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Abstract: For several decades, intensive research for understanding gene activity and its role in
organism’s lives is the research focus of scientists in different areas. A part of these investigations
is the analysis of gene expression data for selecting differentially expressed genes. Methods that
identify the interested genes have been proposed on statistical data analysis. The problem is that
there is no good agreement among them, as different results are produced by distinct methods.
By taking the advantage of the unsupervised data analysis, an iterative clustering procedure that
finds differentially expressed genes shows promising results. In the present paper, a comparative
study of the clustering methods applied for gene expression analysis is presented to explicate the
choice of the clustering algorithm implemented in the method. An investigation of different distance
measures is provided to reveal those that increase the efficiency of the method in finding the real
data structure. Further, the method is improved by incorporating an additional aggregation measure
based on the standard deviation of the expression levels. Its usage increases the gene distinction as
a new amount of differentially expressed genes is found. The method is summarized in a detailed
procedure. The significance of the method is proved by an analysis of two mice strain data sets. The
differentially expressed genes defined by the proposed method are compared with those selected by
the well-known statistical methods applied to the same data set.

Keywords: gene expression data; differentially expressed genes; clustering analysis; density-based
clustering

1. Introduction

For several decades, intensive investigations for revealing and understanding genes’
role in organisms’ lives is a research field of scientists in different specialties. A part of these
efforts is the analysis of gene expression data for searching relations in the genes’ activities.
The expression data are numerical tables obtained through well-established technologies
that have been significantly improved in the last years. The older technology for microarray
data outcome does not reach the high accuracy of the contemporary technologies named
next generation sequencing. The new technology provides larger volumes of DNA-Seq and
RNA-Seq data. Thus, next generation sequencing technologies significantly increase the
opportunity for effective research and gathering knowledge for existing dependencies of
the genes’ activity.

Regardless of the technology used, it results in a gene expression table. Each row
of the table corresponds to a particular gene and each column to a sample. The genes
in the table consist of a part or whole genome of a given organism. The sample data
concerns the specific research aim. If they comprise samples of distinct strains, genes
that are differently expressed are of interest. In the case of samples that correspond to
certain environmental conditions, the genes responsible for the conditions’ activities have
to be identified. The challenge is this huge amount of data, which in case next generation
sequencing technologies contain up to several hundred thousand numbers that must be
processed by effective methods of data analysis. The aim is to reveal information about
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unknown biological dependences. The information gained helps in answering the main
questions of life, such as how genome sequence specifies the forms and functions of the
organisms for the remarkable diversity of life or helps in understanding the evolutionary
mechanisms of the organisms [1–4]. In this direction, the approach of finding groups of
genes that act equally and identifying genes unknown in their biological response or finding
genes involved in certain processes is promising. For instance, a specific type of cancer
with respect to a group of genes responsible for it is valuable to research. Classification
obtained from gene expression analysis can be used for more precise tumor diagnosis and
its effective treatment [1].

The marked problems need to discover groups of genes that behave similarly. The
task could be solved in a supervised manner if preliminary knowledge about the interested
groups exists. However, in most cases, it is searched for unknown data partitioning that
needs the application of sophisticated statistical or machine learning methods.

A survey of statistical methods applied to identify a set of transcripts that are differ-
entially expressed between distinct experimental conditions with the goal of providing a
comprehensive guide when choosing appropriate metrics for RNA-Seq statistical analyses
is provided in [5]. Gaussian mixture modeling was investigated to detect and characterize
bimodal gene expression patterns across cancer samples to explore the hypothesis that
cancer mutations are likely to cluster with specific dichotomous shifts in the expression
of the genes [6]. Despite the statistical methods being widely applicable, they suffer in
difficulty ensuring the statistical distinguishableness of the result.

The difficulty to find well-separated groups of genes is an incentive to explore other
approaches in addition to statistical ones. The application of machine learning methods was
investigated and improvement in patient outcomes is shown in [7,8]. The obtained results
indicate that these algorithms can effectively differentiate healthy subjects and affected
patients. Successful implementation of tasks of expression differentiation is demonstrated
in [9]. Additionally, it is shown that convolutional neural networks achieves the best results
among eight explored deep learning methods for cancer classification [10]. Various machine
learning models of voting classifiers are built and compared in terms of their ability to
human protein prediction [11]. The ability of clustering analysis to deal with various tasks
of genes’ activity understanding has to be underlined to identify biomarkers and yield
computational predictive models [12] or a set of reproduction operators to facilitate the
exchange of grouping information between chromosomes [13].

