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Abstract: DNA synthesis is widely used in synthetic biology to construct and assemble sequences
ranging from short RBS to ultra-long synthetic genomes. Many sequence features, such as the GC
content and repeat sequences, are known to affect the synthesis difficulty and subsequently the
synthesis cost. In addition, there are latent sequence features, especially local characteristics of the
sequence, which might affect the DNA synthesis process as well. Reliable prediction of the synthesis
difficulty for a given sequence is important for reducing the cost, but this remains a challenge. In
this study, we propose a new automated machine learning (AutoML) approach to predict the DNA
synthesis difficulty, which achieves an F1 score of 0.930 and outperforms the current state-of-the-art
model. We found local sequence features that were neglected in previous methods, which might
also affect the difficulty of DNA synthesis. Moreover, experimental validation based on ten genes
of Escherichia coli strain MG1655 shows that our model can achieve an 80% accuracy, which is also
better than the state of art. Moreover, we developed the cloud platform SCP4SSD using an entirely
cloud-based serverless architecture for the convenience of the end users.

Keywords: DNA synthesis; machine learning; AutoML; feature reduction; cloud platform

1. Introduction

As one of the core technologies of synthetic biology, DNA synthesis, which refers
to a group of methods used to construct and assemble de novo nucleotide sequences,
has been widely used to construct genetic systems [1,2], artificial synthetic genomes [3],
engineered protein sequences [4], and vaccines [5,6]. The first complete gene (a yeast tRNA)
was successfully synthesized in 1972, and the first entire chromosome was synthesized in
2014 [7]. JCVI-Syn3A, an updated version of the world’s first artificial organism, was also
constructed with the aid of DNA synthesis [8]. In 2021, there were seven COVID-19 mRNA
candidate vaccines that were synthesized in vitro from a DNA template encoding either
the full-length S protein or the RBD of SARS-CoV-2 [9].

However, DNA sequences cannot always be easily synthesized due to the fact that
there are many latent determinants in the sequence that might introduce errors. For
example, DNA sequences with a high GC content contain guanine molecules that are
stacked together and may affect the annealing process of the DNA molecules [10,11]. In
addition, the presence of oligonucleotide secondary structures will also affect the DNA
assembly. For example, highly complementary repeats make it almost impossible to
assemble multiple fragments accurately, and synthesis usually fails or generates nonspecific
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products [12–14]. In addition to these known factors, some other sequence determinants
might also cause DNA synthesis and assembly to fail, and it is still very difficult to evaluate
the complexity of the overall sequence synthesis [15,16]. Accordingly, an algorithm that can
accurately predict the DNA synthesis difficulty based on broader sequence determinants
would be beneficial to reduce the experimental failure rate and help biologists adjust the
synthesis strategy if necessary.

A previous study [17] developed a random forest classifier based on nine nucleotide
sequence features, named Synthesis Success Calculator (SSC). SSC has a relatively high
predictive performance (F1 score of 0.928), but it can be further improved in the following
aspects. First, all nine features are related to GC/repeats/hairpins, and other biophysical
features are not considered. Secondly, the random forest model could be further improved
using other models, such as the ensemble model. Thirdly, it is not straightforward to
reproduce the SSC results using the code in their public GitHub repository, and their web
application requires user login and contains bugs in multiple sequence predictions (not all
nine features are calculated if multiple sequences are submitted, and it will produce wrong
predictions based on these features), which makes it inconvenient for end-users.

In this study, we propose a new automated machine learning (AutoML) approach
to predict the DNA synthesis difficulty based on 426 initial nucleotide sequence features,
which were subsequently reduced to 31 key features with extensive feature-reduction
experiments. Interestingly, we found that some sequence features that are not considered by
SSC nevertheless have a great impact on the synthesis difficulty. The benchmark results of
an unseen test set of 269 sequences show that our methods can achieve a better performance
(F1 score of 0.930). Furthermore, experimental validation of ten randomly chosen genes
from E. coli strain MG1655 also shows that our model outperforms the state-of-the-art model.
We provide a downloadable standalone version (https://github.com/tibbdc/scp4ssd) of
our model as well as the web application SCP4SSD (https://scp4ssd.biodesign.ac.cn) for
sequence synthesis difficulty prediction. The web application has an entirely cloud-based
serverless architecture, offering high reliability, robustness, and scalability.

