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Abstract: In aquaculture, many stressors can negatively affect growth in teleosts. It is believed that
cortisol performs glucocorticoid and mineralocorticoid functions because teleosts do not synthesize
aldosterone. However, recent data suggest that 11-deoxycorticosterone (DOC) released during stress
events may be relevant to modulate the compensatory response. To understand how DOC modifies
the skeletal muscle molecular response, we carried out a transcriptomic analysis. Rainbow trout
(Oncorhynchus mykiss) were intraperitoneally treated with physiological doses of DOC in individuals
pretreated with mifepristone (glucocorticoid receptor antagonist) or eplerenone (mineralocorticoid
receptor antagonist). RNA was extracted from the skeletal muscles, and cDNA libraries were con-
structed from vehicle, DOC, mifepristone, mifepristone plus DOC, eplerenone, and eplerenone plus
DOC groups. The RNA-seq analysis revealed 131 differentially expressed transcripts (DETs) induced
by DOC with respect to the vehicle group, mainly associated with muscle contraction, sarcomere
organization, and cell adhesion. In addition, a DOC versus mifepristone plus DOC analysis revealed
122 DETs related to muscle contraction, sarcomere organization, and skeletal muscle cell differentia-
tion. In a DOC versus eplerenone plus DOC analysis, 133 DETs were associated with autophagosome
assembly, circadian regulation of gene expression, and regulation of transcription from RNA pol II
promoter. These analyses indicate that DOC has a relevant function in the stress response of skeletal
muscles, whose action is differentially modulated by GR and MR and is complementary to cortisol.

Keywords: DOC; glucocorticoid receptor; mineralocorticoid receptor; RNA-seq; skeletal muscle

1. Introduction

Intensive aquaculture frequently exposes fish to a range of stressors, such as chem-
ical, biological, and physical stressors [1]. Although the negative effects of stress can be
alleviated to some degree by good aquaculture protocols, stressors are inherent in intensive
farming [2]. Teleosts implement mechanisms that allows them to respond to stressors
through a neuroendocrine adaptative reaction [3,4]. The neuroendocrine stress response
in teleosts is similar to that in higher vertebrates and is modulated by the HPI axis (hy-
pothalamic/pituitary/interrenal), which is in charge of coordinating the production and
release of cortisol from the interrenal tissue into the circulating plasma [5,6]. Although
it has been believed that the stress response axis is highly conserved in mammals and
lower vertebrates, it is necessary to specify that the stress response is conserved from an
anatomical or structural point of view. From a functional perspective, substantial variations
exist between mammals and teleosts [7].
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Intracellularly, cortisol may bind with glucocorticoid receptors, GR1 and GR2, and
a mineralocorticoid receptor, MR [8]. The presence of MR in evolution happened be-
fore the appearance of aldosterone synthase, in parallel with the evolution of terrestrial
vertebrates [9]. Therefore, aldosterone, the principal physiological mineralocorticoid in
mammals, is absent in fish. For years, it has been believed that cortisol performs gluco-
corticoid and mineralocorticoid functions in fish [10]. However, recent data suggest that
11-deoxycorticosterone (DOC) may play a role as an MR physiological ligand [11]. DOC is
a circulating hormone that is present in teleost fish in significant amounts and modulates
the activity of mineralocorticoid receptors [12]. Similar to cortisol, DOC is synthesized
and secreted by interrenal cells in fish kidneys. However, the stimuli or physiological
contexts that trigger its production and release into plasma are unknown. As in mammals,
21-hydroxylase is responsible for the conversion of progesterone to 11-deoxycorticosterone
(DOC) in fish [13]. Some studies suggested the involvement of DOC in some stages of
reproduction in a variety of teleosts [14]. In rainbow trout (O. mykiss), the role of DOC in the
endocrine regulation of spermiation was determined [12]. In addition, DOC participation
was shown in the activation of the final oocyte meiotic maturation and the negative modu-
lation of sex steroid secretion [15]. A recent study revealed the upregulation of DOC levels
in the plasma of confined rainbow trout, suggesting a role in the stress response [16]. All of
these studies have indicated that the plasmatic levels of DOC are substantially smaller than
cortisol under both basal and stress conditions [14,16,17]. Therefore, the main function of
DOC and the mineralocorticoid system in teleosts remains to be established.

