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Abstract: Colon cancer (CRC) is a prevalent malignancy that exhibits distinct differences in incidence,
prognosis, and treatment responses between males and females. These disparities have long been
attributed to hormonal differences, particularly the influence of oestrogen signalling. This review
aims to provide a comprehensive analysis of recent advances in our understanding of the molecular
mechanisms underlying sex differences in colon cancer and the protective role of membrane and
nuclear oestrogen signalling in CRC development, progression, and therapeutic interventions. We
discuss the epidemiological and molecular evidence supporting sex differences in colon cancer,
followed by an exploration of the impact of oestrogen in CRC through various genomic and nonge-
nomic signalling pathways involving membrane and nuclear oestrogen receptors. Furthermore, we
examine the interplay between oestrogen receptors and other signalling pathways, in particular the
Wnt/β-catenin proliferative pathway and hypoxia in shaping biological sex differences and oestro-
gen protective actions in colon cancer. Lastly, we highlight the potential therapeutic implications
of targeting oestrogen signalling in the management of colon cancer and propose future research
directions to address the current gaps in our understanding of this complex phenomenon.
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1. Introduction
1.1. Sex Differences/Sexual Dimorphism/Gender Differences in Cancer

Sex differences and sexual dimorphism refer to biological and morphological differ-
ences, respectively, between males and females in various traits or characteristics. While
sexual dimorphism refers to the form or appearances such as height and morphology
(evolutionary adaptations), sex differences are primarily associated with biological features,
and their impact on cancer is an exciting and rapidly developing area of ongoing research.
These terms have been used interchangeably, and not without some misunderstanding,
in the scientific literature with reference to male/female differences in cancer [1–3]. Gen-
der differences, on the other hand, commonly refer to behavioural and lifestyle traits
but are often confused with biological sex differences [4–6]. Several types of cancer have
demonstrated differences in incidence, presentation, and outcomes between males and
females [7,8]. Certain cancers are more prevalent in one sex compared to the other due
to anatomical differences, for example, prostate cancer in males, and ovarian or uterine
cancer in females, whereas others may be associated with hormonal and genetic factors
such as breast cancer [9]. In a survey of the most recent data from the Global Cancer
Observatory, it can be noted that the top 20 most common nonreproductive tissue cancers
worldwide show sex differences both in incidence and mortality, with females showing
lower age-standardized incidence and mortality for all cancers (excluding those of anatom-
ical differences) and for all cancers in every global region surveyed (Figure 1). While
hormone and genetic factors contribute to these differences, other nonbiological risk factors
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can increase the likelihood of incidence and mortality, including smoking and excessive
alcohol consumption, particularly for lung, stomach, oesophagus, and liver cancer [10,11].
Here, we discuss the evidence for genomic and nongenomic biological actions of oestrogen
underpinning biological sex differences in colon cancer. We focus on more recent reports
and try to integrate current knowledge into a holistic understanding of the role of oestrogen,
its receptors, and molecular targets, in order to explain this very complex phenomenon for
which many mechanistic questions still remain unanswered.
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https://gco.iarc.fr/overtime/en/dataviz/bars?sexes=1_2&sort_by=value2&mode=cancer, (accessed
on 29 July 2023).

1.2. Sex Differences and Regional Variances in Colon Cancer

Colon cancer, also known as colorectal cancer (CRC), is one of the most common
types of cancer worldwide. The exact prevalence may vary depending on factors such as
age, gender, geographical location, and lifestyle choices. According to the World Health
Organization, colon cancer is the second-most commonly diagnosed cancer globally and
the third-leading cause of cancer-related deaths (Figure 1). Sex differences showing a female
advantage are is a feature of CRC [12]. Although the main risk factor for CRC is age (about
90% of patients are older than 50 years), sex differences in CRC are evident in age-matched
male and female patients [13]. The age-standardized mortality rate for men is 50% higher
(10.8 per 100,000 person-year) than for women (7.2 per 100,000 person-year) [14].

The CRC incidence rates can differ significantly between countries, but all coun-
tries show a male predominance in both incidence and mortality of CRC (Figure 2) [15].
Moreover, the trends for the next 20 years predict a continuing sex difference with more
males than females affected by CRC both in its incidence and mortality (Globocan 2020,
https://gco.iarc.fr, accessed on 29 July 2023) [16]. Certain risk factors can increase the
likelihood of developing colon cancer, including a family history of the disease, a per-
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sonal history of inflammatory bowel disease, a sedentary lifestyle, a diet high in processed
meats and fat and low in fruits, vegetables, and fibre, smoking, and excessive alcohol
consumption. It is important to note that advancements in early detection and improved
treatment options have contributed to higher survival rates and better outcomes for in-
dividuals diagnosed with colon cancer. Regular screenings such as colonoscopies can
help detect precancerous polyps or early-stage colon cancer, improving the chances of
successful treatment. Biological sex differences, however, are too often a neglected factor in
both clinical trials and treatment of colon cancer, although its added value to personalized
medicine is incontestable [17]. Sex differences exist at multiple levels in colon cancer, and
women have a lower risk of developing CRC than men. Females at a younger age are less
likely to die from CRC than age-matched male patients, and certain types of CRC occur
predominantly in women. The biological differences in CRC mortality are noticeable in
the survival advantage of women during premenopause (18–44 y) compared to men of
the same age or to older women post-menopause [18]. These premenopausal advantages
and the observations that hormone replacement therapy (HRT) may also be protective in
CRC [19–21] indicate a role for the female sex steroid hormone oestrogen in delaying the
onset and reducing mortality in females with colon cancer [22,23]. Sexual disparity has also
been shown in epidemiological studies to be an important factor in the site of onset and
metastases in CRC [24]. Women show a higher frequency of right-sided tumours (proximal
colon) than men who present more commonly with left-sided (distal colon) tumours [25].
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Figure 2. Age-standardized incidence and mortality rates for colorectal cancer per 100,000 across
WHO regions. Survey of most recent data from the Global Cancer Observatory, Colon Cancer
1989–2012. https://gco.iarc.fr/overtime/en/dataviz/bars?sexes=1_2&sort_by=value2&cancers=
5&types=1 (accessed on 29 July 2023).