2. Materials and Methods
2.1. Datasets and Feature Extraction

The raw dataset was collected from the literature [17] and contains 1076 sequences with
labels. Unlike the previous study using 38 sequence features (reduced to 9 features in the
final model), in this study, 426 sequence features were considered, including 84 composition
features [18], 22 accumulated nucleotide frequency features [19], 40 electron-ion interaction
potential features [20], 112 K-mer features [21], 15 repeat sequence features, 8 GC content
features [22], 3 melting temperature features [23], 7 secondary structure features [24],
20 specific sequence features [25], 114 restriction site features, and the sequence length
(Table S1). For each feature, normalization was performed using the sklearn MinMaxScaler
function. A more detailed description of the 426 sequence features, which include the
38 features reported in the previous study, is presented in the Supplementary Notes.

SSC adopts a 575–250–251 train–validate–test split. We were having a problem repro-
ducing the same split using the public code. In addition, 251/1076 is not a widely used
split. Therefore, in this study, we used the sklearn [26] train_test_split function to divide
the data set by 3:1 for training and testing with ‘random_state’ set to 0, which is more
commonly used. The 1076 sequences were split into two subsets: 807 sequences were used
for training, and 269 sequences were kept unseen for testing.

2.2. Evaluation Metrics

F1 scores (F1), Matthew’s correlation coefficient (MCC), and Cohen’s kappa (CK)
were used as evaluation metrics to assess the performance of the classifier [26]. The F1
score, a harmonic average of model accuracy and recall, is a widely used measure of binary
classification. Matthew’s correlation coefficient considers true/false positives and negatives
and is generally regarded as a balanced measure that can be used even if the classes are of
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very different sizes. Cohen’s kappa is a scoring index that can explain the randomness in
the classifier. Their definitions are as follows:

F1 =
2TP

2TP + FP + FN

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

CK =
Po− Pe
1− Pe

Po =
TP + TN

TP + TN + FP + FN

Pe =
(TP + FN)× (TP + FP) + (TN + FP)× (TN + FN)

(TP + TN + FP + FN)2

where TP is the true positive, FP is the false positive, TN is the true negative, FN is the
false negative.

2.3. Baseline Model Construction

Constructing a baseline model is a common practice in machine learning and data
science. The primary purpose of a baseline model is to provide a simple, but reasonable,
benchmark for evaluating the performance of more complex models that are developed later.
A baseline model is typically a simple and easily interpretable model that is developed using
a general method or algorithm, such as linear regression or logistic regression. The model is
developed without any feature engineering, hyperparameter tuning, or other optimization
techniques. The performance of this model can then be used as a reference point for
comparing the performance of other, more complex models that are developed later.

AutoML, or automated machine learning, is a set of techniques that automate many
of the tedious and time-consuming aspects of building machine learning models, such
as hyperparameter tuning, feature selection, and model selection. AutoML has recently
achieved substantial success [27,28]. Auto-sklearn is a popular open-source AutoML tool
that is based on the machine learning library scikit-learn [29].

In this study, we constructed a baseline ensemble model with all 426 features using
Auto-sklearn, which automatically selected the best combination of models and hyperpa-
rameters to use in the ensemble based on the provided data and the given machine learning
task. The model integrates 16 classical machine learning methods, including random forest,
AdaBoost, Bernoulli naive Bayes, decision tree, k-nearest neighbors, and linear support
vector machine.