A specific task of gene expression analysis is the aim to detect genes that are distin-
guishable by their expression. These are genes that act differently in the same strains. By
solving the problem, the genes responsible for certain disease states can be discovered
or it is possible to find differences between two species of strains. In searching for an
appropriate task solution, several methods for RNA-Seq data analysis according to their
expression levels based on statistical data analysis have been explored [14–16]. The differ-
entially expressed genes have been selected according to a value of a predefined threshold.
Their systematic and deep comparison performance shows that there is no good agreement
among the applied methods as, aside from the commonly identified genes, each statistical
method detects additional genes not identified by the others [15]. Thus, only 570 genes were
recognized as significant by four different methods, namely DESeq, DESeq2, edgeR, and
the limma method, which is closely related to the to the t-test. Each of these methods has
been chosen as a representative of a subgroup of the group of fifteen statistical methods. By
taking the advantage of the unsupervised data analysis, an iterative clustering procedure
that finds the differentially expressed genes was recently introduced [17], showing that
results are comparable with those of the statistical methods. The difficulty of the selection
problem due to a large number of indistinguishable genes is solved by an iterative proce-
dure with parameters that are a subject of a preliminary choice. However, the research lacks
a well-ground choice in both the implemented clustering algorithm as well as the procedure
parameters. Another drawback is that differentially expressed genes are found only by the
difference in their average expression value not accounting for the variation level.
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The present paper aims to improve our newly proposed method [17] for gene ex-
pression differentiation in several directions. First, a comparative study of the clustering
methods applied for gene expression analysis explicates the choice of the clustering al-
gorithm implemented in the introduced method. Second, an investigation of different
distance measures is provided to reveal those that increase the efficiency of the method
in finding the real data structure. Third, the method is improved by incorporating an
additional aggregation measure based on the standard deviation of the expression levels.
Its application increases the gene distinction and a new amount of differentially expressed
genes is found. Fourthly, the method is summarized in a detailed step procedure. The
significance of the method is proved by the analysis of two mice strain data sets. The
differentially expressed genes defined by the proposed method are compared with those
selected by the well-known statistical methods applied to the same data set.

2. Clustering for Gene Expression Data Analysis

Machine learning methods based on an unsupervised approach, such as cluster analy-
sis, present appropriate features for gene expression differentiation and grouping [18,19].
Clustering analysis divides a collection of data into groups and does not need a reference
model. The data are similar to each other within the cluster and different from the data
of other clusters. There are a large number of clustering algorithms that differ in how
they solve the two main issues of the task [12,18,20,21]. First, what is the proper similarity
measure to assess the data proximity, and second, what procedure to use in order to find the
data groups. The first one is to define the shape of the determined clusters. The clustering
procedure is governed by the incorporated partition criterion that in fact imposes the data
structure. However, there is no prescription for which criterion and how to choose [18,19].
Despite the large diversity of clustering methods, they could be grouped according to the
implemented clustering technique. Three main groups could be underlined according to
their abilities to deal with gene expression data analysis.

2.1. Hierarchical Clustering for Gene Expression Analysis

The most applicable clustering method for gene expression analysis is hierarchical
clustering [2,19]. Each cluster is built by smaller clusters, forming a tree-shaped data struc-
ture. Agglomerative hierarchical clustering starts with single-gene clusters and successively
joins the closest clusters until all genes have been joined into the supercluster. The opposite
strategy starts with all data collected in a single cluster and further divides them into
smaller groups. The agglomerative hierarchical algorithm is the most widely used for gene
expression analysis [2]. The important question is the cutting level of the dendrogram in
order to obtain the right clusters. Additionally, a family of clustering methods is known
according to the implemented linkage function. Due to the existing indistinguishability,
different linkage functions have to be explored to establish good clustering.

The establishment of the hierarchical clustering method as a widely used method for
clustering gene expression data is owed to its visibility features. The clustering is presented
in a dendrogram. They are also given in a colored view way that became a standard for
visualization of the gene expression data.