In this study, we perform a transcriptomic study to analyze the global response of
rainbow trout skeletal muscle to DOC in individuals pretreated with specific GR and
MR antagonists. Thus, we determine for the first time possible biological processes and
signaling pathways modulated through glucocorticoid and mineralocorticoid receptors
induced by DOC.

2. Materials and Methods
2.1. Experimental Protocol

Juvenile rainbow trout (15.47 g ± 0.88) were obtained from Pisciculture Rio Blanco
(Pontificia Universidad Católica de Valparaiso, Valparaíso, Chile). Fish were held under a
temperature of 14 ± 1 ◦C and photoperiod conditions of L/D 12:12. Juvenile fish were fed
with Skretting pellets. Fish were sedated with benzocaine (25 mg/L) and intraperitoneally
injected with metyrapone (Sigma-Aldrich, St. Louis, MO, USA) (1 mg/kg of fish) for one
hour and then divided into different groups. Fish in the first and second groups were
treated with vehicle solution (DMSO, PBS 1x) and 11-deoxycorticosterone acetate (DOC,
USBiological, Salem, MA, USA), respectively, at physiological concentrations (1 mg/kg).
Fish in the third and fourth groups were treated with mifepristone (RU486, Sigma-Aldrich)
(1 mg/kg) and mifepristone (1 mg/kg) plus DOC (1 mg/kg), respectively. Finally, fish in the
fifth and sixth groups were treated with eplerenone (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) (1 mg/kg) and eplerenone (1 mg/kg) plus DOC (1 mg/kg), respectively. Three
hours after treatment, all rainbow trout (n = 24, four fish per group) were euthanized with
benzocaine (Veterquimica, RM, San Bernardo, Chile) (300 mg/L). Heparinized obtained
blood was centrifugated at 5000× g for 10 min and the plasma was stored at −80 ◦C.
Myotomal skeletal muscle was isolated from the epaxial area, frozen in liquid nitrogen for
6 h, and then stored at −80 ◦C.

2.2. Measurement of Cortisol and Glucose in Plasma

Cortisol in plasma was measured using a Cayman cortisol kit (Cayman Chemical, Ann
Arbor, MI, USA). Glucose in plasma was measured using an Abcam glucose kit (Abcam,
Cambridge, UK). Both kits have been previously validated with rainbow trout [18].
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2.3. Measurement of 11-Deoxycorticosterone in Plasma

Plasma DOC quantification was performed by mass spectrometry as previously de-
scribed [19]. Briefly, 50 µL of plasma was mixed with 500 µL of water and 3 mL of
cyclohexane/ethyl acetate. The solution was mixed and centrifuged at 3500× g for 10 min.
The procedure was repeated on the solid phase. Both fractions were combined and drying
of the solvents was performed using SpeedVac equipment. The pellet was resuspended
with 100 µL of methanol. A Quattro Ultima Platinum triple quadrupole mass spectrom-
eter was used for LC/MS–MS analysis using a Varian Polaris C18 column (Micromass,
Manchester, UK). The mobile phases used were methanol and acetic acid (0.1%). The MS
parameters were standard.

2.4. RNA Extraction and Sequencing

Skeletal muscle RNA was obtained from all groups: vehicle, DOC, mifepristone,
mifepristone plus DOC, eplerenone, and eplerenone plus DOC groups, using an EZNA®

Total RNA Kit (OMEGA Bio-Tek Inc., Norcross, GA, USA). Total RNA was quantified
with a Qubit RNA BR assay kit (Invitrogen, Waltham, MA, USA). RNA quality was tested
with Fragment analyzer systems (Advanced Analytical Technologies, Inc., Ames, IA, USA).
Samples with an RNA quality number (RQN) greater than 9 were utilized for library
construction. Then, 1 µg of RNA for each sample was used for the construction of 24 cDNA
libraries using TruSeq RNA Sample Preparation kit v2 (Illumina, San Diego, CA, USA). All
libraries were sequenced (2 × 150 bp) with the Hiseq X Illumina technology in Macrogen
(Seoul, Republic of Korea).