2.4. Feature Reduction

Feature reduction is an important technique in machine learning, as it can improve
the performance of models by removing noisy or irrelevant features and reducing the
redundancy. Noisy or irrelevant features are features that do not have a significant impact
on the outcome of the model but may still be included in the dataset. These features
can cause the model to overfit the training data and perform poorly on new, unseen
data [30]. By removing these redundant features, the model can be simplified and made
more interpretable, which can aid in understanding the underlying relationships between
the input variables and the output.

In this study, we chose three popular feature-selection algorithms for feature reduc-
tion: genetic algorithm, correlation coefficient selection method, and variance selection
method [30,31]. For each criterion, we selected different cutoffs after checking the distribu-
tions. For the correlation, we chose 0.1, 0.15, 0.2, and 0.3, while for the variance, 0.01, 0.02,
0.03, and 0.04 were chosen. For the genetic algorithm, we chose 10,000 or 100,000 rounds.
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To obtain the best model with a reduced number of features, we extensively tested
the combinations of cutoff settings. More specifically, we designed 74 computational
experiments, including 10 experiments considering only one method, 32 experiments
considering the combination of two methods, and an additional 32 experiments considering
the combination of all three methods (Table S2). We performed 10 independent repeats for
each experiment to calculate the average metrics.

2.5. Model Training and Calculation of Feature Importance

After feature reduction, we trained our final classifier. Finally, we wrapped all fea-
tures, parameters, and statistical model components to build a production model for final
deployment. We used the inspection module of scikit-learn [26] to calculate the feature
importance, which defines the decrease in a model score when a given feature is randomly
permuted. Thus, a higher score indicates a higher dependence of the model’s predictions
on the tested feature. We also calculated the partial dependence for each feature [26].

2.6. Experimental Validation

Ten genes from the genome of E. coli MG1655 were chosen for experimental validation.
To verify the reliability of the methods, we considered two requirements when selecting
genes. One is the case where the predictions of two methods are consistent, and the other
is the case where the predictions of two methods are inconsistent. For the case where the
prediction results are consistent, we randomly selected 3 genes. In addition, for the case
where the prediction results are inconsistent, we make a random selection on the premise
of balancing the proportion as much as possible. Specifically, we randomly picked 7 genes
for which our prediction differed from the SSC prediction.

In total, we randomly picked five genes that were predicted (SSC) to be difficult to
synthesize and five genes that were predicted (SSC) to be easy to synthesize. We mixed
the oligonucleotides in equimolar concentrations and first preassembled the 10 genes,
respectively, using a polymerase cycling assembly (PCA) reaction, followed by amplifica-
tion of the DNA fragments using polymerase chain reaction (PCR). The reaction products
were analyzed with gel electrophoresis to check the purity of the target fragment and
possible dimers.

3. Results and Discussions
3.1. Baseline Model Construction

First, we constructed a baseline ensemble model with all 426 features using Auto-
sklearn. A crucial feature that affects the performance of Auto-sklearn is the resources
(memory and time) that the scikit-learn algorithm is allowed to use. In this study, we set it
to 10 min according to a previous study [29]. In addition, the Auto-sklearn approach was
based on the Bayesian framework, and the final prediction model was slightly different
each time. Therefore, we conducted 10 iterations to account for randomness. The lowest F1
score of the ten runs was 0.917, and the highest was 0.936. The final mean of the F1 score
was 0.925, and the standard deviation was 0.0057.

3.2. Feature Reduction

To remove irrelevant and redundant features, we chose three widely used feature-
selection algorithms for feature reduction based on correlation coefficient selection, variance
selection, and a genetic algorithm. As shown in the materials and methods section, we set
different selection criteria for each method and designed 74 computational experiments
to find the best feature combinations, including ten experiments considering only one
method, 32 experiments considering the combination of two methods, and an additional
32 experiments considering the combination of all methods.

As shown in Figure 1, with the combination of more feature-selection methods, fewer
features were included, and the final performance was likely to decline. When only one
feature-reduction method was used, the highest F1 score was 0.922 with the variance cutoff set
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to 0.01 (Figure S1). This reduced model contained 304 features, which was still too many. The
same correlation between the performance and the cutoffs was observed as well (Figure S1).
Accordingly, the models with fewer features will likely have a poorer performance.
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represent the F1 scores of the model containing the reduced features obtained using the combination
of three methods.