Right-sided CRC tumours arise from the ascending colon and proximal two-thirds
of the transverse colon, whereas left-sided CRC tumours arise from the descending and
sigmoid colon and distal one-third of the transverse colon. The regional origin of proximal
(right) or distal (left) colon in CRC can impact prognosis, with CRC of proximal origin being
associated with a worse prognosis [26]. Right-sided proximal tumours are harder to detect
and diagnose [27] and tend to be more advanced, larger, and poorly differentiated at first
diagnosis [28]. Moreover, right-sided proximal tumours tend to be more aggressive and
resistant to chemotherapy, which may confound the advantages conferred by oestrogen
protection. These regional and sex differences in CRC prognosis may result from differences
in cellular molecular subtypes between proximal and distal colon [29].
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One highly significant candidate is the Wnt signalling pathway and its regional
variation along the length of the intestine. There is evidence for Wnt signalling gradients
along the intestinal tract and region-specific differences in Wnt responsiveness in CRC [30].
Differential Wnt gene expression profiles and signalling potential have been demonstrated
along the colonic crypt–villus axis and throughout the length of the colon, particularly
following β-catenin stabilization [31]. This regional variation in Wnt signalling could
influence tumour susceptibility between the proximal and distal colon. Genes in the Wnt
signalling pathway are more enriched in male compared to female CRC colonic cells and
their enhanced sensitization in males may be related to the higher risk and lower survival
rates observed in colon cancer in males [32]. Sex differences in CRC patient survival with
a female advantage exist for the expression of the Wnt receptor gene FZD1. Thus, sex
differences and differential expression between proximal and distal colon in Wnt receptor
expression and signalling may influence its potential as a therapeutic target [33] Although
proximal tumours are more frequent in females, the oestrogen-induced quiescence of
Wnt/β-catenin signalling in female CRC [12] will favour normal growth, morphology, and
epithelial cell differentiation, whereas a lower activation threshold for Wnt signalling in
male CRC will promote cell proliferation, EMT, and tumorigenesis.

1.3. Oestrogen and Sex Differences in Colon Cancer

Oestrogen is the main sex hormone that controls physiological functions of the female
reproductive system, as well as the development of secondary sexual characteristics during
female puberty. The predominant circulating oestrogen in humans is 17β-estradiol (E2),
which is the most physiologically relevant oestrogen during the female reproductive years.
In human females during the reproductive years, the plasma levels of E2 fluctuate over
the oestrous cycle, reaching peak concentrations in the follicular phase; 150 to 300 pg/mL
(0.5–1 nM) 24 h before ovulation [34], while the highest likely E2 level in the plasma
during pregnancy is 8 ng/mL (30 nM) [35]. Oestrogen plasma levels fall off dramatically
post-menopause (>45 y), decreasing to below 30 pg/mL (110 pM), which is close to levels
found in age-matched males (10–50 pg/mL). Oestrogen at subnanomolar concentrations
has been shown to exert multiple sexually distinct physiological actions, with a female
advantage in tissues and organs outside the reproductive system, including brain, skeleton,
muscle, cardiovascular, immune system, intestine, kidney, liver, and pancreas to influence,
respectively, memory, bone strength, cardiac, and skeletal muscle contractility, immunity,
intestinal secretion, renal Na+ handling, blood pressure, and metabolism [36]. These
pleiotropic effects of oestrogen are thought to underpin sex differences and reinforce female
physiology, reproduction, longevity, and healthy aging [37]. The beneficial biological effects
of oestrogen are lost and often only become apparent after the menopause [38] and may be
restored with hormone replacement therapy [39], but only if started early, for example, as in
treating cardiovascular disease [40]. Pathophysiological effects of oestrogen are observed in
some cancers, notably breast, uterine, and cervical cancers [41], whereas in nonreproductive
organ cancers, oestrogen can have protective effects against morbidity and mortality [42].
Oestrogen signalling via specific oestrogen receptors has emerged as a crucial factor in sex
differences in the development and progression of colon cancer [12,22,23].