2.5. RNA Expression Analysis

All bioinformatics analyses were performed using the software CLC genomic work-
bench 9.0 (Qiagen, Germantown, MD, USA). Low-quality reads (Q < 20) and read lengths
<50 bp were discarded from the raw data. The remaining reads were mapped onto a
rainbow trout reference genome (GCA_013265735.3) composed of 71.413 coding sequences
using default parameters. Transcripts with absolute fold-change ≥2.0 and an FDR of <0.05
were considered differentially expressed transcripts (DETs) in silico. A comparison between
the vehicle and DOC groups considered potential DETs regulated by DOC. Comparisons
between the DOC and mifepristone plus DOC groups, as well as the DOC and eplerenone
plus DOC groups, considered potential DETs regulated by DOC and mediated by the
glucocorticoid and mineralocorticoid receptors, respectively. The identification of gene IDs
and DAVID GO enrichment analysis of differentially expressed transcripts were performed
using a previously published approximation [20].

2.6. RT-qPCR Quantification

Total RNA from skeletal muscles was extracted with Trizol (Invitrogen). RNA was
quantified using Nanodrop technology (BioTek, Winooski, VT, USA) and the quality was
checked in agarose gel electrophoresis. cDNA synthesis was performed using ImProm-II™
Reverse Transcription System (Promega, Madison, WI, USA). Primers were designed using
PrimerQuest software (https://www.idtdna.com/pages/tools/primerquest, accessed on
13 November 2022) (Supplementary Table S1). Real-time PCR was performed using a
Stratagene MX3000P qPCR system (Stratagene, La Jolla, CA, USA), using Brilliant II SYBR®

master mix (Stratagene). Amplifications were performed with the following protocol: initial
activation at 95 ◦C for 10 min, followed by 40 cycles of 30 s of denaturation at 95 ◦C, 30 s
of annealing at 60 ◦C, and 30 s of elongation at 72 ◦C. Relative gene quantification was
performed using the 2−∆∆CT method, and the results were expressed as fold change with
respect to the vehicle group using β actin (actβ) and 40S ribosomal protein S30 (fau) as
housekeeping genes.

https://www.idtdna.com/pages/tools/primerquest
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2.7. Statistical Analysis

Data are expressed as means ± SE. Differences in means between groups were deter-
mined using two-way ANOVA followed by Tukey’s honest significant difference test. All
statistical analyses were performed using the program GraphPad Prism v.8.0 (GraphPad
Software Inc., San Diego, CA, USA).

3. Results
3.1. DOC, Cortisol, and Glucose Levels in Plasma

To analyze the transcriptomic response of rainbow trout to DOC, physiological doses
of DOC (1 mg/kg) were intraperitoneally administrated. To discriminate the participation
of GR and MR in this response, individuals were pretreated with mifepristone (GR antago-
nist) or eplerenone (MR antagonist). Plasma DOC levels increased significantly in the DOC
(76 ± 8 pg/mL), mifepristone plus DOC (81 ± 9 pg/mL), and eplerenone plus DOC
(85 ± 6 pg/mL) groups compared with the vehicle (14 ± 7 pg/mL), mifepristone
(12 ± 9 pg/mL), and eplerenone (15 ± 11 pg/mL) groups after 3 h (Figure 1a). No
significant differences in the plasmatic concentrations of cortisol (Figure 1b) and glucose
(Figure 1c) were observed.
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Figure 1. DOC, cortisol, and glucose quantification in plasma. DOC (a), cortisol (b), and glucose (c) in
plasma were quantified in juvenile fish treated with vehicle, 11-deoxycorticosterone (DOC), mifepris-
tone, eplerenone, mifepristone plus DOC, and eplerenone plus DOC. The results are expressed as
means ± SEM (n = 4 per treatment). The ** symbol (p < 0.01) represents significant differences.

3.2. RNA-Seq and GO Enrichment Analysis

A total of 1,487,468,468 reads were achieved from the 24 cDNA libraries sequenced.
The raw read sequences obtained were deposited under BioProject accession number
PRJNA930332. After trimming of the reads, we obtained 1,486,321,572 high-quality reads
employed for RNA-seq analysis. A total of 1,324,609,785 reads (89.12%) were mapped in
rainbow trout reference genome. PCAs of the cDNA libraries are shown in Supplementary
Figure S1.