Interestingly, we found that some models with very few features can achieve a very
good performance. When a combination of two feature-selection methods was used, we
found that the ensemble model based on the combination of the correlation coefficient
0.2 and 100,000 rounds of the genetic algorithm (31 features) performed the best, with an
F1 score as high as 0.930 (Figure S2). In the case of the combination of all three methods,
the highest F1 score was 0.923, and the corresponding model had 30 features (Figure S3).
Therefore, we chose the combination of 31 features since it showed the best performance. In
this combination of 31 features, there are 25 features uniquely found in our work (Figure S4
and Table S3) and six features among the 38 features of the previous work.

3.3. Benchmark Results of SCP4SSD and SSC

The final ensemble model was composed of 16 additional trees, five random forests,
one AdaBoost, one latent Dirichlet allocation, and one support vector machine with a linear
kernel (Table S4 describes the weights of each component). As shown above, random forest
models, adopted in the SSC, are already included in our model, and the additional models
will probably improve the average robustness or reliability of the ensemble model.

The F1 score of SSC in the previous study was 0.928. As mentioned in the materials and
methods section, we had a problem reproducing the same 575–250–251 train–validate–test
split with the public code and could not reproduce the results. In addition, SSC has a model
hyperparameter optimization process in which all 1076 sequences are used for training.
This process would boost the overall performance and the SSC might be overfitted. In order
to make a fair comparison, we built four models, including a random forest model using
the 9/38 features reported in the SSC and an ensemble model using 9/38 features reported
in the SSC. All of them use the same dataset split as described in this study. For the case of
the nine features, the F1 score was 0.843, which was lower than the 0.928 reported in the
literature. With the ensemble model using AutoML, the F1 score was 0.893 (Figure 2). This
indicates that the ensemble model is indeed better than the random forest model solely for
predicting the sequence synthesis difficulty.
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Figure 2. Comparison of our model with SSC. ‘426-features’ is our baseline model with 426 features;
‘31-features’ is our final model; ‘AutoML-SSC9’ is the ensemble model based on 9 features from SSC;
‘RF-SSC-9’ is the random forest model based on 9 features from SSC; ‘AutoML-SSC38’ is the ensemble
model based on 38 features from SSC; ‘RF-SSC-38’ is the random forest model based on 38 features
from SSC.

As shown in Figure 2, our model outperformed the SSC or ensemble model with SSC
features in terms of all metrics. More specifically, our method had the highest F1 score
of 0.930 (std 0.007), MCC score of 0.879 (std 0.010), and CK score of 0.878 (std 0.004). In
contrast, the random forest model with the nine sequence features had an F1 score of 0.843,
an MCC score of 0.689, and a CK score of 0.687. The ensemble model based on the nine
features reported in the SSC had an F1 score of 0.893 (std 0.007), an MCC score of 0.788 (std
0.009), and a CK score of 0.786 (std 0.006). The random forest model with the 38 sequence
features had an F1 score of 0.711, an MCC score of 0.422, and a CK score of 0.420. Finally,
the ensemble model based on 38 features had an F1 score of 0.733 (std 0.0114), an MCC
score of 0.467 (std 0.003), and a CK score of 0.465 (std 0.005). Interestingly, consistent with
the previous work, we also found that the model with nine features is better than the model
with 38 features using both random forest and ensemble models.