2.2. Objective Function Clustering for Gene Expression Analysis

Objective function clustering applies a criteria function that measures the quality of
the partitioning. The optimal value of the criteria function determines the data grouping.
The most used objective function clustering algorithm is k-means which divides the data
into a predetermined number of k clusters. The algorithm identifies the clusters according
to their representatives—the cluster centers. Data points are assigned to a cluster on the
basis of the distances from the centroids. An application for gene expression analysis is
demonstrated in [9,19].

A family of objective function algorithms based on k-means has been proposed. The
major question of their application is how many clusters actually exist and thus how to
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initialize the algorithm. The question is the subject of additional research. One possible
approach is to initialize with k randomly chosen cluster centroids, and each gene is assigned
to the cluster with the closest centroid. Another good strategy is seeding prototype centroids
with the eigenvectors identified by principal component analysis performed optimally
for genes of yeast bacteria [7]. Subtractive clustering was successfully implemented to
determine the number of clusters of gene expression soil bacterium data [22].

The fuzzy variant of the k-means algorithm, fuzzy C-means, shows a large advantage
for gene expression analysis, as it finds clusters that are overlapped. Thus, it reflects the
real relationship between genes pointing to distinct regulations and features of each gene’s
function [7,22].

The self-organizing map (SOM) methods are underlined to join this group of clustering
methods. SOM methods find clusters, which are organized into a grid structure. The search
procedure follows the same idea of proximity assessment of the input vector [1,20].

2.3. Density-Based Algorithms for Gene Expression Analysis

The density-based clustering searches for dense areas in the data space. It is not
necessarily to generate clusters explicitly, but instead to show the bunches of data that
form cluster structure. These algorithms are a good way to separate clusters from the noise.
They allow for a centralized description of irregularly shaped clusters in a data set with
high dimensions to identify outliers as data points with low cardinality [8,23]. By such an
algorithm implemented in gene-based clustering, the dense and not dense areas of data are
revealed to explain complexes and patterns of the gene associations [23]. A density-based
clustering algorithm named DBSCAN has a simple scheme for cluster detection using a
matrix of pairwise distances to find outliers and core points. Its complex variation shows
better efficacy [24] as an alternative density-based clustering algorithm implementation.

It should be underlined that other methods different from the ones discussed above
have been proposed in recent years for gene expression analysis. Pattern-based clustering
algorithms form clusters by objects, whose attributes present a difference of changes of
the values of the attributes smaller than a threshold value. Another workable idea was
to construct and apply a clustering algorithm in an iterative manner, which is a helpful
strategy in case of a vast amount of data. It is practicable to process data by subdividing
the genes into a smaller number of categories and then analyzing the obtained groups [20].

3. Method of Gene Expression Differentiation Based on Iterative Clustering Analysis

The gene expression differentiation problem is different from the general task of gene
expression analysis as instead of finding gene groups, it tries to find genes that have
significantly different activity in their expression levels. The difficulties in solving this task
are as the following:

• Assessments based on statistical analysis are rather hard. The number of genes is
large and they lack significant apartness according to the estimated p-values. Thus, no
precise conclusion about the genes’ distinguishing could be performed.

• Another particularity of the data is that often the number of interested genes is quite
smaller than the whole data amount. In addition, the searched genes appeared mostly
as outliers than as a representative and compact group that could be interpreted.

• The difficulty of the gene separation is a result of the existing difference in the gene
expression of the samples of a given strain that in some cases is larger than the
expression between the compared strains. This fact is illustrated in Figure 1, where
profiles of gene expressions of two mice strains are given. The data are provided
in [25] and will be described in more detail in fourth section. It is clear to see that the
deviation in the gene expression within the same strain samples is larger than between
the expressions of the two strains.
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Figure 1. Profiles of the first 100 most differentially expressed genes of the two mice data sets. The
first 10 samples (in red) are one mouse strain and the rest 11 (in yellow) are another strain.

According to these observations, it could be concluded that an alternative method
rather than a statistical one is valuable to be investigated. Unsupervised methods, such as
clustering analysis, are promising due to the ability to deal with no reference model and
with unbalanced groups of data. Another important conclusion concerns the impossibility
to distinguish genes within the samples of a strain. It imposes a solution based on some
aggregated measure to represent the expression levels of a gene.

Following the above conclusions about the gene expression data and knowing the
abilities of the distinct types of clustering methods, the method of iterative gene expression
differentiation is substantially improved to affirm it as an appropriate method for gene
differentiation.