2. Oestrogen Receptors in Colon Cancer

Oestrogen receptors determine the biological sex differences, specificity, and transduc-
tion of the multiple signalling responses to oestrogen [43]. Probably the most important
factor in sex differences in colon cancer development is ligand activation of oestrogen
receptors (ER), primarily ERα and ERβ. These receptors are expressed in both males and
females but can have differential expression levels and activity patterns, depending on
circulating levels of E2, as well as prognostic value in CRC [44]. The role of oestrogen in
CRC progression is dependent on the relative abundance of the ER subtypes and their
hormone responsiveness. The colonic crypt epithelium expresses both ERα and ERβ [45].
Positional differential expression of ERs has been reported along the colon length and
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within the crypt axis. ERα is expressed more highly at the base of the crypt of the proximal
colon, while ERβ expression is predominant in the midsection of the crypt and in the apical
surface cells [46]. This spatial partitioning of ER isoform expression indicates antagonistic
roles for ERα and ERβ in transducing differential effects of oestrogen on the physiological
function of the epithelial cells located at different sites along the crypt. For example, pro-
genitor cell proliferation at the base of the crypt gives way to enterocyte differentiation in
the midsection and shedding of senescent or apoptotic cells at the lumen surface. There is
strong evidence that ERβ is more highly expressed in colon cancer tissues from females
compared to males, while ERα expression levels can vary among the sexes [44,47]. ERβ has
been proposed as a tumour suppressor in CRC, and ERβ Erβ expression is selectively lost
during tumour progression through methylation-dependent gene silencing [48]. Thus, the
ratio between ERα and ERβ expression and balance in their cell signalling may contribute
to sex differences in CRC [49,50].

2.1. Nuclear Oestrogen Receptors in Colon Cancer

The two main subtypes of ERs are ERα (encoded by oestrogen receptor 1, ESR1) and
ERβ (encoded by oestrogen receptor 2, ESR2), which are differentially expressed in normal
colon tissue as well as in colon cancer cells. These two oestrogen receptor subtypes are often
referred to as canonical or nuclear ERs, eliciting latent genomic responses to oestrogen
and working in an antagonistic fashion on cell biology [51]. The natural ligand for all
ERs is the biologically active form of oestrogen, 17β-estradiol (E2). Nuclear ERs play a
complex role in colon cancer, influencing various aspects of tumour development and
progression [42]. Colon cancer cells expressing ERs can be hormone-responsive, meaning
they can respond to oestrogen stimulation. Oestrogen can directly bind to ERs in these cells
and trigger a cascade of signalling events leading to changes in gene expression, protein
synthesis, and cell behaviour (Figure 3). It is worth repeating that the specific roles and
effects of ERs in colon cancer can vary depending on factors such as the subtype of ER
(ERα vs. ERβ), their relative expression levels, and the interplay with other signalling
pathways. For example, while ERα has been associated with promoting tumour growth
and progression, ERβ has been suggested to have a potentially protective or inhibitory
effect on colon cancer development [51,52]. Importantly, nuclear ERs are proven prognostic
and therapeutic targets in colon cancer [53,54].

2.2. Membrane Oestrogen Receptors in Colon Cancer

Membrane oestrogen-sensitive receptors have been implicated in CRC [12,23,42],
which, unlike the classical nuclear ERs, involve oestrogen-liganded membrane-initiated
cell signalling pathways (Figure 3) [55]. Membrane-initiated oestrogen responses in colonic
epithelium are typified by rapid nongenomic actions on protein kinase cell signalling
pathways, intracellular Ca2+ activity, and ion channel function [56], which distinguish
these events from the more latent genomic responses to oestrogen in a wide range of
normal and cancerous cell types. The presence and role of membrane oestrogen receptors
in colon cancer, and cancer in general, are a hot topic of ongoing research and have been
the subject of dedicated international meetings continuously since 1992 (RRSH, FASEB SRC
Meetings) [57–59]. The two most well-characterized membrane receptors for oestrogen are
membrane ERα (mERα]) [60] and G protein-coupled oestrogen receptor 1 (GPER1), also
known as GPR30 [61], which are discussed in detail below.
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Figure 3. Genomic and non-genomic estrogen (E2) signaling pathways in colon cancer. In the genomic
pathway, estrogen interacts with estrogen receptors in the cytosol (cERα and cERβ) which translocate
to the nucleus to activate (nERα) or repress (nERβ) cell proliferative genes. ERβ can also inhibit ERα
nuclear transcription. Non-genomic to genomic cross-talk can occur when ERα transactivates EGFR
to initiate cell proliferative signalling via MAPK, PI3K/Akt. Membrane estrogen receptors mERα
and GPER signal through non-genomic pathways to activate protein kinases, calcium mobilization or
intracellular pH, which in turn modulate ion channel activity or activate transcription factors such as
CREB or HIF-1α and VEGF which can in turn cross-talk to genomic signaling pathways to increase
the synthesis of protein kinases or ion channels. GPER activation can have dual effects on CRC cell
proliferation depending on oxygen levels in the tumour microenvironment. In normoxia, E2-GPER
inhibits HIF-1α, VEGF and c-Jun transcription of proliferative genes whereas in hypoxia E2-GPER
activates these HIF-1α proliferative pathways. In addition Wnt/β-catenin proliferative pathways can
be inhibited by the estrogen regulated ion channel KCNQ1 to trap β-catenin at adherens junctions
and impede nuclear translocation of β-catenin. Red and green squares encompass signaling pathways
which exacerbate CRC or protect against CRC, respectively.

