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Abstract: Cotton crop is considered valuable for its fiber and seed oil. Cotton fiber is a single-celled
outgrowth from the ovule epidermis, and it is a very dynamic cell for study. It has four distinct
but overlapping developmental stages: initiation, elongation, secondary cell wall synthesis, and
maturation. Among the various qualitative characteristics of cotton fiber, the important ones are the
cotton fiber staple length, tensile strength, micronaire values, and fiber maturity. Actin dynamics are
known to play an important role in fiber elongation and maturation. The current review gives an
insight into the cotton fiber developmental stages, the qualitative traits associated with cotton fiber,
and the set of genes involved in regulating these developmental stages and fiber traits. This review
also highlights some prospects for how biotechnological approaches can improve cotton fiber quality.
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1. Introduction

Cotton is grown worldwide owing to its high economic value. More than 90 percent of
natural fiber is produced from cotton, and it is cultivated in almost 80 countries worldwide.
Cotton is considered a cash crop that feeds 250 million people around the globe according
to the US National Council of Textile Organizations (NCTO). In 2017, the US earned USD
77.9 billion by producing and processing cotton fiber, textile, and clothes shipments, and
these industries employed 550,500 workers (http://www.ncto.org/2018-state-of-the-u-s-
textile-industry-address/, accessed on 22 March 2018). In Pakistan, cotton is thought to
be the lifeline of the economy on account of its 0.8% share in the GDP and its 4.5% value
added to agriculture. During the fiscal year 2018–2019, Pakistan produced 9.86 million
bales (Economic Survey of Pakistan 2018–2019).

2. Qualitative Traits of Cotton Fiber

Cotton fiber is generally called an epidermal outgrowth of seed originating from an
ovule [1]. Cotton is one of the most significant natural sources of textile-grade fiber, which,
in its mature form, is made up of >90% cellulose [2,3]. The value of a cotton crop increases
if the cotton fiber has better qualitative traits, such as whiteness, staple length, micronaire
value, strength, and uniformity index [4].

2.1. Fiber Length

The fiber length can be determined by measuring the fiber while still attached to the
seeds [5]. Recently, with the advent of technology, fiber length has been measured using the
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photoelectric method. This technology uses ginned fiber fixed in combs and passed through
photoelectric scanners [6]. Based on its length, upland cotton is divided into four categories:
fiber having a length less than 21 mm is defined as short, 22 to 25 mm is medium, 26 to
28 mm is medium to long, and 29 to 34 mm is considered long [7].

2.2. Fiber Strength

Fiber strength is a vital textile trait that is significant in fabrics. Modern technologies
like open-end rotor spinning operating systems require higher fiber strength [8]. Two
methods have been reported for measuring fiber strength: the Pressley apparatus and the
Stelometer [9]. Both of these methods use a bundle of a certain weight of a fiber fixed into
clamp jaws followed by force applied until the breakage of the fiber bundle. The breakage
force represents the fiber strength [10]. Generally, the fiber strength is denoted as g/tex,
which is the force in grams required to break apart one tex unit (1000 m of fiber) of fiber
bundle.

2.3. Micronaire Value

The micronaire value is considered a commercially important trait. It is regarded as
an indirect measure of fiber maturity and fineness. Usually, low micronaire values are
considered better. The micronaire value (mic) is measured by air permissibility through a
fiber sample enclosed in a fixed-dimension container [11,12]. Upland cotton ranges from
3.5 to 4.9 mic, while a 3.7 to 4.2 mic value is regarded as a premium range [13]. The mic
value is important for the better spinning of yarn, while maturity enhances the dyeing
quality of the fiber [14].