In DOC treatment (vehicle vs. DOC), 131 DETs were found (Supplementary Table
S2). The identified DETs were then associated with enriched GO and KEGG terms using
the DAVID database. Differentially expressed transcripts were enriched in a variety of
BPs (biological processes), such as sarcomere organization, muscle contraction, and cell
adhesion (Figure 2). Other relevant enriched BP included the IMP biosynthetic process,
response to xenobiotic stimulus, nuclear import, muscle filament sliding, insulin receptor
signaling pathway, cell cycle, and positive regulation of transcription from the RNA poly-
merase II promoter (Figure 2 and Supplementary Table S3). For MFs (molecular functions)
and CCs (cellular components), GO terms were associated with structural constituents of
muscle and cytosol, respectively (Supplementary Table S3). KEGG enrichment analysis was
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assigned to viral myocarditis, hypertrophic cardiomyopathy, and dilated cardiomyopathy
(Supplementary Table S3).
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Figure 2. Gene enrichment analysis of biological processes in vehicle and DOC DETs. The graph
indicates the −log10(p-value) enriched BPs of differentially expressed transcripts between the vehicle
and DOC groups with p-values < 0.05.

The comparative analysis of DOC versus mifepristone plus DOC identified 122 DETs
(Supplementary Table S4). Differentially expressed transcripts were enriched in a variety of
BPs (biological processes), such as muscle contraction, sarcomere organization, and skele-
tal muscle cell differentiation (Figure 3). Other significant enriched biological processes
included protein localization to the Golgi apparatus, Wnt signaling pathway, cell cycle, posi-
tive regulation of myoblast differentiation, positive regulation of cell differentiation, muscle
filament sliding, and protein autophosphorylation (Figure 3 and Supplementary Table S5).
For MFs and CCs, GO terms were associated with cytosol and ATP binding, respectively
(Supplementary Table S5). KEGG enrichment analysis was assigned to hepatocellular
carcinoma, gastric cancer, and breast cancer (Supplementary Table S5).
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The analysis of DOC versus eplerenone plus DOC identified 133 DETs (Supplementary
Table S6). Differentially expressed transcripts were enriched in a variety of BPs, such
as autophagosome assembly, circadian regulation of gene expression, and regulation of
transcription from the RNA polymerase II promoter (Figure 4). Other significant biolog-
ical processes included positive regulation of autophagy, muscle contraction, sarcomere
organization, nuclear import, phosphatidylinositol biosynthetic process, insulin receptor
signaling pathway, and autophagy (Figure 4 and Supplementary Table S7). In CCs and
MFs, cytosol and RNA polymerase II core promoter proximal region sequence-specific
DNA binding, respectively, were highly represented (Supplementary Table S7). In KEGG
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pathways, autophagy–animal, inositol phosphate metabolism, and amyotrophic lateral
sclerosis were overrepresented (Supplementary Table S7).
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The graph indicates the −log10(p-values) of enriched BPs of differentially expressed transcripts from
the DOC vs. eplerenone plus DOC groups with p-values < 0.05.

A Venn diagram showed that 13 DETs were shared among the vehicle versus DOC,
DOC versus mifepristone plus DOC, and DOC versus eplerenone plus DOC comparisons
(Figure 5), which were mainly associated with translational initiation and cell adhesion.
A total of 22 DETs were common between the vehicle versus DOC and DOC versus
mifepristone plus DOC comparisons and were associated with muscle contraction and cell
cycle. A total of 15 DETs were common between the vehicle versus DOC and DOC versus
eplerenone plus DOC comparisons, which were mainly associated with the regulation of
transcription from the RNA polymerase II promoter and autophagy, while 15 DETs were
common between the DOC versus mifepristone plus DOC and DOC versus eplerenone
plus DOC comparison, and were mainly associated with rhythmic processes.
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Figure 5. Venn diagram indicating the numbers of differentially expressed transcripts under the
vehicle vs. DOC, DOC vs. mifepristone plus DOC, and DOC vs. eplerenone plus DOC treatments.
Underlined transcripts were selected for RNA-seq validation by RT-qPCR.
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3.3. Validation of In Silico Data by Real-Time PCR