3. Genomic and Nongenomic Oestrogen Signalling Pathways in Colon Cancer

Steroid hormone signalling occurs via nongenomic membrane-initiated pathways and
genomic nuclear transcriptional pathways working in a coordinated fashion (Figure 3) [62,63].
Oestrogen can trigger cellular signalling in both healthy and cancerous colonic epithelial
cells via genomic and nongenomic mechanisms [4,14,42] in a sexually differentiated manner,
which also shows dependency on the stage of the oestrous cycle [64]. Both genomic and
nongenomic oestrogen signalling pathways in the colon are cell-type-specific and may differ
among healthy and cancerous colonic tissues. Genomic oestrogen signalling pathways are
characterized by long latency (hours/days) and involve nuclear ERs that bind oestrogen in
the cytosol which then dimerize and translocate to the nucleus to bind to specific DNA sites to
trigger synthesis of proteins which regulate cell growth, differentiation, and proliferation [65].
Nongenomic oestrogen signalling, on the other hand, is characterized by rapid onset of cell
signalling responses (s/min) involving oestrogen binding to a membrane receptor, which,
through phosphorylation reactions, can transactivate other membrane receptors and trigger a
myriad of cellular signalling pathways impacting upon ion channels, protein kinases, and
transcription factors to extend its rapid actions into genomic events [42,66]. The genomic and
nongenomic receptor signalling pathways of oestrogen in colonic crypt cells are summarized
in Figure 3, showing both protective and exacerbating arms of these pathways in colon cancer.
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3.1. Genomic Mechanisms of Oestrogen Signalling in Colon Cancer

The genomic actions of oestrogen in colon cancer are not as well studied compared
to its effects on other hormone-responsive cancers like breast or ovarian cancer. While
oestrogen receptors have been found in the colon and rectal tissue, the specific role and
mechanisms of oestrogen and ERs in colon cancer development and progression between
the sexes are still not well understood. Several studies, however, over the past 20 years
have suggested potential genomic actions of oestrogen in colon cancer that could underpin
sex differences: oestrogen may promote or inhibit cell proliferation and reduce or stimu-
late cell death (apoptosis) depending on the ER subtype expression in colon cancer cells
(Figure 3) [67]. E2–ERα interactions can activate signalling pathways, such as the PI3K/Akt
pathway, leading to increased CRC cell growth and survival [68]. Oestrogen has been im-
plicated in promoting angiogenesis, the formation of new blood vessels, which is essential
for tumour growth and metastasis [69] and can upregulate the expression of vascular en-
dothelial growth factor (VEGF), a key factor involved in angiogenesis [70]. Oestrogen may
also influence epigenetic modifications in colon cancer cells [71] to effect post-translational
DNA methylation patterns, histone modifications, and chromatin remodelling, potentially
impacting gene expression and cellular behaviour [72]. Nuclear oestrogen receptors may
also play a role in inducing or influencing the process of epithelial–mesenchymal transition
(EMT) [73], which is involved in tumour metastases in colon cancer [74]. Oestrogen sig-
nalling through ERα can regulate the expression of genes associated with EMT, leading to
increased cell motility and invasiveness in prostate and breast cancer cells [75,76] and in
CRC [12]. Oestrogen signalling has also been found to impact the function and activation of
immune cells, including macrophages and T-cells, and regulate the production of cytokines
and other immune-related molecules [77] that can affect the tumour microenvironment and
immune surveillance against cancer cells [78]. In this regard, oestrogen via ERβ has been
shown to modulate the immunogenicity of the tumour microenvironment and immune
responses in colon cancer [79].

3.2. Nongenomic Mechanisms of Oestrogen Signalling in Colon Cancer

It has been known for over two decades that oestrogen can exert sexually segregated
rapid nongenomic actions independent of gene transcription on cell signalling in colon [80].
Nongenomic actions of oestrogen in CRC involve signalling pathways that do not require
changes in gene expression or protein synthesis [12,23]. Although the nongenomic ac-
tions of oestrogen in colon cancer are less well studied compared to its genomic actions,
here, we outline some of the potential mechanisms (Figure 3). Activation of membrane
receptors: Oestrogen binding to ERα or GPER can trigger intracellular signalling cascades,
including activation of protein kinase pathways, calcium mobilization, and stimulation
of cyclic adenosine monophosphate (cAMP) production [81]. Rapid kinase activation:
Oestrogen can rapidly (s/min) activate various kinases, such as mitogen-activated protein
kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal
kinase (JNK), and p38 MAPK [82]. These kinases play crucial roles in cell proliferation,
survival, and migration, which are important in colon cancer progression [83]. Ion chan-
nels: Oestrogen modulates the activity and expression of ion channels in colon cancer
cells, such as calcium and potassium channels, leading to changes in intracellular ion
concentrations and membrane potential which can affect cell proliferation, apoptosis, and
migration [84–86]. Activation of second messenger systems: Oestrogen can stimulate the
production of second messengers, including cyclic adenosine monophosphate (cAMP)
cyclic guanosine monophosphate (cGMP) and inositol trisphosphate (IP3) [87]. These
signalling intermediates can regulate various cellular processes, including gene expression,
protein phosphorylation, and intracellular calcium release [88]. It is important to note that
both genomic and nongenomic actions of oestrogen can contribute to the overall effects
of oestrogen on colon cancer cells. The balance between these actions and the interplay
with other signalling pathways determine the ultimate impact of oestrogen on colon cancer
development and progression.
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3.3. Cooperativity between Genomic and Nongenomic Oestrogen Signalling in Colon Cancer