2.4. Fiber Maturity

Fiber maturity, a commercial term, cannot be confused with fiber maturation, usually
defined as the chronological series of time taken from anthesis (day of flowering) to the
harvesting of mature fiber. Fiber maturity is defined as the ratio of the cell wall thickness to
the diameter of cell wall thickness compared to the size of the lumen [11,12], and based on
the fiber’s diameter, different attributes, such as immature, mature, and over-mature fiber,
are given (Figure 1). In terms of diameter, upland cotton fibers range from 21 to 29 µm;
however, finer fibers have a range of diameter from 17 to 20 µm [12]. Fiber maturity is
another important trait when dealing with cotton fibers in the textile industry. Normally,
a 0.7 to 0.9 maturity value is regarded as a moderate range for the smooth processing of
cotton fiber. The immature cotton fiber, having a value of less than 0.7, does not make good
yarn, produces neps in ginning, and is prone to breakage during spinning, while over-
mature fiber, having a value of more than 0.9, produces rough yarn, which is undesirable
for users [15].

2.5. Fiber Fineness

Fiber fineness constitutes the fiber perimeter, diameter, linear density, cross-section
area, and uniformed surface. Fiber fineness is mostly associated with linear density. Fine
fiber makes the yarn stronger than yarn made up of short and rough fiber [16]. Fiber
fineness can be defined as the measure of the unit mass in micrograms (µg) per unit length
(inches) of fiber to evaluate the linear density [17].
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Figure 1. Schematic diagram of cotton fiber characteristics: (A) A mature cotton boll containing 

seeds and attached fiber; (B) A single seed attached with lint fiber; (C) An illustration of a developing 

single fiber cell showing different proteins and actin filaments; (D) Attributes of different levels of 

fiber maturation; (a) Immature fiber produces low yield, weak fiber and more of neps; (b) Mature 

fiber produces higher yield, strong fiber, and fewer neps; (c) Over-mature fiber produces higher 

yield and strong fiber but produces weak yarn (image drawn by the authors). 
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Elongation; (3) Secondary cell wall synthesis; and (4) Maturation [18]. A fully mature fiber 

following elongation and cell wall synthesis may reach 6 cm long [19]. 

3.1. The Initiation Stage of Cotton Fiber 

Fiber initiation is the most important stage in cotton yield. The number of fibers ini-

tiated at this stage will determine the total fiber per ovule leading to the final yield. The 

day of anthesis is considered 0 DPA, and fiber initiation lasts from 0 DPA to almost 5 DPA 

[20,21]. Previous studies have revealed that a broad range of genes is involved in fiber 

initiation. Some of the important genes which regulate either fiber initiation or both initi-
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GhMYB2 Fiber initiation [23] 

GaMYB2 Fiber initiation [24] 

GhMYB2 Fiber initiation [25] 

GhHD1 Fiber initiation [26] 

GhE6 Fiber initiation [27] 

GhSuS Fiber initiation and elongation [28] 

GhPIN1a_Dt, GhPIN6_At and GhPIN8_At Fiber initiation and elongation [29] 

3.2. Role of Phytohormones in Fiber Initiation 

Phytohormones also regulate fiber development. Acid indol-3-acetic (IAA) is a natu-

rally existing auxin and has been reported to have a vital role in fiber development [30,31]. 

Previous reports have revealed that either the exogenous application of auxins or over-

Figure 1. Schematic diagram of cotton fiber characteristics: (A) A mature cotton boll containing seeds
and attached fiber; (B) A single seed attached with lint fiber; (C) An illustration of a developing single
fiber cell showing different proteins and actin filaments; (D) Attributes of different levels of fiber
maturation; (a) Immature fiber produces low yield, weak fiber and more of neps; (b) Mature fiber
produces higher yield, strong fiber, and fewer neps; (c) Over-mature fiber produces higher yield and
strong fiber but produces weak yarn (image drawn by the authors).

3. Cotton Fiber Development Stages

Cotton fiber is an elongated single-celled assembly that originates from a seed coat.
The fiber develops in four separate yet over-lapping stages known as: (1) Initiation; (2) Elon-
gation; (3) Secondary cell wall synthesis; and (4) Maturation [18]. A fully mature fiber
following elongation and cell wall synthesis may reach 6 cm long [19].