To confirm the in silico analysis and the differential contribution of GR and MR in
enriched biological processes, we chose representative DETs from two groups: the group
of transcripts with differential expressions in the vehicle versus DOC and DOC versus
mifepristone plus DOC treatments (mybpc1, septin10, strada, ppp3cc, myom2, and tsc1),
which were associated with muscle contraction and cell cycle, and the group of transcripts
with differential expressions in the vehicle versus DOC and DOC versus eplerenone plus
DOC treatments (robo2, insr, rab9a, fos, and bach2), which were associated with the
regulation of the transcription from the RNA polymerase II promoter and autophagy.
These genes were chosen for RT-qPCR amplification. Figure 6a shows the data of the real-
time PCR validation between the vehicle and DOC groups with a Pearson’s r of 0.82 (p-value
= 0.002). Figure 6b displays the results for DOC compared with mifepristone plus DOC,
which presented an elevated correlation of r = 0.875 (p-value = 0.004). Figure 6c reveals the
validation obtained from DOC with respect to the eplerenone plus DOC treatment, which
resulted in r = 0.825 (p-value = 0.0018).
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Figure 6. RT-qPCR validation of differentially expressed transcripts. Transcripts selected for the
RT-PCR validation of RNA-seq were mybpc1, septin10, strada, ppp3cc, myom2, tsc1, robo2, insr, rab9a,
fos, and bach2. (a) Validation between vehicle and DOC; (b) validation between DOC and DOC plus
mifepristone; (c) validation between DOC and DOC plus eplerenone. For RNA-seq, in purple, “#”
indicates a log2 fold change ≥2.0 and FDR <0.05. For RT-qPCR, in blue, relative expression was
normalized against fau and actβ, and “*” indicates significant differences in fold change from vehicle
or DOC groups (mean ± SEM, n = 4, p < 0.05). Abbreviations: mybpc1, myosin-binding protein C1;
strada, STE20-related kinase adapter protein α; ppp3cc, calcineurin; myom2, myomesin 2; tsc1, TSC
complex subunit 1a; robo2, roundabout homolog 2; insr, insulin receptor; rab9a, ras-related protein
Rab-9A; fos, proto-oncogene c-Fos; bach2, BTB domain and CNC homolog 2; fau, 40S ribosomal
protein S30; actβ, β actin.

4. Discussion

In this work, we study the role of GR and MR in the transcriptional response of
rainbow trout to DOC. The exogenous administration of DOC to rainbow trout at a concen-
tration of 1 mg/kg reached plasma levels similar to those observed under physiological
conditions. In a study carried out on rainbow trout subjected to confinement stress, a DOC
peak of 50 pg/mL was detected 4 h after the start of the trial, with basal levels close to
10 pg/mL [17]. Similarly, it was described that, during rainbow trout early development,
egg DOC concentrations varied over a range from 0.2 to 6.5 nM, which is equivalent to
a total concentration from 4 pg/mL to 130 pg/mL [21]. In our study, plasmatic DOC
reached a concentration of 76 pg/mL at 3 h after administration, with basal levels close
to 14 pg/mL. As expected, we determined that DOC administration did not induce an
increase in plasma cortisol levels due to pretreatment of trout with metyrapone, an in-
hibitor of cortisol synthesis. Metyrapone inhibits 11-β-hydroxylase, thereby inhibiting
the synthesis of cortisol from 11-deoxycortisol in the interrenal tissue [22]. Although the
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basal cortisol levels detected were low (35 ng/mL), this concentration could be associated
with the manipulation of individuals during anesthesia and metyrapone administration.
Interestingly, we noted that DOC administration did not induce changes in plasma glucose
levels in any of the treatments. This result reaffirmed the participation of cortisol as an
exclusive regulator of glucose metabolism in vertebrates. In fact, a recent work developed
in sea lamprey (Petromyzon marinus) determined that the administration of 40 µg/g of
deoxycortisol, a glucocorticoid present in jawless vertebrates, induced a significant increase
in plasmatic glucose concentration, unlike the administration of the same dose of DOC [23].
These results contrast with those observed in Eurasian perch (Perca fluviatis), where the
administration of a DOC implant (4 mg/kg) into the intraperitoneal cavity induced a slight
increase in plasma glucose levels [19]. This difference could be associated with acute and
chronic effects of DOC on the energetic physiology of lower vertebrates, as well as the dose
of hormone used.