3.1. Iterative Clustering Analysis for Gene Expression Differentiation

The method of gene expression differentiation uses the average value of the gene
expression of the samples of a particular strain as an aggregated measure of the genes’
activity. Comparing the average values of each gene for two investigated strains, we
could expect that for the genes that behave equally the respective average values remain
close whereas, for the differently expressed genes, the mean values differ. The latter are
differentially expressed genes that we are interested in. However, their direct comparison
will not give a reliable result, as we do not have a threshold value to separate the two groups.
It is necessary to apply an additional assessment that could distinguish the not separable
data from those that are much different for the two strains. A valuable distinguishing could
be performed with a proper clustering algorithm.

In the present work, we introduce the standard deviation of the expression values of
a gene as a second aggregating measure that could give additional information in terms
of genes’ distinguishing. The rationale for this is the fact that even if the two compared
average values are similar, the genes could behave differently if their deviation from the
mean value differs at large.

In accordance with this idea, we are looking for a clustering algorithm to enable us to
distinguish the two kinds of data—similarities and outliers. A good choice is the widely
applicable DBSCAN algorithm [24], which groups data based on their density and finds
clusters, as well as outliers. It computes clusters iteratively by exploring the closeness of
each data to the others in the accepted radius. The algorithm is basic and scalable to large
data sets. Variations of the algorithm discover clusters with different densities and kernel
functions by exploring additional information for the algorithm parameters [26,27]. The
reasonability to use its sophisticated version in our case is questionable as we are interested
mostly in the outliers. Additionally, the core clusters are expected to be commensurate
with as far as all they are along the equivalent area.

The algorithm is applied to the data formed by the average expression values of each
gene for the different strains. Using this algorithm, we can separate genes densely scabbed



Genes 2023, 14, 412 6 of 14

around the equivalence line of the data space from the outliers that are away from this area.
The outliers are the data of the genes we are searching for.

DBSCAN clustering uses a matrix of pairwise distances between data. It finds the
number of outliers and core points. The clustering is accomplished based on a threshold
radius r for neighborhood search and a minimum number of neighbors Nmin required to
identify a core point. The two parameters are subject to off-line investigation and fully
depend on the structure of the data space. The default measure for data range estimation is
Euclidian distance.

Clustering by the DBSCAN algorithm is applied to Bottomly’s reduced data set [25]
(Figure 2). Each graphic of the figure presents the scatter plot of the averaged values of
the gene expressions, where the first dimension corresponds to one mouse strain and the
second dimension to the other strain. By varying the clustering parameters r and Nmin,
different numbers of core clusters (compact clusters in the equivalence area) and outliers
(red dots) are discovered for each data set. The outliers that surround the compact data
group(s) are the data of differently expressed genes. For small cluster radius r and low
Nmin, the number of discovered core clusters is relatively high and the number of outliers
is small (Figure 2a). By increasing Nmin, more outliers are identified (Figure 2b,c). The
radius r is a sensitive parameter. When it doubles, the number of differently expressed
genes decreases drastically (Figure 2c,d).
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Figure 2. Results of DBSCAN clustering applied to the average values of the genes of the two mice
strains (a) r = 0.2 and Nmin = 5 discovers 153 differently expressed genes; (b) r = 0.2 and Nmin = 15
discovers 420 genes; (c) r = 0.2 and Nmin = 20 discovers 593 genes; (d) r = 0.4 and Nmin = 20 discovers
154 genes. Discovered core clusters are enumerated in the legends and outliers (red dots) are marked
by “−1”.

A problem with clustering the entire data set is accounted for due to the enormous
number of similarly behaving genes. The algorithm reveals a limited amount of differ-
ently expressed genes (Figure 2). Compared to those obtained by the statistical analysis
results [15], they are less. In order to improve the distinctiveness of the interested genes
and thus their disclosure, the clustering can be applied not to the whole set at once, but by
sequentially separating subsets of the data. These data subsets must have the same volume
and here we call them data batches. Based on this idea, an iterative clustering scheme is
proposed that significantly increases the number of discovered genes.

The whole amount of data is divided into batches that each comprise an equal number
of gene expression data. The clustering procedure incorporates the DBSCAN algorithm
applied iteratively to the data of each batch. The outliers discovered in each batch are
added to form a common set of differently expressed genes.