We also conducted further feature-importance calculations. Interestingly, as shown in
Figure 3, among the top 12 significant features with positive contributions, we found some
features that were not considered by SSC (Figure 3). For example, ‘dGC’, representing the
fluctuation of GC content within a 100 bp sliding window, was the second-most significant
feature. A large fluctuation of the GC content within regions may affect the chain extension
in the process of oligonucleotide synthesis. The restriction site of ApaI (‘GGGCCC’) is
the fourth-most significant feature. This restriction site has an extremely high GC content,
and if the same pattern repeats many times, it might affect DNA synthesis (Figure S5).
Moreover, the number of 20 bp sliding windows with low GC content (‘GC_short_l’) might
also affect the synthesis of the nucleotide sequence. In our model, three important local
GC content features (‘dGC’ ranked 2th, ‘GC_short_l’ ranked 8th, ‘GC_long_l’ ranked 11th,
Figure 3) were all low-GC-content features. This might imply that local fragments with low
GC content might have a more important impact than fragments with high GC content.
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3.4. Experimental Validation

The sequence prediction results of 4318 sequences in the E. coli strain MG1655 genome
showed that our model predicted 3777 easy-to-synthesize sequences, accounting for 87%,
and 541 difficult-to-synthesize sequences, accounting for 13%. SSC predicted that 15.1%
of the sequences in E. coli were difficult to synthesize. Both our and SSC models find that
most genes are easy to synthesize.

To further verify the reliability of our model, especially for those difficult-to-synthesize
genes, we randomly picked five genes that were predicted to be difficult to synthesize and
five genes that were predicted to be easy to synthesize by SSC (details in Section 2.6). The
experimental results show that out of the ten selected sequences (Table S5), the synthetic
sequences of the yghX, insD-1, fabR, and ycbJ genes had very few impurity bands and possi-
ble dimers (Figure 4), indicating that these four sequences are indeed easy to synthesize.
Overall, our method gave eight correct predictions for these ten genes, while SSC only
made five accurate predictions (Table 1).

Table 1. Comparison of our methods with SSC based on 10 genes in E. coli.

Gene Symbol DNAWorks Score Our Method SSC Experimental Result

ygiD 6.485 EASY HARD HARD
yghX 6.756 EASY HARD EASY

insD-1 4.512 EASY HARD EASY
ydgJ 6.5 HARD EASY HARD
waaJ 54.875 HARD EASY HARD
wbbH 64.955 HARD HARD HARD
fabR 6.084 EASY EASY EASY
yhiL 41.894 HARD EASY HARD
ycbJ 9.622 EASY EASY EASY
ypfJ 6.625 EASY HARD HARD
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Figure 4. Experimental validation of 10 genes from E. coli. Four genes that can be easily synthesized
are marked in red boxes.

Our method predicted that the waaJ and yhiL gene sequences are difficult to synthesize,
while SSC predicted the opposite. After checking the features, we found that the three
important features ‘Tm_low’, ‘GC_short_l’, and ‘GC_long_l’ have high values in these
two genes. Both ‘Tm_low’ and ‘GC_short_l’ are considered by SSC as well. However,
‘GC_long_l’ is missing from SSC and these two genes have 268 or 183 100 bp sliding
windows with less than 30% GC content, respectively. Moreover, the overall scores of DNA-
Works for these two genes were above 40, with repeat/mispriming/GC scores indicating
that these two genes are difficult to synthesize [32]. The gel electrophoresis also showed
many impurity bands for these two genes (Figure 5). This finding implies that our method
captures some important features missed by SSC.
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Conversely, our method predicted that the two genes yghX and insD-1 are easy to
synthesize, while SSC predicted the opposite. For these two genes, the gel electrophoresis
shows clear target bands and no dimers (Figure 4). In addition, the DNAWorks scores for
both these genes were relatively low, which was consistent with our predictions.

3.5. Cloud Platform

To facilitate easy access for end-users, we developed the cloud platform SCP4SSD
(Figure 5A), which was built using the serverless architecture that has emerged in recent
years [33]. The main advantage of this architecture is that when users submit tasks through
the front-end, each submitted task will create a virtual server to respond to the request, and
it will be automatically released after the analysis is finished [34]. This technology helps
us control and save costs, paying only for what we use [35]. On the other hand, when the
concurrence increases, it can compute in parallel and guarantee a stable service level.