Multiple studies in a wide variety of tissues (brain, vascular, epithelial) have shown
that genomic and nongenomic cellular responses to oestrogen are not mutually exclusive
and can cooperate to produce synergistic effects in physiological functions and in cancer
biology (Figure 3) [89]. In this context, it is important to note that a strict dichotomy does
not exist between membrane nongenomic and nuclear genomic actions of oestrogen, and
evidence exists for cross-talk and integration of these rapid and latent pathways to amplify
biological responses to oestrogen [90]. Nongenomic actions of oestrogen have been shown
to be both permissive and potentiating for genomic responses [91]. This type of cross-talk
can be rapidly initiated by oestrogen actions through membrane ERs to transactivate growth
factor receptor tyrosine kinases (EGF and IGF-I receptors) [92], which can produce rapid
activation of ERK MAPK and phosphorylation of cytosolic ER to allow its translocation into
the nucleus [93] and also cause phosphorylation and recruitment of coactivators (AP-1, Sp-
1) to the nuclear transcriptome to amplify the genomic response [94]. Oestrogen signalling
through membrane oestrogen receptors can also involve activation (phosphorylation)
of protein kinase targets to induce gene transcription and latent nuclear transcriptional
activity via ERK, MAPK, c-fos, PI3K/AKT, CREB, and JNK [95,96]. Conversely, genomic
actions may amplify nongenomic responses to oestrogen in a sex-specific manner, for
example, by stimulating the transcription of protein kinase intermediates of the membrane-
initiated signalling pathways in colonocytes [97]. Thus, nuclear ERs are necessary for the
expression of proteins that transduce oestrogen effects at the membrane [98]. An important
caveat, therefore, in the debate on genomic versus nongenomic oestrogen responses is
the accumulating evidence that these are not standalone independent events but show
integration and cooperativity and, if considered separately, do not encompass the full
range of oestrogen actions in physiology nor in cancer. Another important principle is that
labelling nongenomic steroid hormone responses as being solely “rapid” no longer holds
true, as latent genomic events may be initiated by earlier membrane–cell signalling [99,100].
Thus, nongenomic and genomic actions of oestrogen can be integrated in targeting cell
proliferation pathways in colon cancer biology.

4. Oestrogen Signalling via ERα and ERβ in Colon Cancer

When oestrogen binds to ERα in the cytosol, the hormone receptor complex dimerizes
and translocates to the nucleus where it interacts with specific DNA sequences, oestrogen
response elements (ERE), or non-ERE transcription factors, such as c-Jun and c-Fos of the
activating protein-1 complex (AP-1), and transcription factor specificity protein 1 (SP1)
and NFκB, which extend E2–ERα cell proliferation and proinflammatory actions in colon
cancer cells [101]. ERα activation can also initiate signalling pathways that promote cell
cycle progression, such as the PI3K/Akt and MAPK/ERK pathways [102]. These pathways,
in turn, can stimulate cell growth and survival. From these studies, we can reasonably
conclude that oestrogen signal transduction via ERα is protumorigenic in CRC (Figure 3).

In contrast, oestrogen signalling through ERβ produces antitumorigenic cell signalling
responses in a broad range of cancers including CRC by repressing ERα transcription and
activating antiproliferative cell signalling pathways (Figure 3) [103]. ERβ upon binding to
its ligand oestrogen, dimerizes and translocates to the nucleus where the E2–ERβ complex
transcriptionally upregulates target genes which, unlike E2–ERα, promote proapoptotic
and antiproliferative responses in CRC. The E2–ERβ complex binds to DNA elements such
as ERE or AP1 which activate the FOXO3a gene. Activated FOXO3a in turn transcriptionally
upregulates PUMA, p21, and p27, which have been shown to induce apoptosis of CRC
cells [104]. ERβ also inhibits the expression of cell proliferating genes such as c-Myc
and p45Skp2 [105]. Moreover, some of the EMT and metastasis genes, such as β-catenin,
Slug, and Twist, are inhibited by ERβ [106]. Nuclear ERβ can also exert proapoptotic
responses in colon cancer cells through increased Caspase-3 activity [107] and inhibit cell
proliferation by locking the cell cycle in G1-S phase [108]. There is evidence that ERβ may
also inhibit colon cancer cell growth through autophagy mediated by suppression of the
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mammalian target of rapamycin (mTOR) through Cyclin-D1 degradation [109,110]. In
addition to these antitumorigenic actions, E2–ERβ may have immunosuppressive effects in
CRC [111] as well as preserving an epithelial phenotype through stimulating the expression
of tight junction proteins occludin-1 and JAMA [112] and inhibiting dedifferentiation and
epithelial–mesenchymal transition via upregulation of E-cadherin and α-catenin while
inhibiting β-catenin [113]. E2–ERβ may also induce microRNA protection by repression of
the oncogenic prospero homebox 1 (PROX1) through the upregulation of miR-205, which
inhibits colon cancer cell migration and invasiveness [114]. A protective role of ERβ in
reducing colon crypt proliferation and inflammatory responses resulting from a high-fat
diet has recently been demonstrated both in male and female mice [115].

There is evidence for cross-talk between the ER subtypes, the most important for CRC
being the inhibition of ERα transcription by ERβ with oestrogen binding [116] and the
negative regulation of the expression of ERα by ERβ [117] as colonocytes differentiate
to a mature tight-junction epithelium [118]. Increased ERβ expression could also lead to
ERα–ERβ heterodimerization, thereby skewing the expression pattern of target genes from
proliferative, antiapoptotic towards an antiproliferative, proapoptotic, and antitumorigenic
profile [46]. Disruption of ERβ expression, but not of ERα, increased intestinal neoplasia
and promoted tumourigenesis in APC-/- mice [119]. A combined high ERβ expression
together with negative ERα expression was found to be correlated with a better prognosis
for CRC patients [120]. ERβ expression predominates over ERα in the normal healthy colon
and in the initial stages of adenocarcinoma, with progressive loss of ERβ and increased
ERα expression observed in colon biopsies in later stages of tumour development [38].
Moreover, the loss of ERβ is associated with enhanced CRC proliferation potential [121],
leading to the hypothesis that high ERβ expression may not only be protective against
developing CRC but also a prognostic marker and molecular target in the treatment of colon
cancer [122,123]. Indeed, a predominant expression of ERβ may show sexual differentiation
for its protective role in the early stages of CRC [124].