3.1. The Initiation Stage of Cotton Fiber

Fiber initiation is the most important stage in cotton yield. The number of fibers
initiated at this stage will determine the total fiber per ovule leading to the final yield.
The day of anthesis is considered 0 DPA, and fiber initiation lasts from 0 DPA to almost
5 DPA [20,21]. Previous studies have revealed that a broad range of genes is involved in
fiber initiation. Some of the important genes which regulate either fiber initiation or both
initiation and elongation are listed in Table 1.

Table 1. List of genes involved in regulation of cotton fiber initiation and elongation.

Gene Function Reference

GhPIN3a Fiber initiation [22]
GhMYB2 Fiber initiation [23]
GaMYB2 Fiber initiation [24]
GhMYB2 Fiber initiation [25]
GhHD1 Fiber initiation [26]
GhE6 Fiber initiation [27]

GhSuS Fiber initiation and elongation [28]
GhPIN1a_Dt, GhPIN6_At and GhPIN8_At Fiber initiation and elongation [29]

3.2. Role of Phytohormones in Fiber Initiation

Phytohormones also regulate fiber development. Acid indol-3-acetic (IAA) is a natu-
rally existing auxin and has been reported to have a vital role in fiber development [30,31].
Previous reports have revealed that either the exogenous application of auxins or over-
expression of auxin gene promotes fiber initiation and increases cotton yield and fiber
quality [31,32]. A recent study by Zhao et al. [21] reported that the exogenous application
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of IAA to the cotton plants showed a higher number and greater fiber size at 0 DPA in
experimental plants compared to non-treated (control) plants. Consequently, experimental
plants showed a higher yield of cotton fiber and quality of fiber uniformity, strength, staple
length, and micronaire value.

3.3. Cotton Fiber Elongation Stage

Elongation is the second stage of fiber development which starts after initiation.
During elongation, fiber cells elongate because of higher intracellular turgor pressure and
cell wall relaxation [33,34]. The advances in molecular studies of cotton fiber have reported
many genes involved in fiber elongation and cell wall synthesis [35]. Plant hormones also
have an effective role in controlling fiber elongation; ethylene production is involved in
controlling fiber elongation by regulating sucrose-synthase, expansins, and tubulin-related
genes. It has been reported that abscisic acid also inhibits fibre growth in cotton ovules [36].
A few of the important genes involved in regulating fiber elongation are listed in Table 2.

Table 2. List of genes involved in regulation of cotton fiber elongation.

Gene Function Reference

SuS Fiber elongation [37]
AKR2A Fiber elongation [38]

GhCaM7 Fiber elongation [39]
WLIM5 Fiber elongation [40,41]

GhCFE1A Fiber elongation [42]
GhHOX3 Fiber elongation [43]

GhPEPC1, GhPEPC2 Fiber elongation [44]
GhACTIN1 Fiber elongation [40,45]

GhEXP1 Fiber elongation [34]

3.4. Secondary Cell Wall Synthesis

The elongation phase in developing fiber is followed by secondary cell wall synthesis.
Many genes have been reported to be involved in the synthesis of secondary walls. Al-
though work on identifying and isolating such genes started very late, much progress has
been made until now. The secondary wall synthesis phase usually lasts from 25 to 40 DPA
but remains until cotton bolls dehiscence, i.e., 50–60 DPA [46]. Very few genes that are
strictly involved in secondary wall synthesis have been identified. Most of these genes are
reported to have a combined role in fiber elongation and wall synthesis [47]. Phytosterols
also regulate the fiber development process at elongation and secondary wall synthesis.
A recent study by Niu et al. [48] showed that the over-expression of the GhSMT2–1 gene
changes the phytosterol level. Compared to control plants, the increased level of sitosterol
and reduced level of campesterol in GhSMT2–1 over-expressed transgenic cotton plants
resulted in shorter but thicker fiber. The results implied that a higher level of sitosterol or a
lower level of campesterol inhibits fiber elongation but promotes secondary wall thickening.
The important genes involved in regulating fiber elongation and secondary wall synthesis
are listed in Table 3.

