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Abstract: The Tibetan cashmere goat is a prolific goat breed in China. In sheep breeds, natural
mutations have demonstrated that the transforming growth factor beta (TGF-β) super family ligands,
such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and their
type I receptor (bone morphogenetic protein receptor (BMPR1B), are essential for ovulation and
increasing litter size. In this study, 216 female Tibetan cashmere goats were sampled, and candidate
genes with fecundity traits were detected via restriction fragment length polymorphism (RFLP) and
sequenced. Four polymorphic loci were found in specific amplification fragments of BMP15 and
GDF9. Two SNP sites of the BMP15 gene were discovered, namely G732A and C805G. The G732A
mutation did not cause the change in amino acids, and the frequencies of each genotype were 0.695
for the GG type, 0.282 for the GA type and 0.023 for the AA type. The C805G mutation caused amino
acids to change from glutamine to glutamate. The genotype frequencies were 0.620 for the CC type,
0.320 for the CG type and 0.320 for the CG type. For the GG type 0.060, the G3 and G4 mutations of
the GDF9 gene were all homozygous mutations. Two known SNP sites, C719T and G1189A, were
detected in the Tibetan cashmere goat GDF9 gene, of which the C719T mutation caused a change
of alanine to valine, with a genotype frequency of 0.944 for the CC type and 0.056 for the CT type,
whereas no TT type was found. The G1189A mutation caused valine to become isoleucine, and the
frequencies of each genotype were 0.579 for the GG type, 0.305 for the GA type and 0.116 for the AA
type; G1, B2, B3, B4, FecXH, FecXI, FecXL, G2, G5, G6, G7, G8, FecGE, FecTT and FecB mutations were
not found in Tibetan cashmere goats. The results of this study provide a data basis for future studies
of BMP15, GDF9 and BMPR1B gene mutations in goats.

Keywords: Tibetan cashmere goat; SNP; BMP15; GDF9; BMPR1B

1. Introduction

The profit from goat rearing is determined by two main factors, namely, production
and prolificacy [1]. Prolificacy is among the most important traits in goats and is regulated
by a number of genes. Prolificacy candidate genes include bone morphogenetic protein 15
(BMP15), growth differentiation factor 9 (GDF9) and bone morphogenetic protein receptor,
type IB (BMPR1B), all of which have important functions in regulating ovarian functions in
animals. These genes, which affect ovulation and litter size, are collectively referred to as
fecundity (Fec) genes. Some specific mutations found on these genes have been shown to
be associated with different phenotypic effects. Some recent studies on some prolific goat
breeds have suggested that higher prolificacy in goats may differ from that of sheep. Some
identified point mutations of the BMPR1B (FecB) and BMP15 (FecXH, FecXI, FecXG and
FecXB) genes are monomorphic in the prolific goat breeds. BMP15, also known as growth
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differentiation factor 9B, is a growth factor secreted by oocytes in the bone morphogenetic
protein subfamily in the transforming growth factor β superfamily [2,3]. It is located on the
X chromosome and has shown a notable role in sheep ovarian folliculogenesis. Mutations
in the BMP15 gene, such as B1, B2 (FecXG), B3, B4 (FecXB), FecXI, FecXL, FecXH, FecXR,
FecXGr, FecXO and others, have been identified in sheep. Additionally, FecXI, FecXB, FecXL,
FecXH, FecXG and FecXR are identified as fecundity-related mutations [4–8]. The mutation
of BMP15 genes associated with the fecundity in goats has been confirmed in Markhoz
goats. In a previous study in sheep, the rate of ovulation in BMP15 mutants was greater
in heterozygotes, whereas the homozygous mutants showed a primary ovarian failure,
which led to sterility [9]. In contrast, homozygous mutant animals showed higher numbers
of kids in Beetal goats [10]. GDF9 is a growth factor secreted by oocytes that plays an
important role in the growth and differentiation of follicles [11]. The expression of GDF9
was identified as oocyte-specific in ovine and bovine ovaries, which began at the primordial
follicle stage. In sheep, the gene mutation of GDF9 may cause infertility or an increased
ovulation rate. Mutations of GDF9, including FecGH, FecGE, FecGSI and FecTT, have been
identified to be associated with fertility. In developing ovarian follicles, the GDF9 growth
factor is secreted and plays role in growth and differentiation in early ovarian follicles.
Animals homozygous for GDF9 are known to be anovulatory, while animals heterozygous
for GDF9 have a higher than normal ovulation rate [12]. The genetic polymorphisms of
the GDF9 were shown to affect fecundity traits in farm animals, and the heterozygous
genotypes caused an increase in the ovulation rate and enhanced the prolificacy in the farm
animals, in comparison to wild-type homozygous mothers [13]. There is a high influence
of BMP15 and GDF9 on fecundity. These genes are produced by the ovary and influence its
function, aside from their involvement in increasing the ovulation rate in goats. They also
affect follicle growth and development at all stages of folliculogenesis in females [14]. They
induce mitosis along with differentiation in the follicular somatic cells during follicular
development through the paracrine signaling pathway. They also play key roles in litter
size. Numerous mutations in these genes may contribute to high prolificacy. After years of
research, more than a dozen mutations in GDF9, such as G1, G2, G3, G4, G5, G6, G7, G8,
FecGE, FecTT and FecGV, have been found in sheep [8,15–17]. Among them, G8 mutation
heterozygosity increases the number of ovulations, whereas homozygous mutations lead
to infertility [7,8]. FecXB has been found in goats. It has also been shown that the genetic
polymorphisms of the GDF9 gene in goats were significantly higher than in sheep and
also more complicated. Heterozygous ewes with mutant alleles of GDF9 and BMP15 have
high ovulation rates compared to those animals carrying the normal homozygous wild
genotype. In sheep, it has been shown that homozygous mutants of GDF9 and BMP15
cause ovarian failure, which leads to sterility [1].