4.1. Nonligand Activation of Nuclear ERs in Colon Cancer

In addition to ligand-binding activation, nuclear ERs can be phosphorylated and
transactivated by EGFR activated tyrosine kinases without requiring binding to oestrogen.
For example, EGFR can activate the Ras/Raf/MAPK pathway, which phosphorylates
ERs, resulting in dimerization and ligand-independent activation of target gene expres-
sion [125]. Moreover, the membrane HER2 receptor (erbB-2 receptor tyrosine kinase 2) when
bound to EGFR can also activate tyrosine kinases signalling pathways RAS/RAF/ERK,
PIK3K/AKT/mTOR, JAK/STAT3 producing a hyperactivation of mitogenic signals lead-
ing to uncontrolled cell proliferation and tumorigenesis in CRC [126]. Currently, there
are no studies reported in the literature directly linking nonligand activation of ERs to
EGFR/MAPK signalling. However, ligand (estradiol) activation of membrane and nu-
clear ERα has been shown to be linked to EGFR/MAPK signalling to drive proliferation,
invasion, and angiogenesis in CRC [42,127].

4.2. Membrane Oestrogen Receptors mERα and mERβ in Colon Cancer

While ERα is traditionally recognized as a nuclear receptor that regulates gene ex-
pression, detailed evidence accumulated over the past 20 years has demonstrated that a
small percentage (approximately 1%) of ERα can also be localized to the cell membrane in
certain contexts to produce physiological and clinically relevant biological responses [128].
The membrane ERα (mERα) was first discovered in 1999 [129] and characterized in breast
cancer cells by Levin and colleagues [130,131]. The molecular identity was shown to be a
palmitoylated variant of the full-length (66 kDa) nuclear ERα receptor which allowed its
tethering at the cell membrane in a caveolin-1 signalosome [132,133]. The understanding of
the role of the mERα in physiology and cancer biology was hampered by the lack of specific
inhibitors and agonists which could distinguish E2–mERα ligand binding from nuclear
ERα signal transduction [134]. The nongenomic and rapid actions (s/min) of oestrogen on
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protein kinases, intracellular calcium, and ion channel activity in colonic crypts [135–137]
distinguish it from canonical genomic E2–ERα signal transduction which shows typical
long latency of hours/days to generate transcriptional responses [138]. It is important to
note that the rapid membrane-initiated responses to oestrogen can be elicited at physiolog-
ical subnanomolar concentrations of oestrogen such that dose–response is of little value
in distinguishing nongenomic from nuclear E2–ERα actions [139]. One way to overcome
this difficulty is the use of oestrogen analogues which penetrate poorly, if at all, the cell
membrane, or the generation of nuclear excluded ERα mutants [140]. In this regard, certain
specific membrane-impeded analogues of oestrogen such as E2–BSA [141] and oestrogen
dendrimer conjugates (EDC) [142], which do not enter the cytosol to bind nuclear ERα,
have been shown to replicate the rapid nongenomic actions of free unbound oestrogen
(17β-estradiol). The most significant advance, however, in understanding the physiological
and pathological roles of mERα have resulted from the generation by the Levin group of
selective mouse models with membrane-only mERα (MOER) or nuclear-only ERα (NOER)
expression [143]. Mutations of the palmitoylation site of ERα have also provided a useful
tool to dissect membrane-initiated and nuclear actions of oestrogen [144]. These studies
have shown the absolute requirement for mERα expression in transducing rapid actions
of oestrogen on protein kinases and tyrosine kinase signalling pathways in cancer cell
proliferation but not in the development of reproductive organs and tissues [143–145]. The
presence of ERα on the cell membrane, in addition to its primarily nuclear localization,
expands the range of oestrogen actions through combined nongenomic and genomic regu-
lation of cell differentiation and proliferation through an expanded signalosome [146,147].

Regarding the role of membrane ERα in colon cancer, research in this specific area
is still evolving, and the understanding of its implications is not yet fully established.
However, many of the signalling pathways regulated by membrane oestrogen actions in
colon (EGFR, ERK-MAPK, PI3K-Akt, and Wnt) are involved in cell proliferation, survival,
and migration in colon cancer cells (Figure 3) [12]. For example, activation of membrane
ERα in colonic epithelial cells isolated from females has been associated with the rapid
activation of mitogenic signalling cascades, including the MAPK pathway, PI3K/Akt
pathway, and Src kinase signalling [80,88,148,149], which can promote cell growth and
survival. Additionally, membrane ERα has been implicated in modulating epithelial–
mesenchymal transition in breast [150] and colon cancer cells [151], a process involved in
CRC tumour invasion and metastasis [152].

The current data indicate that mERα is the primary endogenous ER mediator of rapid
E2 responses, although a membrane ERβ (mERβ) is also found to be co-expressed with
mERα in cancer cells to regulate cell proliferation [153]. The role of mERβ is less well stud-
ied in cancer biology, although ERβ may be present at the cell membrane in a palmitoylated
form in colon cancer cells to inhibit cell proliferation [154]. Studies have demonstrated
that mERβ can produce rapid nongenomic actions of oestrogen on ERK and JNK kinase
activity when expressed in Chinese hamster ovarian cells [155], while other studies have
shown E2–mERβ to rapidly activate p38 MAPK in human colon cancer cells [156]. The
membrane ER subtypes appear to mimic their respective nuclear ER responses to oestrogen,
i.e., proproliferative, protumorigenic effects via nuclear ERα and mERα while conversely
producing antiproliferative, antitumorigenic effects via both nuclear ERβ and mERβ. In
this way, oestrogen nongenomic interactions with membrane ERα and membrane ERβ can
modulate cell proliferation, apoptotic pathways, and cell death in CRC [157].