Our research group recently described cortisol-mediated transcriptional changes in
rainbow trout skeletal muscles [20,24]. Using a methodological approach similar to the
present study, we determined that cortisol modulated the expression of transcripts associ-
ated with a broad variety of biological processes [24]. On the other hand, in the present
study, we determined that DOC modulated the differential expressions of a smaller number
of genes associated with a restricted group of biological processes, such as muscle contrac-
tion, sarcomere organization, the cell cycle, and cell adhesion. Interestingly, it is possible to
identify common biological processes differentially regulated by both corticosteroids, such
as, for example, muscle contraction and cell adhesion. Although the lists of transcripts mod-
ulated by each hormone were different, the correspondence in biological processes suggests
a complementary role of DOC and cortisol in skeletal muscles. This observation has been
proposed in several studies. In rainbow trout, during early development, dynamic variation
in DOC levels was demonstrated [21]. These levels contrast with those described for cortisol
in similar stages, as well as the expressions of the MR, GR1, and GR2 transcription factors.
In addition, complementary roles of cortisol and DOC in the osmoregulation process have
been described. Many of the physiological adaptation processes due to changes in salinity
in water, in both the gills and the intestines, were associated with cortisol and GR [25]. It
has been determined that DOC modifies the expressions of anion transport in the gills of
several fish (Morone saxatilis, Oreochromis mossambicus, and Salmo salar) [18,26,27]. Similarly,
the involvement of cortisol and DOC in the reproduction and sexual maturation processes
in teleosts has been described. In Anguilla japonica, the in vitro cortisol treatment of testis in-
duced DNA replication, positively regulating sperm maturation [28]. On the other hand, it
was described that gonad MR expression and DOC levels increased during the spermiation,
acting as negative regulators of sperm development, reducing the spermatocrit value, and
thus improving sperm fluidity [13]. It was also described in the amphibious mudskipper
(Periophthalmus modestus) that an intracerebroventricular injection with DOC or cortisol
altered the predilection of the species from freshwater to saltwater [29]. More recently,
the participation of DOC in response events to confinement stress in rainbow trout was
described [17], as well as its chronic effects on immune response parameters in Eurasian
perch (Perca fluviatilis), reaffirming a complementary participation to cortisol [19,30].

To distinguish the contribution of GR and MR in DOC-induced gene expression, we
examined differential transcripts’ expression through paired comparisons. We determined
that GR had relevant participation in the modulation of DOC-induced gene expressions
associated with BP such as muscle contraction, sarcomere organization, Wnt signaling
pathway, and cell cycle, among others. On the other hand, MR had relevant participation
in the modulation of DOC-induced gene expressions of BP such as autophagy, regulation
of gene expression, and muscle contraction. Interestingly, a recent study carried out in
human skeletal muscle cells demonstrated that aldosterone treatment induced changes in
gene expression similar to those induced by prednisolone, a GR agonist [31]. The main
changes were associated with processes such as cell adhesion, the extracellular matrix, and
the regulation of transcription. In the same study, combined treatments of aldosterone with
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antagonists for GR (mifepristone) or MR (eplerenone) modulated changes in gene expres-
sion, mainly associated with processes such as the regulation of transcription, cell adhesion,
muscle contraction, and the cell cycle [31]. These observations propose a conserved role of
MR in vertebrate skeletal muscles, as well as a compensatory role of GR function in muscle
development. Similar results have been obtained in experiments performed on MR and GR
knockout zebrafish as a study model [32–34]. It was described that MR and GR played key
roles in protein metabolism during stress, with MR participating in protein anabolism and
GR in protein catabolism [34]. Furthermore, it was determined that postnatal triglyceride
accretion was modulated by MR under stress [35].