BMPR1B is a membrane receptor for bone morphogenetic proteins that are widely
present in different tissues of the body [18]. BMP 2, 4, 6, 7 and 15 are expressed in the ovary
as candidate ligands of the BMPR1B receptor. BMPR1B is a dominant autosomal gene
found in chromosome 6 and ensures fecundity and twinning in small ruminants [19]. Given
that the tendency to have twins and triplets is inherited and may be common in sheep
and goats, the BMPR1B gene was thought to be a potential candidate gene for prolificacy
in goats because of its critical role in the regulation of terminal folliculogenesis and the
control of ovulation rate [20]. Souza et al. [21] studied the BMPR1B gene in sheep with two
mutation sites, one for FecB mutation and the other for C1113A mutation. Chu et al. [22]
studied the polymorphisms of nine exons of the sheep BMPR1B gene and found 20 new
mutation sites in addition to FecB and C1113A, of which 3 polymorphism sites, G922T,
T1043C and G192A, led to the corresponding amino acid changes but did not affect the
litter size. FecB mutation in the BMPR1B gene has also been found in many goat breeds. A
previous study found them to be homozygous non-carriers. FecB polymorphism in Raighar
goats showed the monomorphic status of the breed. In Markhoz goats, it was supposed
that the FecB allele might not be the only main cause for the prolificacy rate. Some studies
have shown that genes of BMP15, GDF9 and BMPR1B play the most important roles in the
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growth and differentiation of early ovarian follicles and have an important influence on the
litter size [23–25].

Current research on sheep BMP15, GDF9 and BMPR1B has achieved great results and
showed some mutations that may affect high fertility traits. However, there are relatively
few related studies on goats. BMP15, GDF9 and BMPR1B with their related genetic markers
affecting the litter size in goats are also relatively lagging and these restrict the progress of
goat breeding and development.

The Tibetan cashmere goat, also regarded as the Kashmiri goat [26], is an important
economic animal in Tibet with its collection of fur, skin, meat, velvet and milk [27]. These
small ruminants withstand harsh environmental conditions. They live in arid and semi-
arid areas of Tibet, where they are reared for their benefits. They are also known for
reproduction traits with high fecundity, big litter size and precocious sexual maturity. They
can, therefore, be used as valuable material to explore genetic markers related to economic
traits. Genes and genetic variations associated with goat litter size, GDF9, BMP15 and
BMPR1B have been identified [28]. In this study, Tibetan cashmere goats in the Arena area
of northwest Tibet were used, and gene mutations as well as polymorphisms of BMP15,
GDF9 and BMPR1B genes were detected via RFLP and PCR product sequencing. This
provided us with basic information and data for further research and screening of the main
genes affecting the fertility of Tibetan cashmere goats. It also provided a data basis for the
main genes affecting the litter size in goats and related genetic markers.

This study focuses on the effects of polymorphism and mutation of genes (BMP15,
GDF9 and BMPR1B) in Tibetan cashmere goats. It is advantageous to identify genes and
mutations that can be important for their breeding, better fecundity and normal physiology
to improve productivity and reproductive traits.