4.3. Oestrogen Signalling via Truncated ERs in Colon Cancer

Several splice variants of full-length ERs have been reported in various healthy tissues
and cancers [158,159]. These truncated ERα and ERβ receptor proteins arise from mutations
in ESR1 and ESR2 genes but cannot form homodimers or recruit cofactors like full-length
ERs [160]. Truncated ERs may form inactive heterodimers with full-length ERs [161] and
collaborate with other oestrogen receptors such as GPER [162] to modulate proliferative and
inflammatory responses in cancer. The best studied truncated ER has been ERα36 (36 kDa)
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in breast and gastric cancers [163,164], which transduces estrogenic nongenomic signalling
to promote cell proliferation and metastatic potential [165] Apart from one study reporting
decreased ERα36 mRNA expression with advanced Stage CRC [166], the relevance of
truncated ERs to oestrogen signalling and sex differences in CRC is unknown and merits
further investigation.

5. Oestrogen Signalling via G Protein-Coupled Oestrogen Receptor in Colon Cancer

G protein-coupled oestrogen receptor (GPER), also known as GPR30, first reported in
2005 [167], is a seven-transmembrane receptor that mediates membrane-initiated oestrogen
signalling in a wide range of tissues [168]. Initially identified as an alternative oestrogen
receptor in breast cancer [169], GPER signalling has emerged as a significant player in
colon cancer [170], contributing to various aspects of tumour progression and estrogenic
cell signalling responses [171]. While many studies over the past twenty years support an
oestrogen-ligand receptor role for GPER [172,173], the involvement of GPER in transducing
nongenomic actions of oestrogen in vivo has been challenged [174,175]. Several recent
studies, however, have demonstrated the functional expression of GPER in colon cancer
cells, which may vary among different colon cancer subtypes and individual tumours [176].
The role of GPER in CRC has garnered much interest as its expression predominates in
colon cancer after the loss of nuclear ER, in particular after the loss of ERβ, which has
been reported to negatively regulate GPER expression in breast cancer [177]. While the
oestrogen protective effects in CRC have been mainly attributed to ERβ, its expression is
lost during CRC progression, and this raises the possibility for a role in sex differences
of GPER, which remains expressed after ERβ loss in CRC [178]. Chronic mucosal inflam-
mation has been proposed as a precursor of CRC and it is interesting to note that GPER
expression shows sex dependence in inflammatory bowel disease (IBD) [179] and may
transduce oestrogen protective effects on mucosal barrier function in IBD [180]. The po-
tential therapeutic implications of targeting GPER signalling in cancer have been recently
reviewed. This includes the use of GPER agonists or antagonists, alone or in combination
with other therapies [181].

GPER has been reported to have both tumorigenic and antitumorigenic roles in cancer
progression [182,183]. Some studies have shown a protective role for GPER in CRC [184]
and its activation has been reported to inhibit cell proliferation in CRC cell lines [185].
Furthermore, a low expression of GPER in CRC was associated with poor patient sur-
vival [171]. In contrast, other studies indicate GPER to be protumorigenic in CRC via
oestrogen activation by steroid sulfatase [186] and to stimulate cell proliferation in CRC
cell lines not expressing nuclear ERs [171]. In support of this hypothesis, GPER expression
was shown to be upregulated and stimulated by MAPK signalling in mycotoxin-induced
growth of colon cancer cells [187]. In addition, GPER can promote chromosomal instability
in CRC, leading to neoplastic transformation and tumour development [188]. The impact
of GPER signalling on angiogenesis may also be determinant in its tumour promoter ac-
tions [189,190]. GPER may have differential protective or exacerbating effects on CRC
tumourigenesis, depending on the expression of ER and activation of cell proliferation
signalling pathways.

Hypoxia and GPER Signalling in Colon Cancer

There is evidence that the divergent roles of GPER in CRC as being either protective or
tumorigenic are dependent on the stage of the cancer and the level of hypoxia in the tumour
microenvironment and on sex-specific factors influencing hypoxic signals [184]. Moreover,
the actions of GPER in the regulation of vascular endothelial growth factor (VEGF) and
hypoxia-inducible factor 1-α (HIF-1α) in CRC show sex dependence (Figure 3) [178].