The website was developed using React and is hosted on AWS S3 (Figure 5B). When
end-users submit sequences in FASTA format, the website first checks the sequences and
then upload them to the S3 bucket. The file path is passed to the AWS step functions via
the API gateway. We used AWS step functions to manage the AWS Fargate and AWS
Lambda for the backend (Figure 5B). AWS Fargate is used to preprocess the input of the
sequences, predict the synthesis difficulty for the query sequences, and upload the result
files to AWS S3. After that, another AWS Lambda function is invoked to check the status
of AWS Fargate and update the DynamoDB database for tracking the job ID and status.
This process is conducted in parallel for each submission, regardless of how much demand
there is on the website, showcasing the usefulness of serverless computing. We use browser
cookies to record the job ID so that users can view the previously submitted records (within
7 days) without login. Our platform will report the prediction results (whether it is easy
to be synthesized: yes or no). In addition, the platform will report the relevant sequence
determinants that were considered by the model so that users can intuitively understand
the sequence features that affect DNA synthesis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/genes14030605/s1. Figure S1: Box distribution of F1 scores
for feature reduction by single method. (a) F1 score distribution of single variance selection method.
(b) F1 score distribution of single correlation coefficient method. (c) F1 score distribution of single
genetic algorithm. Figure S2: Box distribution of F1 scores of feature reduction by two combination
methods. (a) F1 score distribution of correlation coefficient method and genetic algorithm. (b) F1
score distribution of variance selection method and genetic algorithm. (c) F1 score distribution of
correlation coefficient method and variance selection method. Figure S3: Box distribution of F1 scores
of feature reduction by all methods. (a) The F1 score distribution of 10,000 rounds of genetic algorithm
and the other two methods. (b) The F1 score distribution of 100,000 rounds of genetic algorithm
and the other two methods. Figure S4: The Venn diagram shows the relationship among different
sets of features. Figure S5: Partial dependence for top 4 features. Table S1: 426 Feature descriptions.
Table S2: Experiments of feature selection. Table S3: Comparison of SSC and our method. Table S4:
Components of the final ensemble model. Table S5: 10 selected genes for experimental verification.
Supplementary Notes, S1: 84 composition features; S2: 22 accumulated nucleotide frequency features;
S3: 40 electron-ion interaction potential features; S4: 112 k-mer features; S5: 15 repeat sequence
features; S6: 8 GC content features; S7: 3 melting temperature features; S8: 7 secondary structure
features; S9: 20 specific sequence features; S10: 114 restriction site features; S11: Sequence length.

Author Contributions: X.L. and H.M. conceived and designed the study. H.T. and M.F. performed
the experimental work. J.Z., S.R., Z.S. and X.L. performed the coding and data analysis. R.W. and H.L.
developed the web platform. All authors wrote the manuscript. All authors have read and agreed to
the published version of the manuscript.

https://www.mdpi.com/article/10.3390/genes14030605/s1


Genes 2023, 14, 605 10 of 11

Funding: This research was funded by the National Key Research and Development Program of
China (No. 2018YFA0901400), National Natural Science Foundation of China [32201242], the China
Postdoctoral Science Foundation [2022M713328], Tianjin Synthetic Biotechnology Innovation Capac-
ity Improvement Project (Nos. TSBICIP-PTJS-001, TSBICIP-PTJJ-007, TSBICIP-CXRC-018), Innovation
fund of Haihe Laboratory of Synthetic Biology (No.22HHSWSS00021), and Youth Innovation Promo-
tion Association of CAS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code and test dataset are available on GitHub https://github.com/
tibbdc/scp4ssd.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, Z.; Yang, S.; Yuan, X.; Shi, Y.; Ouyang, L.; Jiang, S.; Yi, L.; Zhang, G. CRISPR-assisted multi-dimensional regulation for

fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res. 2019, 47, e40. [CrossRef] [PubMed]
2. Zhou, Y.; Lu, Z.; Wang, X.; Selvaraj, J.N.; Zhang, G. Genetic engineering modification and fermentation optimization for

extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 1545–1556. [CrossRef]
[PubMed]