2. Materials and Methods
2.1. Experimental Materials
2.1.1. Laboratory Animals

A total of 216 female Tibetan cashmere goats were randomly selected from seven
counties (Ritu, Gaize, Gar, Bangor, Genji, Nyima and Tsoqin) in Tibet’s Ali and Nagqu
districts. There were single-birth animals with three to five consecutive parities. All the
goats were healthy and aged 3–4 years. They were kept in sheltered outdoor paddock and
were provided with alfalfa hay and water available ad libitum.

2.1.2. Main Reagents

A blood/tissue/cell genome extraction kit was purchased from Beijing Tiangen
Biotechnology, China. Molecular reagents, such as Taq DNA polymerase and dNTP,
were purchased from Dalian TAKARA Corporation (Dalian, Liaoning, China) and used
according to the manufacturer’s instructions.

2.2. Experimental Methods
2.2.1. Sample Collection

Ear tissues from Tibetan cashmere goats (about 1 cm3) were collected in vivo and
stored in ethanol solution for DNA extraction, and all samples were temporarily stored
and transported in an ice box after collection and finally stored in an ultra-low temperature
freezer at −80 ◦C. All experimental procedures involving the animals were reviewed and
approved by the Animal experimental committee of Sichuan Agricultural University. The
ethical approval code is (SAU2015068, 12 December 2015).

2.2.2. Primer Design and Synthesis

According to the BMP15 gene sequence of sheep published in GenBank (accession
number: EU743938), the primer premier 5.0 software was used to specifically amplify
primers of BMP15-1 for the exon II segment, and its amplification region covered the
known B2, B3, B4, FecXH, FecXI and FecXL alleles in sheep. Specific primers of GDF9-1 and
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GDF9-2 were designed for exon fractions based on published sheep GDF9 gene sequences
(accession number: EF446168) using primer premier 5.0 software, and their amplification
regions covered known G2, G3, G4, G5, G6, G7, G8, FecGE and FecTT alleles in sheep.
The G1 mutation restriction fragment length polymorphism detection primers reported
by Hanrahan et al. [29] and the primers G1-RFLP and BMPR1B-RFLP detection primers
reported by Davis et al. [30] in 2002 were referred to. The primers were synthesized by
Beijing Qingke Xinye Biotechnology Co., Ltd. and Primer information is available in Table 1.

Table 1. The primer information.

Primer Name Primer Sequence (5′→3′) Annealing
Temperature (◦C)

Product Size
(bp)

GDF9-1

GDF9-2

G1-RFLP

BMP15-1

BMPR1B-RFLP

F-GAACCTTTCCATCAGTG
R-TCAGATACAAAAGCAGTG
F-TATCTGCCTACCCCGTGG

R-GGTACACTTAGTGGCTATCA
F-GAAGACTGGTATGGGGAAATG
R-CCAATCTGCTCCTACACACCT

F-AGCAGCCAAGAGGTAGTGAGG
R-CATGTGCAGGACTGGGCAATC

F-CCAGAGGACAATAGCAAAGCAAA
R-CAAGATGTTTTCATGCCTCATCAACACGGTC

53

56.5

60

61.3

60

408

461

466

550

191

2.2.3. Genomic DNA Extraction

The collected samples were ground into powder using liquid nitrogen and a mortar,
and the genomic DNA was extracted according to the instructions of the tissue genome
extraction kit (purchased from Beijing Tiangen Biotechnology, Beijing, China).

2.2.4. PCR Amplification and Detection

The extracted genomic DNA was taken as a template along with primers of GDF9-1,
GDF9-2, G1-RFLP, BMP15-1 and BMPR1B-RFLP. The total reaction volume was adjusted
to 25 µL, see Table 2. Briefly, the reaction parameters were: predenaturation at 94 ◦C for
3 min; 94 ◦C denaturation for 30 s; annealing for 40 s, 72 ◦C extended for 30, 30, 30, 40 and
20 s, 34 cycles; and finally, 72 ◦C extended for 10 min and later stored at 4 ◦C.

Table 2. PCR amplification system.

Reagents Volume (µL)

10× buffer 2.5
Mg2+ (10 mol/L) 2.0

dNTP (2 mmol/L) 2.0
Primers 1

TaqDNA polymerase (5 U/µL) 0.13
DNA template 1

ddH2O Make up 25

The PCR amplification product was detected via 2% agarose gel electrophoresis, 1.5 µL
of the PCR amplification product was taken and electrophoresis was performed at 120 V
for 30 min; the electrophoresis results were analyzed using a gel imaging system.