Table 3. List of genes involved in regulation of cotton fiber elongation and secondary wall synthesis.

Gene Function Reference

GhSMT2–1 Secondary wall synthesis [48]
WLIM1a Fiber elongation and secondary wall synthesis [49]
GhADF1 Fiber elongation and secondary wall synthesis [50]
GhPFN2 Fiber elongation and secondary wall synthesis [51]

CelA1 Fiber elongation and secondary wall synthesis [52]
GhEF1A Fiber elongation and secondary wall synthesis [53]
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3.5. Cotton Fiber Maturation Stage

Fiber maturation is the final phase of its developmental stages. Fiber maturation can
be directly equated to fiber quality. Immature fiber is weak, has a low yield, high neps, and
shows uneven dyeing with poor spinning quality, while mature fiber is strong and has good
cotton fiber yield, lower neps, and good dyeing and spinning properties. Overly mature
fiber also has strong fiber with high yield, weaker yarn, good dyeing, and poor spinning
qualities [2]. Cotton varieties can be categorized into early, middle, and late maturity
cultivars based on the required fiber maturation time. Upland cotton showing early
maturity is associated with the plant’s early boll opening feature and short architecture [54].
Because of the small plant architecture and high-density planting early maturity varieties
are gaining importance in China. However, early maturity cotton plants have lower cotton
fiber yields than the middle and late-maturity varieties [55]. Latif et al. [56] explained the
cotton fiber development and some important genes related to each developmental stage,
as shown in Figure 2.
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4. Role of ACTIN Genes in Cotton Fiber Development

Cotton fiber development largely depends on cell wall biosynthesis and cytoskeleton
arrangement. Cytoskeleton dynamics control many cellular processes, such as the move-
ment of organelles, cell wall formation, and cell division. Microfilaments (actin-filament),
microtubules, and intermediate filaments are the main constituents of the cytoskeleton [57].
In most cells, actin filaments are involved in secretory vesicle transportation to the cell
membrane and cell wall, enhancing cell expansion. The actin cytoskeleton also regulates
tip growth and cell elongation. Dozens express actin proteins to hundreds of genes in the
ACTIN family. Arabidopsis has 10 actin genes, of which 8 are functional, and 2 are catego-
rized as pseudogenes, while cotton plants have been identified with 16 actin genes [45].

4.1. Actin Filament Development Pathway and Actin-Binding Proteins (ABPs)

Actin is expressed in monomeric form, which is known as G-actin. The G-actin
polymerises form a filament known as F-actin [58]. The formation of actin filaments by
monomeric actin includes nucleation, polymerization/capping, and F-actin bundling and
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cross-linking activities. Many Actin-Binding Proteins (ABPs) are divided according to
their association among G-Actin-binding/G-actin capping proteins and F-Actin regulators
(ABPs), which are involved in either polymerization or depolymerization, and proteins
that serve to crosslink and/or bundle the actin microfilaments [59]. The detailed pathway
and the ABPs are involved in every step of actin microfilament formation.

4.1.1. Nucleation of Actin Filaments

Nucleation is the first step in the formation of a new filament. The nucleation of
actin microfilaments is not a spontaneous process; rather, it depends on many nucleating
proteins. Polymerization is energetically hostile unless actin monomers are nucleated.
During polymerization/capping, actin filaments form two ends; a pointed end, which is
slow growing, and a barbed end, which is fast growing. Arp2/3 complex is one of the
first known nucleating molecules, which caps at a pointed end and makes the barbed
end available for polymerization. However, WASP homology2 domains of WASP protein,
SCAR-WAVE protein, and verprolin/WIP have also been very important for the Arp2/3
complex in actin nucleation [59,60]. Foramins have also been found in actin filament
nucleation, apart from the Arp2/3 complex. The formin proteins and Spire also nucleate
actin polymerization. However, studies indicated that the foramin homology2 (FH2)
domain dimer stretches to accommodate the progressive addition of actin monomers to the
barbed end of a filament [61].

