes such as the
cell life cycle, exocytosis, and apoptosis [49]. TRAF-interacting protein with a forkhead-
associated domain B (TIFAB) is another protein-coding gene implicated in several cellular



Genes 2023, 14, 1644 12 of 16

signaling pathways involved in hematopoiesis [50]. Structural polymorphisms in the
GSTP1 gene have been reported to affect the association between MSP and offspring health
outcomes by altering the encoded enzyme activity [51]. The genotypes AA and AG of
rs1695 (GSTP1) have been shown to increase the risk of early life wheezing in children
exposed to MSP [51].

In female offspring, hydroxycotinine decreased DNAm at cg12160087. However,
offspring with an AG genotype of rs506008 (GSTM4) had higher DNAm levels compared
to GG. Those with AA and AC SNPs of rs1537234 (GSTM3) had higher and lower DNAm
levels compared to CC, respectively. DNAm levels at cg12160087 in the latter group
(AC genotype of rs1537234) were not significantly different from the CC genotype of
rs1537234. The CpG site cg12160087 is associated with the Coiled-coil domain containing
64 (CCDC64), a protein-coding gene involved in cellular transport and nervous system
development [52]. DNAm at cg12160087 has been positively associated with offspring
birth weight [53]. Previous research shows that genetic polymorphisms of the GSTM3 gene
affect lung function (FEV1 and FVC) by interacting with MSP [38].

Norcotinine was associated with decreased DNAm levels at cg18473733 (KLF2). The
AG genotype of rs506008 (GSTM4) further lowered the levels of DNAm compared to the
GG SNP. This CpG site has also been observed to be significantly associated with MSP in
male offspring. GSTM4 has not been well studied in association with health outcomes [45].
Variations in GSM4 have been linked to lung function measures [45] and lung cancer [54].

In this study, we focused on the CpGs whose DNAm was associated with nicotine
metabolites, with a significant effect-modifying role for GST SNPs. However, there are
CpGs associated with nicotine metabolites for which we did not find a significant effect-
modifying role for GST polymorphism. This may imply that maternal nicotine metabolites
may serve as surrogates for tobacco smoke chemicals that affect offspring DNAm through
different biological mechanisms in addition to increasing oxidative stress. One of these
CpGs is cg05575921 (in the body of the AHRR gene), whose lower methylation has been
reported consistently as a marker of exposure to MSP [55,56]. Although significantly
associated with nicotine metabolites, DNAm at cg05575921 was not influenced by GST
SNPs in our study. This might further emphasize its usefulness as a smoking exposure
biomarker since it is not influenced by individual differences in GST genotype.

To the best of our knowledge, our study is the first to address the role of GST gene
polymorphisms in modifying the associations of nicotine metabolites with offspring DNAm.
Using a prospective design and a population-based cohort are among the strengths of our
study. Additionally, we used a more objective assessment for MSP, i.e., nicotine and its
downstream metabolites in maternal serum.

There are some limitations in our study worth mentioning. First, from the 586 CpGs
extracted from the Joubert et al. meta-analysis, we had information on 460 CpGs. Hence,
some of the CpGs not included in our quality control might have been associated with
nicotine metabolites through the effect-modifying role of GST SNPs. Second, our data on
the GST gene was limited to different GSTM genes and one GSTP gene. Although most
GST genes associated with MSP belong to these two groups, there are previous studies
that suggest a potential role for GSTA, GSTT, and GSTO genes [57–59] in health outcomes
associated with MSP.

The third limitation is the lack of information on the other toxic constituents of cigarette
smoke other than nicotine that might lead to adverse consequences in the offspring. For ex-
ample, cigarette smoke contains numerous toxic compounds, including polycyclic aromatic
hydrocarbons (PAHs) and benzoquinone [60]. This group of compounds has been known
to mediate several toxic effects of exposure to cigarette smoke, including childhood asthma
and impaired lung function [61]. Fourth, we did not have data on the placenta samples and
the expression of GST genes. The placenta plays a crucial role in protecting the developing
fetus from harmful substances by mitigating oxidative stress [62]. GST enzymes produced
by the placenta catalyze the transfer of reduced glutathione (GSH) to ROS and assorted
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reactive electrophilic intermediates, helping to neutralize their harmful effects by making
them more water-soluble and more rapidly excreted [63].

Fifth, we focused on offspring genotypes, but maternal genotypes regarding GST
genes were not available. Although offspring GST polymorphism did not seem to affect
maternal levels of nicotine and its metabolites, GST enzymes in the mother might affect
nicotine metabolites or other compounds [21] and modify the effect of exposure on offspring
DNAm. Sixth, the analyses of the associations between nicotine metabolites and offspring
DNAm only focused on DNAm measurement at birth. Future work may be necessary to
investigate the long-term associations of MSP and DNAm measures at 10 and 18 years in
this cohort.

5. Conclusions

The findings suggest that offspring genetic variations in GST genes modify the effect
of tobacco smoke chemicals (nicotine metabolites in maternal sera) on offspring DNAm
at a limited number of CpGs in a sex-specific manner. Importantly, the methylation of a
specific CpG site, cg05575921 (associated with the AHRR gene), which has consistently been
identified as an indicator of exposure to MSP, remained unaffected by GST polymorphisms.
This further supports its value as a reliable biomarker for MSP exposure. Future studies are
necessary to test the role of additional genetic polymorphisms in the association between
MSP and offspring DNAm.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14081644/s1. Table S1: Association of offspring GST gene
polymorphism with nicotine and downstream metabolites in maternal sera.
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