This scheme needs to solve two important questions in advance, such as data pre-
processing and setting the values of the parameters needed for the iterative clustering
procedure.

3.2. Data Preprocessing

Two main obstacles have to be tackled before clustering. First, logarithm transforma-
tion is needed in order to solve the scalability problem, as some of the gene expression
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values are very large with respect to others. The other problem is that there are zero ex-
pression values seen for samples of some genes as they were not active or their expression
has been not properly measured. In order to ensure the logarithm calculation, filtering for
removing genes with zero activity value is a requisite.

3.3. Method Parameters

The choice of the cluster distance is important as it governs the found cluster shape.
Other key clustering parameters are the threshold radius r for a neighborhood search and
a minimum number of neighbors Nmin required to identify the core points. The iterative
implementation of DBSCAN requires setting the number of data that form a batch. In
the present study, by exploring different parameter values, we gain more information
according to the method’s applicability.

Due to the similarity in the genes’ behavior as in the case of whole data set processing,
it could be expected that the data of each batch form a large compact group along the equiv-
alence area. This area is rather oblong compared to a spherical one. It suggests that clusters
are not Euclidean. This observation requires further research for selecting an appropriate
proximity measure. Our investigation shows that by applying the Mahalanobis distance,
more differentially expressed genes could be discovered in comparison to the Euclidean
distance search. In this paper, we extend this investigation by exploring other distance
measures and assessing them in terms of their genes’ separation abilities (Section 4).

The threshold radius r and the minimum number Nmin are difficult to set in advance,
as they depend on the density of the data. The threshold radius r should not be less than
the minimum distance of data pairs. Here, the values of r and Nmin are determined in
searching to increase the number of the discovered outliers.

The number of genes that form a batch is another problem to be solved. A rather
large batch could make it impossible to detect all outliers, as in the case of whole data set
clustering. Conversely, too small of a batch could embarrass the detection of core clusters
and thus the right distinguish between equivalently and differentially expressed genes.
Our experience signifies that several hundred data in a batch could produce acceptable
results. The application results obtained here show that it is worth exploring different batch
volumes in order to find a reliable quantity of differently expressed genes.

Once the method parameters were determined, they are applied to each data batch
according to the accepted iterative clustering scheme.

3.4. Procedure of Iterative Clustering Method for Gene Expression Differentiation

The method procedure is summarized, in detail, in the following steps and illustrated
in Figure 3:

Step 1: Preprocessing
Filtering for removing genes with zero activity values and log transforming the ex-

pression values.
Step 2: Calculate the aggregated expression values
Calculation of average values and standard deviation values of expression levels of

each gene for each of the compared strains.
Step 3: Divide the data set into data batches
Determine the data batches to divide the data set into equal data batches.
Step 4: Set DBSCAN parameters
Set a clustering measure that searches for oblong clusters. The two parameters of the

algorithm have to be fixed to the threshold radius r and the minimum number of data that
form a cluster Nmin. As there is no strong prescription, their values could be defined by
accounting for the specificity of the data set.

Step 5: Iterate for each batch:
5.1 Apply the DBSCAN algorithm to the space formed by the average values of the

genes of the two strains to extract both outliers and compact clusters.
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5.2 Apply the DBSCAN algorithm to the space defined by the standard deviation
values of the genes that are in the compact clusters and extract the outliers.

5.3 Collect all outliers found in steps 5.1 and 5.2.
Step 6: Collect all detected outliers
Add outliers of each batch to determine the set of differentially expressed genes.
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Figure 3. The procedure of the iterative clustering method for gene expression differentiation.

4. Application Results and Discussion

The proposed method is applied to an open data set. Conclusions are presented based
on the results compared with statistical data analysis for gene expression differentiation of
the same data.

4.1. Data Set

The iterative procedure is applied to the gene expression data set of samples of two
mice strains—ten of strain C57BL/6J and eleven of strain DBA/2J. The raw data available
from the ReCount online resource [25] were filtered to represent 13932 genes having non-
all-zero rows [15]. As there were zero expression values after filtering the preprocessing
step of the method, a reduced data set of 9196 genes remains. After log transformation, the
data is further processed.