4.1.2. Polymerization and Capping of Microfilament

After nucleation, the microfilaments start growing by adding actin monomers at the
barbed end, also known as the growing end; however, the pointed end is a non-growing
end (Figure 3). The FH2 domain of formins directly nucleates actin monomers to form
actin filaments by protecting growing ends from capping proteins while guiding the rapid
insertion of new actin subunits. Residues Ile1431 in the knob and Lys1601 and Lys1359 in the
post of the FH2 domain of Bni1p, a formin protein, manifest as actin-binding sites. The FH1
domain of formins not only recruits profilin–actin complexes but also accelerates filament
elongation at least five times faster than the rate of diffusion-limited subunit addition at
the free barbed ends of filaments [62]. The process of actin filament development happens
at the non-growing pointed end.
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the authors).

Once the filaments grow enough, the length is controlled by many proteins, usually
called cappers proteins, such as gelsolins and tensins, which inhibit the addition of further
monomers. Adding cappers proteins at the pointed ends reduces the monomer loss and
facilitates the extension of microfilament [63].
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The polymerized filament (F-actin) can be depolymerized by Actin Depolymerized
Factor (ADF)/Cofilin. The depolymerization activity of ADF/Cofilin complex is further
enhanced by Actin Interaction Protein-1 (AIP-1) [59]. In contrast to the filament, the
depolymerization protein, tropomyosin, and nubuline have been identified to stabilize the
actin filament in muscle cells. Several other proteins have poly-proline-motifs filament
stabilization by recruiting polymerization machinery [61].

4.1.3. F-Actin Bundling and Cross Linking

After actin F-filament formation, the next step is actin bundling which is carried out
by the alignment of the F-filament (F-actin) in a parallel or anti-parallel manner. Actin
filament bundling is usually accomplished by proteins with two actin-binding domains [61].
The arrangement of bundled actin-filaments into orthogonal arrays is further mediated by
proteins having multi-actin-binding domains. Actin-binding proteins, involved in cross-
linking processes, have two or many domains, usually separated by a spacer. Filamin
(dimeric) or spectrin (tetrameric) proteins cross-link. A monomeric protein called tansgelin
has also been reported to be involved in cross-linking [64].

4.1.4. Plant LIM, an Actin-Bundling Protein

Plant LIM proteins are another important class of ABPs [65], which are found to be
dispersed in the cytosol and nucleoplasm. The LIM-domain-containing proteins in the
nucleus are preferentially involved in tissue-specific gene regulation and determination of
cell fate, whereas the cytoplasmic LIM-domain-containing proteins are involved mainly
in cytoskeletal organization [66]. The term “LIM” originates from the initials LIN-11,
ISL-1, and MEC-3, the first proteins observed to contain this particular homeodomain.
Following this, all proteins containing LIM domains are called LIM proteins or LIM domain-
containing proteins [67]. Most of the LIM proteins have two different LIM domains, each
comprising 55 amino acids [68] and having the broad consensus sequence (CX2CX16-
23HX2C)X2(CX2CX15-30CX2C/H/D) in which eight cys-his conserved residues form
two zinc finger projections. The motifs in LIM domains are involved in protein–protein
interactions and possess conserved scaffolds that recognize a diverse variety of target
proteins. Each Zinc-finger motif within the LIM domains contains two Zinc coordinating
cys-residues which assist in forming a β hairpin connection with the target protein. In
LIM2, the single LIM domain consists of two Zinc fingers with a core of bulky hydrophobic
residues [69]. Phylogenetic analyses of plant LIM proteins separate them into seven
classes (XLIM1, WLIM1, WLIM2, βLIM1, PLIM1, PLIM2, and PLIM2-like) [70]; or into six
categories, in which GhLIM1, GhWLIM2, and GhWLIM5 belong to the WLIM2 subgroup.
Bioinformatics analysis shows that GhWLIM2 and GhWLIM5 have strong evolutionary
relationships [41]. In cotton, there are many LIM-domain-containing proteins that modulate
actin filament bundlings, such as GhPLIM1, which is predominantly involved in anther
development [67], and WLIM1a, which is involved in fiber elongation along with secondary
wall synthesis [49]. Cotton WLIM1a contains two domains: Domain 1 (D1) is involved in
actin-bundling activity, whereas Domain 2 (D2) participates in DNA binding [65]. Figure 4
summarizes nucleation, polymerization/capping, and F-actin bundling and the cross-
linking process of actin filament development through a schematic diagram.
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5. Classification and Function of Plant Actin

