
Multiple Sclerosis heritability estimation on Sardinian ascertained extended 
families using Bayesian liability threshold model 
 
Supplementary Section S2 
 
Simulation studies  

To assess the ability of the proposed Bayesian-LTMH to recover the true parameters we performed 
simulations under different scenarios. The aim was to evaluate the accuracy and precision of the posterior 
distribution for the parameters of interest according to the model specification, pedigree structure and trait’s 
prevalence. Therefore, we evaluated posterior distribution uncertainty relative to our prior knowledge, i.e., 
standard deviation (SD) and lack of bias. To answer these questions, we simulated different scenarios 
according to i) the pedigree structure, sampling 500 nuclear families or 150 three-generations families from 
affected probands, ii) trait’s prevalence, i.e., 0.05 and 0.005, and iii) the model specification and the effects 
used to simulate liability scores, which include different combinations of additive genetic effects (A), shared 
environment effects (C), dominant genetics effects (D), individual environment effects (E), as well as the 
effect of a single-nucleotide polymorphism (SNP) covariate βSNP. The detailed steps were the following: 

1. First, we randomly simulated 150000 nuclear families, with parents having 1,2, 3, or 4 
sons/daughters with probabilities 0.2, 0.3, 0.3, 0.2. Sex was always assigned with probability 0.5, 
and one of the sons/daughters was randomly chosen to represent the proband. In an alternative 
scenario we randomly simulated 40000 extended pedigrees up to the third generation. The first 
generation was made of a founders’ couple having 2, 3 or 4 sons/daughters with probabilities 0.4, 0.4 
and 0.2 which themselves had 1, 2, 3 or 4 sons/daughter with the probabilities 0.2, 0.3, 0.3 and 0.2. 
Among the second and the third generation, an individual was randomly chosen to represent the 
proband.  

2. Within each family, we simulated liabilities as random draws from a multivariate normal distribution 
with covariance matrix equal to the sum of the effects specified depending on the scenario and mean 
equal to 0 or equal to XβSNP depending on SNP covariate being included in the model. We evaluated 
the performance of Bayesian-LTMH fitting: 1) AE model, when liabilities were simulated fixing h2 
= 0.4, null c2, no covariates included;  2) ACE model, modeling c2

Sibs, when liabilities were 
simulated fixing h2 = 0.4, c2

Sibs = 0.2, no covariates included; 3) ACE model, modeling c2
Sibs and 

c2
Mother-Offspring, when liabilities were simulated fixing h2 = 0.4, c2

Sibs= 0.2, c2
Mother-Offspring= 0.1, no 

covariates included. 4) ACE model as in 2), when liabilities were simulated fixing h2 = 0.4, c2
Sibs

 = 
0.2, d2=0.2, no covariates included, to quantify the potential bias in h2 and c2 parameters posterior 
distributions when dominant genetic effects are present but not accounted in the model. 5) ACE 
model as in 2) but including a SNP as covariate, when liabilities were simulated fixing h2 = 0.4, c2

Sibs
 

= 0.2, and SNP effect βSNP explaining 1% of total phenotypic variance, i.e., h2
SNP= 0.01. Founder 

genotypes for each family were generated from a binomial distribution with two trials and the Minor 
Allele Frequency (MAF) as success probability, which was fixed to 0.2. Non-founder genotypes 
were consequently obtained following Mendelian transmission. To obtain h2

SNP = 0.01, βSNP was 
fixed to 0.178 following the equation[1]: h  =  2 ∗ β ∗ MAF ∗ (1 − MAF) 1 +  2 ∗ β ∗ MAF ∗ (1 − MAF) (Eq. S1) 

 
Once liabilities were generated, individuals were considered as cases if their liabilities were 

larger than a threshold c, which was chosen to maintain the desired cases prevalence. Depending on 
the scenario, prevalence was fixed as 0.05 or 0.005. Finally, 500 nuclear families and 150 three 



generations families were randomly sampled between families with an affected proband, for an 
expected sample size of ≈ 2400 individuals. 

3. Once the ascertained family-based sample was obtained, the Bayesian-LTMH specified according to 
the scenario was implemented using Hamiltonian Monte Carlo (HMC) to draw samples from the 
posterior distribution, setting two chains with 1000 warmup iterations and 1000 sampling iterations. 
Prior distributions were fixed as non-informative Beta distribution, i.e., Beta(1,1), for h2, c2

Sibs and 
c2

Mother-Offspring parameters, and as non-informative normal distribution. i.e., N(0,10), for βSNP 
parameter.  