4.2. Analysis of Clustering Parameters

By varying the clustering parameters of different splittings into two groups, the group
of outliers (differently expressed genes) and genes that are equivalent in their behavior
could be found. First, we explore different distance metrics in an attempt to find the best
method parameters (Table 1). For this, the accumulated group of differently expressed
genes marked by ML is compared with gene groups separated by statistical data analysis
by four methods—t-test, edgeR, limma, and DESeq2. The number of discovered genes by
each statistical method given in [15] is presented in the first (sub)column of the respective
method column. The number of the genes discovered by our method that are common for
the respective statistical method is given in the second (sub)column. The last column of
the table, “ML all data”, consists of the total amount of differently expressed genes that are
identified by the proposed iterative clustering method.
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Table 1. The number of differentially expressed genes selected through different cluster distances
compared with the results of statistical gene differentiation; batch = 511 genes.

Distance
t-test edgeR limma DESeq2 ML

All Datattest ML edgeR ML limma ML DESeq2 ML

Euclidean,
r = 0.15, Nmin = 10 71 71 915 647 736 537 982 648 2848

Mahalanobis,
r = 0.2, Nmin = 5 71 71 915 738 736 611 982 735 1905

Cityblock,
r = 0.2, Nmin = 5 71 70 915 417 736 365 982 407 994

Minkowski, p = 2,
r = 0.2, Nmin = 5 71 68 915 286 736 266 982 283 614

Minkowski, p = 0.5,
r = 0.2, Nmin = 5 71 71 915 789 736 641 982 807 3475

Chebychev, r = 0.1,
Nmin = 5 71 71 915 667 736 548 982 665 2264

Several distance metrics have been investigated and those that produce good results
are presented and discussed here. Both Euclidean distance, as well as Minkowski distance
with a value of its parameter p = 2 (or close to 2), give relatively good results according to
the separated clusters. However, as they form spherical clusters that do not correspond to
the data structure, it is a prerequisite to distort the separation result by mixing some outliers
with the selected core clusters. The distances that produce differently shaped clusters are
more valuable with respect to the real data structure. These are Mahalonobis distance and
Minkowski distance with a smaller value of parameter p. The distances between Cityblock
and Chebishev are also investigated. By varying DBSCAN parameters different amounts
of genes are discovered, and the best results of each distance investigated for each method
are presented in Table 1. Despite the fact that Minkowski distance with a small value of
p = 0.5 presents the best result according to commonly identified genes with the respective
statistical methods, the preference is given to Mahalanobis distance clustering. The oblong
clusters through Mahalanobis distance determine the smallest number, 1905 selected genes,
compared to 3475 found by Minkovski distance.

In searching for the appropriate batch volume, we explore two different volumes for
clustering through best found cluster distance (Table 2). First, the whole amount of data
was divided into 18 batches of 511 genes each, except the last one consisting of 508 genes.
This batch size is set to be comparable to the number of genes found by the statistical
analysis. Further, the batch was set to 1022 and 1016, respectively, for the last one. The
differentiation results for batches consisting of 511 and 1022 genes with the appropriate
setting of the two parameters, r and Nmin, are comparable. Certain preferences can be
given to clustering at the batch of 511 genes because of the smaller number of all separated
genes, the “ML all data” of 1905 genes. On the other hand, the batch of 1022 genes ensures
a larger number of differentially expressed genes commonly discovered by the respective
statistical methods.

Concerning the rest two parameters, r and Nmin, it should be underlined that their
best values in terms of selecting abilities depend on the applied distance metrics. The
minimum number of neighbors Nmin is sensitive to the batch size as well (Table 2).
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Table 2. The number of differentially expressed genes selected via Mahalonobis distance for different
batch sizes.