To confirm the in silico differential expression, we selected those transcripts that had
significant changes in the vehicle versus DOC and in the DOC versus antagonist analyses.
We validated by RT-qPCR that mybpc1, ppp3cc, and myom2 had significant and decreased
expressions under DOC treatment, which was reversed in the mifepristone plus DOC
treatment. Mybpc1 encodes for myosin-binding protein C, which contributes to filament
assembly and modulates the formation of actin–myosin cross-bridges during skeletal
muscle contraction [36]. Myom2 encodes for Myomesin-2, also known as M-protein, which
is expressed in fast skeletal muscles and helps in the three-dimensional arrangement of
proteins composed of M-band structures in a sarcomere [37]. Ppp3cc encodes for calmodulin-
dependent protein phosphatase (PP2BC), also known as calcineurin, involved in a wide
variety of biologic processes, acting as a calcium-dependent regulator of phosphorylation
in proteins [38]. In skeletal muscles, these three proteins play an important role during
the process of skeletal muscle contraction and differentiation. These results agree with the
participation of aldosterone as a negative regulator of muscle function [31,39,40], as well as
previous studies by our group where an important function of GR has been assigned in
the expressions of proteins associated with skeletal muscle contraction [20,24]. Conversely,
we determined that DOC treatment induced overexpression of septin10, strada, and tsc1
in skeletal muscles, a trend that was reversed in the mifepristone plus DOC treatment.
Septin10 encodes for Septin, a protein with GTPase activity present in the cytoskeleton [41].
Its biological function is associated with regulation of the cell cycle and cytokinesis [42].
Strada, also known as STE20-related kinase adapter protein α, encodes for a protein that
forms a heterotrimeric complex with STK11 and CAB39, necessary for STK11-induced G1
cell cycle arrest [43]. Therefore, its biological function is also associated with cell cycle
regulation. Tsc1, also known as hamartin, encodes for a protein that forms a complex with
tuberin (tsc2), both considered tumor suppressors [44]. Therefore, its biological function is
also associated with cell cycle regulation. Consistent with our results, the downregulation
of septin10 expression was identified in a knockout murine model for GR, revealing its
participation during control cell proliferation in respiratory development [45]. In addition,
a relationship between STRADA and STK11 overexpression in glucocorticoid-induced
osteoporosis was described [46].

Complementarily, it was confirmed by RT-qPCR that robo2 and rab9a had increased
expressions under DOC treatment, which were reversed in the eplerenone plus DOC
treatment. Robo2, also known as roundabout homolog 2, encodes for a transmembrane
protein receptor for the slit homolog 3 protein (Slit3) and acts in axon guidance and cell
migration [47]. In skeletal muscles, ROBO2 and SLIT3 were shown to promote myogenic
differentiation [48]. Rab9a, also known as Ras-related protein Rab-9A, is involved in
the movement of proteins between the endosomes and the Golgi [49]. The involvement
of rab9a in autophagy was described as a mediator of IGF-IIR-induced mitophagy in
mammalian liver tissue [50]. Although there are no reports linking the participation of
glucocorticoid or mineralocorticoid receptors to the expressions of robo2 and rab9a genes,
there are antecedents for the participation of both receptors in myogenic differentiation
and autophagy in skeletal muscles [51]. Conversely, we determined that DOC treatment
induced downregulation in the expressions of insr, fos, and bach2, which were reversed
in the DOC plus eplerenone treatment. Insr encodes for the insulin receptor, a protein
receptor with tyrosine kinase activity that mediates the pleiotropic actions of insulin [52]. In
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skeletal muscles, there are various reports that link the relationship between insulin and the
insulin receptor as negative regulators of autophagy [53]. Interestingly, studies indicated
that aldosterone may modulate insulin receptor activity, reducing the insulin binding
in skeletal muscles [54]. Bach2 encodes for the transcription regulator protein BACH2
and is involved in coordinating transcription activation and repression by MAFK (BZIP
transcription factor K). This transcription regulator has been described as an important
mediator in skeletal muscle identity and reprogramming [55], as well as part of a FoxO-
dependent gene network in skeletal muscles during cancer cachexia [56]. Fos encodes
for c-Fos, a nuclear phosphoprotein that interacts with the transcription factors JUN and
AP-1. C-Fos was characterized as a strategic controller in the myogenic differentiation
process [57]. Interestingly, fos was identified as a potential aldosterone downstream target
in skeletal muscles, supporting the relationship between the mineralocorticoid receptor
and the biological process of transcription [58].

5. Conclusions

We identified for the first time a set of genes modulated by DOC, and the role of GR
and MR in the transcriptional response of rainbow trout skeletal muscle. DOC regulated
the gene expression associated with muscle contraction, sarcomere organization, and cell
adhesion. In the GR group, biological processes such as muscle contraction, sarcomere
organization, and skeletal muscle cell differentiation were overrepresented. In the MR
group, BPs were significantly enriched in autophagosome assembly, circadian regulation
of gene expression, and regulation of transcription from the RNA pol II promoter. These
results propose that both receptors have a differential contribution in the physiological
response to DOC and support the idea that cortisol and DOC have complementary roles.
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