4. The points 1-3 were repeated 200 times for each scenario. From the obtained parameters’ sampled 
posterior distributions, we calculated different descriptive statistics useful to evaluate the 
performance of Bayesian-LTMH. The median of the posterior distribution was considered as a point 
estimate. To evaluate the accuracy of parameters posterior distributions across all 200 simulations, 
we calculated 1) the median of all point estimates and 2) the bias as the difference from the 
respective true parameter value. To evaluate the precision, we calculated 3) the SD of all point 
estimates and 4) the median of all posterior distributions’ SDs. Moreover, we calculated 5) the root 
mean square error (RMSE) as a measure to compare the quality of the posterior distribution, both in 
terms of accuracy and precision, between scenarios. RMSE is defined as the square root of the mean 

square difference between the point estimates and the respective true value, i.e., E[ θ −  θ ]. 
Finally, we calculated 6) the coverage as the number of times the 95% Highest Posterior Density 
Credibility Intervals (HPD CIs) contained the true parameter.  

 
Finally, we also compared computational time to fit AE and ACE models using LTHM under the 
Bayesian framework and under the EM-algorithm approach, considering a sample of 150 three-
generations families ascertained from a proband where trait prevalence was equal to 0.005. 

 
Results 

Posterior distributions for each parameter were obtained by sampling via the HMC sampler implemented 
in the program Stan[2]. The performance was evaluated in terms of accuracy, precision, and coverage; 
Supplementary Table S1 reports the descriptive statistics for the parameters posterior distributions obtained 
within each simulated scenario, while Supplementary Figure S1 reports the corresponding box plots with a 
red line indicating the true parameter value. No divergences or other diagnostic problems were encountered 
during HMC sampling. Considering all the scenarios, point estimates for all parameters were generally close 
to the true value. Therefore, accurate h2 were obtained in presence of confounders such as shared environmental 
effects. It can be observed that the RMSE and posterior distribution SD of the estimator across different 
scenarios showed an increase with i) a lower trait prevalence, or/and ii) increasing the number of variance 
components in the model, or/and iii) using three-generations families. The latter result can be explained due to 
decreasing genetic relatedness among distant relatives within a family, such as grandparents-grandchildren or 
nephews/nieces-uncles/aunts, which led to a lower statistical power compared to the scenario with nuclear 
families and same sample size. Ascertainment bias was correctly adjusted for βSNP when a SNP covariate was 
included in the ACE model. A slight downward bias for h2 parameter was observed when an additional shared 
environment effect variance component, i.e., c2

Mother-Offspring, was included in the ACE model; this bias was 
higher when the prevalence of the trait was equal to 0.005 and using three-generations families. When 
dominance genetic effects variance d2=0.2 was included in liabilities simulation but not accounted for in the 
ACE model, the medians of c2

Sibs posterior distributions obtained were, as expected, inflated by a factor 
corresponding to 0.25d2=0.05. However, this adjustment allowed to obtain accurate h2 posterior distributions, 
avoiding the inflation from both c2

Sibs and d2 confounding. Finally, HPD CIs coverage was generally near to 
95% in each scenario. Regarding computational efficiency, STAN employed 358.7 seconds to fit an AE model 



running one chain with 1000 warmup iterations and 1000 sampling iterations, without requiring multi-
threading within-chain parallelization, on a sample of 150 three-generations families. Considering the same 
sample and number of fixed iterations, STAN employed 401.8 seconds to fit an ACE model including a 
parameter for c2. The computational time dropped, respectively, to 124.8 and 140.1 seconds when 10 threads 
were set for within-chain parallelization. Instead, considering the same sample and the same models, EM-
based approach took more than one hour to proceed with a second iteration even after setting 100 threads for 
parallelization, therefore highlighting the dramatic improvement in speed using the Bayesian framework.  
 
Supplementary Table S1. Descriptive statistics for the sampled posterior distributions 
obtained fitting Bayesian liability threshold model on the 200 simulated datasets within 
each different scenario. 

Pedigree* Trait 
Prevalence Parameter 

Point 
Estimate 
Median 
(SD)** 

Bias  SD° RMSE^ Coverage 
(95% CI) 

AE model, true h2 = 0.4 
Nuclear 

0.05 

h2 

0.393 (0.046) -0.007 0.045 0.047 0.94 
Three-generations 0.399 (0.061) -0.001 0.063 0.061 0.95 

Nuclear 
0.005 

0.398 (0.056) -0.002 0.055 0.057 0.94 

Three-generations 0.385 (0.084) -0.015 0.082 0.087 0.94 

ACE model true h2 = 0.4, true c2
Sibs = 0.2 

Nuclear 
0.05 

h2 0.400 (0.054) 0.000 0.054 0.054 0.93 
c2

Sibs 0.199 (0.036) -0.002 0.038 0.036 0.96 

Three-generations 
h2 0.399 (0.074) -0.001 0.073 0.074 0.96 

c2
Sibs 0.197 (0.050) -0.003 0.051 0.050 0.95 

Nuclear 

0.005 

h2 0.387 (0.071) -0.013 0.069 0.072 0.95 

c2
Sibs 0.208 (0.045) 0.008 0.044 0.046 0.97 

Three-generations 
h2 0.379 (0.096) -0.021 0.099 0.098 0.92 

c2
Sibs 0.206 (0.059) 0.006 0.067 0.060 0.97 

ACE model, true h2 = 0.4, true c2
Sibs = 0.2, true βSNP=0.178, true h2SNP = 0.01 

Nuclear 

0.05 

h2 0.396 (0.052) -0.004 0.053 0.052 0.95 
c2

Sibs 0.200 (0.040) 0.000 0.038 0.040 0.95 
βSNP 0.180 (0.062) 0.002 0.067 0.062 0.98 
h2