The actin cytoskeleton in plants has a pivotal role in regulating cellular morphogenesis.
In plants, the actin cytoskeleton controls many specialized cell functions such as root hairs,
pollen tubes, trichomes, and stomatal guard cells [71,72]. The actin exists in two forms: un-
polymerized molecules as G-Actin and polymerized filaments as F-Actin [58]. The genome
of Arabidopsis thaliana contains a total of 10 actin genes, excluding 2 pseudogenes [45];
another 8 actin genes fall into 2 classes—encoding vegetative and reproductive protein iso-
variants [73]. The vegetative isovariants predominate in the stems, roots, leaves, and petals,
whereas reproductive isovariants are found in pollen, ovules, and embryonic parts [74,75].
The ACTIN-1 gene, from the reproductive class, is involved in fiber elongation [45], while
other ACTIN genes from the reproductive part, such as ACTIN4/12 class, are expressed in
premature and mature pollen, vascular tissues, and tapetum, whereas ACTIN12 expression
was noted in the pericycle during lateral root initiation [76]. ACTIN11, one of the distinctive
reproductive genes, is expressed in roots, and its misexpression leads to a change in the
morphology of roots and trichomes [74]. A three-dimensional (3D) model of the ACTIN-1
protein of A. thaliana indicates that it possesses four subdomains, similar to the sub-domains
observed in mammalian actin. However, in subdomain 2, the DNase-I loop presents most
of the variable parts [73]. The monomeric actin (G-actin) molecule has four domains that
bind ATP in their centers, thereby triggering polymerization. The hydrolysis of ATP leads
to conformational changes in these domains, making this ADP-actin molecule susceptible
to depolymerisation from the actin filament [61].

6. Role of GhACTIN1 Gene in Cotton Fiber Development

Although Arabidopsis is the model plant in which actin genes have been well studied
and characterized, the role of the actin gene in cotton still needs to be explored further for
the identification and manipulation of the potential genes involved in fiber development.
Plant actin is considered to be conserved at the gene level; however, divergence occurred
on a protein–structural level during evolution. Li et al. [45] reported that 16 actin genes
deduced from cotton have grouped/diverged into 9 sub-groups compared to 6 groups of
Arabidopsis, and the variation in GhACT genes occurred more notably [75].
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GhACTIN1 gene was found to be expressed predominantly during fiber elongation.
The cloning of the 0.8 kb promoter of GhACTIN1, taken from the 5′ upstream region, fused
with the GUS marker transformed in cotton, showed GUS activity in fiber and validated the
role of the GhACTIN1 gene in fiber development regulation. No or very low GUS activity
in the stem, root, leaf sepals, and petals reflects the least expression of the GhACTIN1 gene
in these tissues, which reflects its lack of role in these tissues [45]. The transcript level of
GhACTIN1 during fiber elongation (8–14 DPA) reaches its highest level of gene expression
and is gradually reduced in the later fiber developmental stages [45]. Furthermore, actin
turnover during fiber development is vital to keep the process uninterrupted. The RNAi
inhibition of GhACTIN1 in cotton fiber drastically reduced the F-actin filaments network;
consequently, fiber length and strength were found to be reduced, which suggested that
the GhACTIN1 gene has a major role in fiber elongation, but the contribution of other genes,
such as GhACTIN2 and GhACTIN5, cannot be completely ruled out [45].