2.2.5. Digestion Typing and Sequencing

The restriction enzymes were manufactured by Dalian TAKARA Corporation (Dalian,
Liaoning, China). The G to A nucleotide change in GDF9 exon 1 disrupts a HhaI restriction
enzyme cleavage site (GCGC to GCAC) at nucleotide 260 of the 462 bp PCR fragment
produced by primers G9-1734 and 2175. Restriction digestion of the PCR product from
wild-type animals with HhaI resulted in cleavage of the 462 bp product (at two internal



Genes 2023, 14, 1102 5 of 11

HhaI resulted in cleavage of the 462 bp products (at two internal HhaI sites)) into fragments
of 52, 156 and 254 bp. However, DNA fragments containing the A nucleotide yielded only
two fragments (52 and 410 bp). Animals heterozygous for the mutation had fragments of
all four sizes (52, 156, 254 and 410 bp). The enzymes used were obtained from a previous
publication. The products amplified by G1-RFLP and BMPRIB-RFLP were digested with
HhaI and Ava II enzymes separately, and the total volume was adjusted using products
10 µL, 10× Buffer R 1.5 µL, enzyme (10 U/µL) 0.1 µL, ddH2O 3.4 µL, 37 ◦C overnight,
and the digestion product was electrophoretic typing using 3% agarose in TBE buffer at
150 V for 30 min. The amplification products of GDF9-1/GDF9-2 and BMP15-1 were sent to
Shanghai Bioengineering Co., Ltd. (Shanghai, China) for sequencing, and the results were
compared and analyzed using Geneious 10.0.5 software.

3. Analysis of the Results
3.1. PCR Product Detection

The genomic DNA amplification of ear tissues and the products were detected by
agarose gel electrophoresis. The results showed that the size of the amplified band was
consistent with the target band, and the specificity was good.

3.2. Digestion Products

The products amplified by G1-RFLP and BMPR1B-RFLP were digested (Figure 1) with
HhaI and Ava II enzymes. The enzyme, as shown in Figure 2, had HhaI enzyme cleavage
G1-RFLP product typing bands: GG genotypes (wild type) 254 bp, 156 bp and 52 bp, AA
genotypes 414 bp and 52 bp, GA genotypes 414 bp, 254 bp, 156 bp and 52 bp; the Ava II
enzyme cleavage BMPR1B-RFLP product typing bands were AA genotypes (wild type)
191 bp, GG genotypes 160 bp and 31 bp and AG genotypes 160 bp, 31 bp and 91 bp. The
results indicate that appropriate sequencing or RFLP typing can be performed.

3.3. RFLP Detection

The digestion G1-RFLP and BMPR1B-RFLP amplification products were electrophoresed,
and the electrophoresis results are shown in Figures 1 and 2. The results showed that G1
and FecB mutations were not found in any of the 216 samples.
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3.4. Amplified Fragment Sequencing

There were two overlapping peaks in the amplification fragment peak patterns of
GDF9-1 and GDF9-2 primers (Supplementary Figure S1), located at C→T at coding se-
quence 719 bp and C→A at 1189 bp, respectively. In which C→T mutations at 719 bp and
C→A mutations at 1189 bp lead to changes in the amino acids encoded by the correspond-
ing sites (Table 3), and the polymorphic sites G2, G3, G4, G5, G6, G7, G8, etc., found in
sheep covered by the amplification bands FecGE and FecTT sites were checked, and it was
found that all samples had G3 and G4 homozygous mutations.

Table 3. Positions of mutations with changes in bases and the effect with amino acids in GDF9 and
BMP15 of Tibetan cashmere goat.

Gene Mutation Position (bp) Base Change Codon Amino Acid Change

GDF9

G3 477 G—A CTG*—CTA Leucine (L) unchanged
G4 721 G—A G*AA—AAA Glutamic acid (E)—Lysine (K)

C719T 719 C—T GC*G—GTG Alanine (A)—Valine (V)
G1189A 1189 G—A C*TT—ATT Valine (V)—Isoleucine (I)

BMP15
G732A 732 G—A AAG*—AAA Lysine (K) unchanged
C805G 805 C—G C*AA—GAA Glutamine (Q)—Glutamic acid (E)

* Locus of changed nucleotide.