3. Salis, H.M.; Mirsky, E.A.; Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat.
Biotechnol. 2009, 27, 946–950. [CrossRef] [PubMed]

4. Lu, Z.; Li, X.; Zhang, R.; Yi, L.; Ma, Y.; Zhang, G. Tunnel engineering to accelerate product release for better biomass-degrading
abilities in lignocellulolytic enzymes. Biotechnol. Biofuels 2019, 12, 275. [CrossRef]

5. Park, J.W.; Lagniton, P.N.P.; Liu, Y.; Xu, R.H. mRNA vaccines for COVID-19: What, why and how. Int. J. Biol. Sci. 2021, 17,
1446–1460. [CrossRef]

6. Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug. Discov. 2018, 17,
261–279. [CrossRef]

7. Annaluru, N.; Muller, H.; Mitchell, L.A.; Ramalingam, S.; Stracquadanio, G.; Richardson, S.M.; Dymond, J.S.; Kuang, Z.; Scheifele,
L.Z.; Cooper, E.M.; et al. Total synthesis of a functional designer eukaryotic chromosome. Science 2014, 344, 55–58. [CrossRef]

8. Hutchison, C.A., 3rd; Chuang, R.Y.; Noskov, V.N.; Assad-Garcia, N.; Deerinck, T.J.; Ellisman, M.H.; Gill, J.; Kannan, K.; Karas, B.J.;
Ma, L.; et al. Design and synthesis of a minimal bacterial genome. Science 2016, 351, aad6253. [CrossRef]

9. Savina, K.; Sreekumar, R.; Soonu, V.K.; Variyar, E.J. Various vaccine platforms in the field of COVID-19. Beni-Suef Univ. J. Basic
Appl. Sci. 2022, 11, 35. [CrossRef]

10. Viswamitra, M.A.; Reddy, B.S.; Lin, G.H.; Sundaralingam, M. Stereochemistry of nucleic acids and their constituents. XVII.
Crystal and molecular structure of deoxycytidine 5′-phosphate monohydrate. A possible puckering for the furanoside ring in
B-deoxyribonucleic acid. J. Am. Chem. Soc. 1971, 93, 4565–4573. [CrossRef]

11. Gibson, D.G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res. 2009,
37, 6984–6990. [CrossRef] [PubMed]

12. Tang, N.C.; Chilkoti, A. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins.
Nat. Mater. 2016, 15, 419–424. [CrossRef] [PubMed]

13. Gibson, D.G. Oligonucleotide assembly in yeast to produce synthetic DNA fragments. Methods Mol. Biol. 2012, 852, 11–21.
[PubMed]

14. Binkowski, B.F.; Richmond, K.E.; Kaysen, J.; Sussman, M.R.; Belshaw, P.J. Correcting errors in synthetic DNA through consensus
shuffling. Nucleic Acids Res. 2005, 33, e55. [CrossRef]

15. Kosuri, S.; Church, G.M. Large-scale de novo DNA synthesis: Technologies and applications. Nat. Methods 2014, 11, 499–507.
[CrossRef]

16. Roy, S.; Caruthers, M. Synthesis of DNA/RNA and their analogs via phosphoramidite and H-phosphonate chemistries. Molecules
2013, 18, 14268–14284. [CrossRef] [PubMed]

17. Halper, S.M.; Hossain, A.; Salis, H.M. Synthesis Success Calculator: Predicting the Rapid Synthesis of DNA Fragments with
Machine Learning. ACS Synth. Biol. 2020, 9, 1563–1571. [CrossRef]

18. Ofer, D.; Linial, M. ProFET: Feature engineering captures high-level protein functions. Bioinformatics 2015, 31, 3429–3436.
[CrossRef]