Regulation of Fiber Elongation by Interaction between Cotton-Annexin (Gbanx6) and ACTIN1

Actin dynamics are regulated by many ABPs, such as ADF and profiling [77,78].
GhPFN-2 is a profilin and is expressed in developing cotton fiber during elongation. The
over-expression of GhPFN-2 terminates the elongation phase prematurely and shows the
early start of secondary wall synthesis; as a result, fiber length decreased significantly.
Abundant F-actin filaments were also observed during the elongation phase [50,51]. Pre-
vious studies have validated that profiling, such as GhPFN-2, ADF, and related ABPs
regulating actin dynamics by Ca2+ stimulation [79]. Annexins (a multigene family) are
considered Ca2+-dependent or Ca2+-independent ABPs. These annexins are cytoskeleton
and membrane-phospholipids binding proteins in many eukaryotic cells [80–82].

Plant cells have almost 0.1% annexin protein. These proteins are found in the mem-
brane, cytoplasm, and cell wall [83,84]. Annexins are active in cell signaling and control
material movement across the cell membrane as they can bind with Ca2+ and interact with
membrane lipids [85,86]. Plant cell annexins accumulate at the tip of root hairs along with
pollen tubes growing cells [87,88], and this localization of annexins facilitatess cell polar
growth. Due to the binding capability of annexins to Ca2+ and lipid membranes, they
were studied in cotton plants for their potential role in fiber elongation [89]. Elongating
fibers have been reported to have 3–5 times higher fatty acid (mostly sphingolilids) content
compared to ovules [47]. Huang et al. [76] revealed that cotton annexin anxGb6 interacts
with fiber GbAct-1, a fiber specific actin, and plays an important role in fiber elongation.

7. Biotechnological Approach of Genetic Transformation to Improve Cotton Fiber

The success of the textile industry depends on the perpetual availability of fiber which
could fulfill modern industry demands. There is no doubt that fiber obtained from local
cotton is not of the necessary quality to meet the needs of the textile industry, especially
for its fineness, staple length, strength, and maturity index. Synthetic fiber is the biggest
contemporary challenge to natural fiber, as it can provide all the parameters in demand
by the textile industry. Cotton crops are complex, sensitive, and susceptible to abiotic
and biotic stresses like insect pests, CLCuV (cotton leaf curl virus), and weeds [90–92].
Lepidopterans insects alone, including pink bollworms, armyworm, and spotted bollworm,
account for 30% of the total losses of cotton crop quality and significantly decrease its
quantity [90]. Cotton Leaf Curl Virus is a devastating challenge to the cotton crop. The
reduced yield consequently affects lint percentage (GOT %), fiber fineness and maturity,
fiber length, strength, and maturity index [93,94]. Weeds, among all of these, are the single
biggest threat, accounting for 47.5% of the total losses of the cotton crop and affecting the
yield during the initial weeks of growth [92]. Cotton yield is highly influenced by abiotic
stresses such as salt, drought, and temperature [95]. Although cotton crop is considered
salt tolerant [96], morphological characters like plant height, number of stem nodes and
internodes, the number of fruiting branches, and biomass notably affect salinity [97].
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Similarly, drought and insufficient water availability cause a significant reduction in
cotton yield [98,99]. High temperature is another important abiotic stress to the cotton
crop and causes a decrease in fertilization efficiency [100], pollination [101,102], and boll
size [103]. Fiber length is also reported to be reduced when the canopy temperature (TC) is
raised above 31 ◦C [104].