Sequencing analysis of GDF9-1, GDF9-2 and BMP15-1 amplification products found that
there were overlapping peaks in the sequence peak map of the BMP15-1 amplification products
(Supplementary Figure S2), so it could be determined that there were SNP sites, which were
located at G→A at 732 bp and C→G at 805 bp, where C→G mutations at 805 bp led to
changes in the amino acids encoded by the corresponding sites (Supplementary Table S1). At
the same time, the polymorphism sites B2, B3, B4, FecXH, FecXI and FecXL found in sheep
covered by the amplification band were checked and no mutations were found.

3.5. Polymorphism Statistics

The statistics of the four polymorphisms detected and the allele frequency, genotype
frequency, homozygosity and heterozygosity were calculated, and the statistical results
showed that the G732A loci of the BMP15-1 amplification fragment of 216 samples were
dominated by the GG genotype, 150 of the 216 individuals were GG genotypes and only
5 individuals were homozygous mutants (see Table 4). The G allele frequency was 0.836,
and the C805G locus was dominated by the CC genotype; the C719T locus of the GDF9
amplification fragment of 216 samples was dominated by the CC genotype, with a genotype
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frequency of 0.944, only 12 individuals were CT genotypes and no homozygous mutant TT
genotype was found, while the G1189A locus was dominated by the GG genotype.

Table 4. Genotype and allele frequencies of GDF9 and BMP15 gene in Tibetan cashmere goats.

Gene Mutation Genotypes Frequencies Alleles Frequencies Heterozygosity Homozygosity

GDF9

G3 AA (N = 216) 1.000 A 1.000 0.000 1.000
G4 AA (N = 216) 1.000 A 1.000 0.000 1.000

C719T
CC (N = 204) 0.944 C 0.972

0.056 0.944CT (N = 12) 0.056 T 0.028

G1189A
GG (N = 125) 0.579 G 0.731
GA (N = 66) 0.305 0.306 0.694
AA (N = 25) 0.116 A 0.269

BMP15

G732A
GG (N = 150) 0.695 G 0.836
GA (N = 61) 0.282 0.282 0.718
AA (N = 5) 0.023 A 0.164

C805G
CC (N = 134) 0.620 C 0.780
CG (N = 69) 0.320 0.319 0.681
GG (N = 13) 0.060 G 0.220

4. Discussion

In small ruminant species, mainly in sheep, the genetics of litter size is extensively
studied. In sheep, the main prolificacy genes include BMPR1B, GDF9 and BMP15. The
mutated BMPR1B gene increases the ovulation rate. Litter size and ovulation rate increase
with the number of copies of the mutation. In heterozygotes, there are high ovulation rates
in GDF9 and BMP15 mutants while the homozygous mutants show a primary ovarian
failure, causing complete sterility [31]. The Tibetan cashmere goat with high prolificacy
varies from twin to quadruplet offspring. In this study, the goats were genotyped for three
known prolificacy genes, namely, BMPR1B, GDF9 and BMP15. SNP genotyping techniques
rely on amplification of the target DNA using PCR but different by discriminating between
the different alleles, and this includes significant post-PCR manipulation. The restriction
fragment length polymorphism (RFLP) typing method involves restriction endonuclease
digestion of PCR products. A well-used SNP typing technique, Allele-specific oligonu-
cleotide (ASO) melting, is characterized by lengthy blotting and hybridization procedures.
The use of the tetra-primer ARMS-PCR method used circumvents much handling of the
PCR product. Primers were designed to amplify fragments of differing sizes for each allele
band for the purpose of resolving them in agarose gel electrophoresis. It is a simple, fast
and highly economical method for SNP scoring and very important tool for large-scale
SNP analysis [31].

The current study, examining the G1 mutation in the GDF9 gene, mainly focuses on
sheep, whereas if the G1 mutation in the GDF9 gene of different breeds of sheep affects
litter size in different breeds of sheep is currently different. G1 mutation in different
breeds of sheep and goats was a little different, and its effects on litter size attracted
more interest [8,32–34]. The RFLP typing results of the G1 mutation in the GDF9 gene of
Tibetan cashmere goats show that no mutation exists at this site, which is similar to other
studies [35] Consistency in the presence of mutations at this site was also not found in
cashmere goats in Inner Mongolia.

Polley et al. [35] found that FecB mutations had a vital effect on litter size in Indian
black Bengal goats in BMPR1B. However, in related studies of other breeds of goats, most
of them did not have this locus mutation, and this study also showed that there were no
FecB mutations in Tibetan cashmere goats, indicating that the mutation rate of this site was
low in goats.