SNP 0.012 (0.008) 0.002 0.009 0.008 0.98 

Three-generations 

h2 0.388 (0.079) -0.012 0.069 0.080 0.92 
c2

Sibs 0.209 (0.047) 0.009 0.044 0.047 0.94 
βSNP 0.188 (0.091) 0.010 0.096 0.090 0.96 
h2

SNP 0.013 (0.012) 0.003 0.014 0.013 1.00 

Nuclear 

0.005 

h2 0.393 (0.071) -0.007 0.073 0.072 0.96 
c2

Sibs 0.202 (0.050) 0.002 0.051 0.050 0.97 
βSNP 0.167 (0.074) -0.011 0.071 0.074 0.93 
h2

SNP 0.009 (0.009) -0.001 0.008 0.009 0.93 

Three-generations 
h2 0.378 (0.108) -0.022 0.096 0.110 0.90 

c2
Sibs 0.195 (0.066) -0.005 0.064 0.066 0.92 

βSNP 0.163 (0.131) -0.015 0.119 0.130 0.93 



h2
SNP 0.010 (0.017) 0.000 0.014 0.018 0.97 

ACE model, true h2 = 0.4, true c2
Sibs = 0.2, true c2

Mother-Offspring = 0.1 

Nuclear 

0.05 

h2 0.382 (0.073) -0.018 0.073 0.075 0.94 
c2

Sibs 0.202 (0.046) 0.002 0.044 0.047 0.94 
c2

Mother-Offspring 0.102 (0.045) 0.002 0.048 0.046 0.95 

Three-generations 
h2 0.385 (0.085) -0.015 0.087 0.087 0.93 

c2
Sibs 0.214 (0.052) 0.014 0.054 0.054 0.96 

c2
Mother-Offspring 0.102 (0.046) 0.002 0.054 0.046 0.96 

Nuclear 

0.005 

h2 0.370 (0.091) -0.030 0.091 0.098 0.93 
c2

Sibs 0.218 (0.053) 0.018 0.053 0.056 0.93 
c2

Mother-Offspring 0.103 (0.052) 0.003 0.056 0.053 0.95 

Three-generations 
h2 0.353 (0.107) -0.047 0.112 0.116 0.93 

c2
Sibs 0.218 (0.061) 0.018 0.069 0.065 0.97 

c2
Mother-Offspring 0.104 (0.045) 0.004 0.069 0.046 0.99 

ACE model, true h2 = 0.4, true c2
Sibs = 0.2 and true d2 = 0.2 

Nuclear 
0.05 

h2 0.399 (0.056) 0.001 0.054 0.056 0.94 
c2

Sibs+0.25d2 0.256 (0.038) 0.006 0.037 0.038 0.97 

Three-generations 
h2 0.404 (0.075) 0.004 0.073 0.075 0.96 

c2
Sibs+0.25d2 0.256 (0.052) 0.006 0.051 0.052 0.96 

Nuclear 
0.005 

h2 0.392 (0.074) -0.008 0.069 0.074 0.91 
c2

Sibs+0.25d2 0.253 (0.048) 0.003 0.044 0.048 0.92 

Three-generations 
h2 0.376 (0.104) -0.024 0.099 0.107 0.94 

c2
Sibs+0.25d2 0.255 (0.067) 0.005 0.065 0.067 0.93 

* 500 nuclear families or 150 three-generations families were obtained sampling affected probands 
** The point estimate is represented by the median of the posterior distribution 
° Median of all posterior distributions' standard deviations 
^ Root mean square error 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure S1. Box plots for the sampled posterior distributions obtained fitting 
Bayesian liability threshold model on the 200 simulated datasets within each different 
scenario. 



 
1) AE model, true h2 = 0.4 

 

 

2) ACE model, true h2 = 0.4, true c2
Sibs = 0.2 

 

 
 



 
 

3) ACE model, true h2 = 0.4, true c2
sibs = 0.2, true βSNP=0.178, true h2

SNP = 0.01 
 

 
 

 



 
 

4) ACE model, true h2 = 0.4, true c2
Sibs = 0.2, true c2

Mother-Offspring = 0.1 
 

 



 
 

5) ACE model, true h2 = 0.4, true c2
Sibs = 0.2 and true d2 = 0.2 
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