19. Li, Z.R.; Lin, H.H.; Han, L.Y.; Jiang, L.; Chen, X.; Chen, Y.Z. PROFEAT: A web server for computing structural and physicochemical
features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 2006, 34, W32–W37. [CrossRef]

20. Chen, Z.; Zhao, P.; Li, F.; Marquez-Lago, T.T.; Leier, A.; Revote, J.; Zhu, Y.; Powell, D.R.; Akutsu, T.; Webb, G.I.; et al. iLearn:
An integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and
protein sequence data. Brief. Bioinform. 2020, 21, 1047–1057. [CrossRef]

https://github.com/tibbdc/scp4ssd
https://github.com/tibbdc/scp4ssd
http://doi.org/10.1093/nar/gkz072
http://www.ncbi.nlm.nih.gov/pubmed/30767015
http://doi.org/10.1007/s00253-017-8700-z
http://www.ncbi.nlm.nih.gov/pubmed/29270732
http://doi.org/10.1038/nbt.1568
http://www.ncbi.nlm.nih.gov/pubmed/19801975
http://doi.org/10.1186/s13068-019-1616-3
http://doi.org/10.7150/ijbs.59233
http://doi.org/10.1038/nrd.2017.243
http://doi.org/10.1126/science.1249252
http://doi.org/10.1126/science.aad6253
http://doi.org/10.1186/s43088-022-00215-1
http://doi.org/10.1021/ja00747a038
http://doi.org/10.1093/nar/gkp687
http://www.ncbi.nlm.nih.gov/pubmed/19745056
http://doi.org/10.1038/nmat4521
http://www.ncbi.nlm.nih.gov/pubmed/26726995
http://www.ncbi.nlm.nih.gov/pubmed/22328422
http://doi.org/10.1093/nar/gni053
http://doi.org/10.1038/nmeth.2918
http://doi.org/10.3390/molecules181114268
http://www.ncbi.nlm.nih.gov/pubmed/24252996
http://doi.org/10.1021/acssynbio.9b00460
http://doi.org/10.1093/bioinformatics/btv345
http://doi.org/10.1093/nar/gkl305
http://doi.org/10.1093/bib/bbz041


Genes 2023, 14, 605 11 of 11

21. Bonidia, R.P.; Domingues, D.S.; Sanches, D.S.; de Carvalho, A. MathFeature: Feature extraction package for DNA, RNA and
protein sequences based on mathematical descriptors. Brief. Bioinform. 2022, 23, bbab434. [CrossRef] [PubMed]

22. Nguyen, D.D.; Cang, Z.; Wei, G.W. A review of mathematical representations of biomolecular data. Phys. Chem. Chem. Phys. 2020,
22, 4343–4367. [CrossRef] [PubMed]

23. Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al.
Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25,
1422–1423. [CrossRef] [PubMed]

24. Salis, H.; Tamsir, A.; Voigt, C. Engineering bacterial signals and sensors. Contrib. Microbiol. 2009, 16, 194–225.
25. Bonidia, R.P.; Sampaio, L.D.H.; Domingues, D.S.; Paschoal, A.R.; Lopes, F.M.; de Carvalho, A.; Sanches, D.S. Feature extraction

approaches for biological sequences: A comparative study of mathematical features. Brief. Bioinform. 2021, 22, bbab011. [CrossRef]
26. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
27. Liu, G.; Lu, D.; Lu, J. Pharm-AutoML: An open-source, end-to-end automated machine learning package for clinical outcome

prediction. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 478–488. [CrossRef]
28. Barreiro, E.; Munteanu, C.R.; Cruz-Monteagudo, M.; Pazos, A.; Gonzalez-Diaz, H. Net-Net Auto Machine Learning (AutoML)

Prediction of Complex Ecosystems. Sci. Rep. 2018, 8, 12340. [CrossRef]
29. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-sklearn 2.0: Hands-free automl via meta-learning. arXiv

2020, arXiv:200704074.
30. Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. In Data Classification: Algorithms and Applications; CRC

Press: Boca Raton, FL, USA, 2014; pp. 37–64.
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