The detection of known polymorphisms in sheep covered in the amplification frag-
ments of Tibetan cashmere goats GDF9-1, GDF9-2 and BMP15-1 only found the presence
of G3 and G4 mutations, and both were homozygous mutations. It was inferred from the
mutation rate of G3 and G4 that their mutations did not affect reproductive performance in
Tibetan cashmere goats. G3 and G4 mutations have not been found to affect litter size in
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some breeds of sheep and goats because G3 does not cause amino acid changes, and G4
mutations located before the Flynn protease cleavage site do not affect protein function.

In recent years, BMP15, GDF9, BMPR1B, insulin-like growth factor 1 (IGF1), follicle-
stimulating hormone β (FSHβ) and prolactin receptor (PRLR) have been the main genes
affecting fertility, as demonstrated in sheep and other species [36–38]. According to the
results of the current study, these are known mutations (B2, B3, B4, FecXH, FecXI, FecXL,
G1, G2, G5, G6, G7, G8, FecGE, FecTT and FecB, etc.) affecting litter size in goats. These
mutations are rarely found in both high-yielding goat breeds and low-yielding goat breeds,
and this may also indicate that polymorphic sites affecting the shape of litter size in sheep
and goats may be different [37,39–41].

In the detection of the polymorphism of the amplification fragment of BMP15-1 in
Tibetan cashmere goats, two new mutation sites, G732A and C805G, were found, in which
the G732A mutation did not lead to changes in amino acids and had no effect on its protein
structure. Therefore, it is possible that G732A mutation may not have affected reproductive
performance [42,43]. The C→G mutation at the C805G locus caused the amino acid encoded
by the corresponding site to change from hydrophilic glutamine to hydrophilic glutamate,
and from polar uncharged amino acid to negatively charged amino acid, which may have
a certain impact on the secondary structure of its protein. Relevant studies have shown
that Tibetan cashmere goats are generally singleton [44], and only a very small number of
individuals have twins. From the results of G732A and C805G, two sites of homozygous
mutations [45] are relatively small, 5 and 13, and it is impossible to judge whether their
homozygous mutations will have an impact on the litter size, respectively. From the
heterozygous mutations [46] of these two sites, it can be inferred that the heterozygous
mutations may not have much of an effect on litter size [47].

The detection of GDF9-1 and GDF9-2 amplified fragment polymorphisms found that
there were two polymorphic sites, C719T and G1189A, in Tibetan cashmere goats. Existing
studies have shown that C719T and G1189A mutations were found in goat breeds, such as
Guizhou white goat, Indian goat, Jining green goat and Boer goat. Du Zhiyong et al. [31],
in a study of Guizhou white goats, believed that the G1189A mutation might be related to
its high fertility. Dong Chuanhe et al. [48] found that G1189A mutation had a significant
effect on the litter size in Yimeng black goats, the litter size of the AA type was 0.34 and 0.38
more than that of the AG and GG types, respectively, and C719T had no significant effect
on the litter size. In Tibetan cashmere goats, only heterozygous mutations existed with a
low frequency of 0.056. It was also uncertain whether it could affect the litter size [49] of
Tibetan cashmere goats or not. The frequency of G1189A homozygous mutant type was
0.116, and it was speculated that the homozygous mutation at this site might affect the
litter size of Tibetan cashmere goats.

5. Conclusions

This study reveals that there were no G1, B2, B3, B4, FecXH, FecXI, FecXL, G2, G5, G6,
G7, G8, FecGE, FecTT and FecB mutations found in Tibetan cashmere goats; however, G3
and G4 mutations were detected in the GDF9 gene and were all homozygous mutations
in the 216 samples, which were significantly different from those in sheep. A total of four
polymorphisms, C719T, G1189A, G732A and G1189A, were found in the BMP15 and GDF9
genes of Tibetan cashmere goats, and the two polymorphism sites of G732A and G1189A
in the BMP15 gene were discovered. These results enrich the mutation data of BMP15,
GDF9 and BMPR1B in goats and also provide data for future research on high-fertility gene
biomarkers of goats.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14051102/s1, Figure S1: Sequence maps of GDF9; Figure S2:
Sequence maps of BMP15; Table S1: Positions of mutations with changes in bases and its effect with
amino acids in BMP 15 of Tibetan cashmere goat.
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