It is important to address the challenges mentioned above, as any threat to cotton
crops indirectly threatens the textile industry. Strategies have been devised to reduce
these challenges’ losses and enhance the overall growth and fiber characteristics. Classical
breeding has been used to improve the cotton yield and fiber with improved qualities by
crossing a good cultivar with another suitable cultivar. This strategy comes with some
limitations, such as the fact that only a limited gene pool can be among the suitable
cultivars, and adding novel traits from other organisms becomes difficult through simple
breeding [40,105].

Biotechnology is a way forward in modern times to achieve the required characteristics
in an organism. Cotton fiber provides a good model for studying cell elongation and cell
wall biosynthesis using biotechnological approaches [19]. Improved fiber yield and quality
can be achieved through genetic modification. The idea of the over-expression of a certain
gene to achieve the preferably required characteristic has become widespread, such as
in fiber elongation, as reported by Zhang et al. [106], through the over-expression of
GhFIM-2. FIM (Fimbrin) are the actin-bundling proteins vital in pollen-tube growth in
lily and Arabidopsis [107,108]. The over-expression of GhFIM-2 from FIM family enhances
the actin filament bundling at the fiber elongation stage and helps propel the secondary
wall biosynthesis. Thus, this indicates the role of GhFIM-2 in fiber development by actin
dynamic re-arrangement [106].

The over-expression of GhPFN-2, a profilin, in cotton fibers results in secondary
cell wall synthesis initiation by terminating the elongation phase before the time. This
early termination of the elongation phase and early onset of secondary wall synthesis
resulted in a short length of cotton fibers compared to the wild type. Thicker F-actin
bundles at the elongation stage reorient the fiber bundles from the transverse to the oblique
position. Before the microtubule’s re-orientation, F-actin abundance proved an essential
trigger to switch from the elongation phase to secondary wall synthesis [51]. SPS (sucrose
phosphate synthase) is important in the sucrose synthesis pathway. The catalyzation of
fructose-6-phosphate into sucrose is carried out by SPS enzyme and has a role in fiber
development [109]. Cotton fiber constitutes >90% of the cellulose. Cellulase synthase
is also a significant enzyme that controls cellulose biosynthesis and plays an important
role in determining fiber strength [110]. Biosynthesis and transport of VLCFA (Very Long
Chain Fatty Acids) are reported to be very important in regulating fiber development. The
over-expression of AKR2A (ankyrin repeat-containing protein 2A), an Arabidopsis gene,
in cotton plants revealed that it promotes the elongation of cotton fiber by increasing the
VLCFA contents in transgenic-lines compared to non-transgenic. The AKR2A gene also
promotes fiber elongation by the signaling of hydrogen-peroxide. The results shows that
AKR2A is a potential candidate gene for increasing cotton fiber yield as well as quality
using a genetic engineering approach [38].

Improved cotton fiber yield and quality can be achieved using fiber-specific promoters
that control the targeted gene expression in fibers. However, limited investigations have
been carried out on fiber-specific promoters. To explore the molecular basis of cotton fiber
development, Hou et al. [111] reported that GhSCFP (Gossypium hirsutum seed coat and
fiber-specific protease) expression was higher during fiber initiation and elongation. The
fiber specificity of the promoter was investigated in transgenic cotton and tobacco plants
and confirmed by cloning the 5′ upstream region of GhSCFP, fused with the GUS and GFP
markers.

Besides over-expression, gene knockdown approaches using CRISPR/Cas technology
is another approach to improve cotton yield and fiber quality [112]. However, to meet
the demands of the textile industry, instead of a single approach, scientists should use a
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combinational approach that combines all the possible technologies, such as gene over-
expression, gene knockdown, and molecular breeding for crop improvement in a short
time span [113].

8. Conclusions

Cotton fiber quality is a multigenic trait, which can be improved through in depth
knowledge and targeted application in order to introduce many features by gene pyramid-
ing. The current review gives an insight into how to improve cotton fiber quality using
biotechnological approaches to meet the demands of the textile industry. Also, it explores
the role of actin dynamics focusing on the ACTIN1 gene of G. hirsutum.
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