Method
Parameters

t-test edgeR limma DESeq2 ML
All Datattest ML edgeR ML limma ML DESeq2 ML

Batch = 511,
r = 0.2, Nmin = 5 71 71 915 738 736 611 982 735 1905

Batch = 511,
r = 0.3, Nmin = 5 71 71 915 527 736 457 982 516 896

Batch = 1022,
r = 0.2, Nmin = 5 71 71 915 584 736 508 982 573 1058

Batch = 1022,
r = 0.2, Nmin = 10 71 71 915 791 736 642 982 787 2050

Batch = 1022,
r = 0.3, Nmin = 10 71 71 915 525 736 455 982 514 891

In the next method, the standard deviation is applied as a second aggregated measure
to discover additional genes that differ in their variation magnitude. The results shown
in Table 3 are obtained from the data separated in the core clusters in accordance with the
average measure. A different number of genes are selected varying the standard deviation
threshold Tstd value. A larger Tstd value provides fewer differentially expressed genes. The
largest Tstd value given in the table for each set of the method parameters corresponds
to the minimum number of differentially expressed genes found in the batches. For the
results of the next experiments given in the table, the value of Tstd was decreased by a step
of 0.05 to a reasonable minimum. Further decreasing of the deviation threshold is possible.
It results in more selected genes but the biological sense of this should be grounded. The
results also show that larger batch size decreases the distinguishing abilities. As a smaller
number of genes are identified for the same Tstd values.

Table 3. The number of selected genes according to standard deviation distinguishing.

Method Parameters Tstd Number of Selected Genes

Batch size = 511, r = 0.2, Nmin = 5

0.35 174

0.3 303

0.25 560

Batch size = 511, r = 0.3, Nmin = 5

0.45 84

0.4 138

0.35 247

0.3 417

Batch size =1022, r = 0.2, Nmin = 10
0.35 147

0.3 266

4.3. Visualization of the Results

The method presents certain visualization abilities. Batch separations are represented
as scatter plots, where clusters and outliers are visible. In present, our implementation of
the core clusters is colored and enumerated with positive numbers. The outliers found by
average expression value are marked by −1, whereas the additionally found data by the
standard deviation of the expression values are marked by “+” and enumerated by −2.
One particular selection obtained for a set of the method parameters is shown in the scatter
plots in Figure 4.
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r = 0.2, Nmin = 10.

Detailed visualization of the clustering result with possible interpretation, which
could be performed by considering the distinct batch scatter plots. The method’s ability
to discover fewer compact clusters along the equivalent area by oblong distance measure
is confirmed. In contrast, the spherical distance measure tends to split the data into more
clusters. The outliers found using standard deviation measure (std found genes) tend to
be less for spherical distance than those found by elliptical distance. For instance, the
clustering of the same batches with the best-found parameters (Table 1) is presented for
Euclidean and Machalonobis distance separation (Figures 5–7).
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Despite the implemented cluster distance measure in the general case, DBSCAN
determines several compact clusters along the equivalent area. Each of these clusters
captures genes with very similar behavior that could reveal very specific features. This
observation is prerequisite for further knowledge extraction and an opportunity to find
genes with different levels of significance revealing new useful information accounting for
the biological meaning of the compact clusters found.

The complexity of DBSCAN is measured by consuming O (N log N) time, with N as the
size of the data set [26,27]. Relying on this, we can conclude that our method will increase
this complexity in a linear way as far as the size N, which is presented as m*Nb, where m is
the number of batches and Nb is the size of the batch. However, we should underline that
the ability to discover much more outliers is an advantage of the iterative search.

5. Conclusions

The paper presents an iterative clustering method for discovering genes that are
differentially expressed. The solution is realized by a procedure taking advantage of both
density-based clustering and iterative clustering. DBSCAN, as a density-based clustering
algorithm is implemented, in which choice is grounded by an analytical review of the
ability of the clustering algorithms to deal with gene expression data.

Based on the application of a real data set, the paper makes conclusions about the
appropriate method parameters—proper distance measure and batch volume. The best
distance measures found are Mahalonobis distance and some parameters of Minkowski
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distance. Good results are obtained for batches of two different sizes. The results obtained
are compared with the results of statistical data analysis applied to the same data set of
gene expression of two mice strains.

Additionally, the method incorporates two different aggregated measures of the expres-
sion levels—average and standard deviation values used to determine cluster separation
of the data space. This gives an opportunity to find genes that are distinguished both by
the level of the expression activity and by the level of expression variation if the average
values are similar.

The results show that the method is valuable to be applied standalone. However, it
could be used in combination with statistical methods for preliminary gene selection within
a pipeline of the used algorithms in order to stick their search to a smaller number of genes.

The applicability of the proposed method is a research focus for future work. The
procedure should be applied to other data sets to discover differentially expressed genes
and to compare results with those obtained by other methods. It is also interesting to
research if the method could be used in solving other tasks of gene expression analysis
where similarity comparison is needed.
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