Hypoxia is a key factor in promoting tumour growth through cell signalling involving
HIF-1α [191] and its target VEGF, which are associated with poor clinical outcomes in
CRC [192]. In a detailed study of the functional consequences of oestrogen actions within
the hypoxic CRC cell microenvironment, Bustos et al. [178] found the pro- and antitumori-
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genic potential of GPER in CRC cell lines to be dependent on the level of oxygen exposure.
Under normoxic conditions, oestrogen and the GPER agonist G1 both suppressed CRC cell
proliferation. Under hypoxic conditions, however, GPER activation produced the opposite
functional effect, with both oestrogen and G1 enhancing CRC cell proliferation, whereas the
GPER antagonist G15 inhibited proliferation. Oestrogen treatment enhanced the hypoxia-
induced expression of HIF-1α and VEGF, but repressed HIF-1α and VEGF expression under
normoxic conditions. The expression or repression of VEGF by oestrogen were mediated
by a GPER-dependent mechanism. Thus, GPER is essential in transducing the normoxic
antiproliferative effects of oestrogen as well as its hypoxic proliferative actions in CRC
cells. The latter response may be amplified by upregulation of GPER expression following
exposure to hypoxia and oestrogen. Another protumorigenic amplification factor in the
GPER response is the oestrogen-modulated gene, Ataxia Telangiectasia Mutated (ATM),
which was shown to be repressed in hypoxia via GPER signalling [178]. Loss of ATM
expression is associated with poor survival in CRC [193] and an increase in phosphorylated
ATM protein levels has been observed in hypoxic colon cancer cells [194]. The modulation
of ATM expression by GPER in low oxygen tension and the sensitivity of its expression
to oestrogen in CRC provides an additional mechanism for protumorigenic actions of
oestrogen via GPER in colon cancer under hypoxic conditions. Thus, it is important to
take into account the CRC stage and tumour microenvironment when interpreting the
role of E2–GPER interactions in colon cancer tumorigenesis, sex differences, and patient
survival/treatment [170].

The involvement of GPER in CRC patient survival displays clear sex differences. In
a cohort of 566 CRC patient tumour samples, GPER expression was significantly associ-
ated with poor survival in CRC Stages 3–4 females but not in the stage-matched male
population [178]. Since a hypoxic tumour microenvironment is associated with late stages
in CRC, we may conclude that sex differences in this case are underpinned by E2–GPER
tumorigenic actions on HIF-1α/VEGF activation and on ATM suppression under hypoxia.
The antiproliferative effects of E2-GPER signalling in normoxia may explain the obser-
vations of protective effects of GPER expression on CRC survival in the early stages of
cancer development.

6. Oestrogen Regulation of Wnt/β-Catenin Signalling in Colon Cancer

Wnt/β-catenin signalling plays a key role in various biological processes, including
embryonic development, tissue homeostasis, and cell proliferation [195,196]. Dysregulation
of the Wnt/β-catenin signalling pathway has been strongly associated with the develop-
ment and progression of colon cancer [197]. The Wnt/β-catenin signalling pathway is
commonly hyperactivated in colon cancer and plays a crucial role in CRC development and
progression [198]. Oestrogen has been shown to modulate this pathway in a sex-dependent
manner in CRC [199] and in breast and endometrial cancers [200,201] through reciprocal
interaction between ERα and β-catenin. In reproductive tissues, oestrogen promotes cell
proliferation via ERα stimulation of β-catenin nuclear translocation [202]. In contrast,
other studies indicate that ERα is inhibitory for Wnt/β-catenin-mediated proliferation
and neoplasia in nonreproductive tissues, for example, in liver cancer [203]. Moreover,
ERβ was reported in the latter study to have no role in oestrogen modulation of Wnt/β-
catenin signalling. These studies suggest that oestrogen may have an inhibitory effect
on Wnt/β-catenin signalling in nonreproductive tissue cancers in females, potentially
contributing to sex differences in CRC incidence and outcomes. But how does this work
in CRC and what are the factors that determine whether oestrogen will exert a protective
or exacerbating role via Wnt/β-catenin pathway signalling in CRC, in particular when
the expression of ER is lost with advancing tumorigenesis? To answer this question, we
must first understand the possibility of cross-talk with other receptors and signalling path-
ways. The Wnt signalling pathway interacts with various signalling pathways, particularly
K+ channels, implicated in colon cancer. Interaction between the Wnt/β-catenin path-
way and the oestrogen-regulated K+ ion channel KCNQ1 in CRC is a major molecular



Genes 2023, 14, 2225 13 of 26

mechanism that displays sex differences in the regulation of CRC cell proliferation and
epithelial–mesenchymal transition [12].

6.1. Oestrogen Regulation of Wnt-KCNQ1 Interactions in Colon Cancer

KCNQ1 is a voltage-gated K+ channel (Kv7.1) expressed in the basolateral mem-
branes of colonic crypts where it functions to provide the electrical driving force for Cl−

secretion [204]. In colon, the KCNQ1 channel is coexpressed with the β-regulatory sub-
unit KCNE3, which greatly increases the ionic conductance of the channel and confers
voltage and cAMP sensitivity to the channel [205]. KCNQ1 has been shown to have an
antitumorigenic role in many gastrointestinal (GI) cancers, including colon cancer [206].
Moreover, relapse-free CRC patient survival was positively associated with high KCNQ1
gene expression, which displayed sex-dependence for a female advantage [207]. KCNQ1
channels modulate Wnt signalling in a wide number of GI cancers [208] and there is
strong evidence for bidirectional interaction between KCNQ1 and β-catenin in normal
healthy colon and in colon cancer cells [207]. Oestrogen regulates KCNQ1:KCNE3 channel
function by uncoupling KCNQ1 from KCNE3 via PKCδ-dependent phosphorylation of
KCNE3 at residue Ser82, which destabilizes the KCNE3:KCNQ1 channel complex [209].
The uncoupling of KCNQ1 from KCNE3 promotes KCNQ1 endocytosis and recycling in
colonic crypts [210], which allow KCNQ1 to leave the plasma membrane and bind cytosolic
activated β-catenin. KCNQ1 then returns β-catenin to the cell membrane to trap it in
a complex with E-cadherin at adherens junctions (Figure 4) [207]. In this way, KCNQ1
anchors β-catenin at the plasma membrane, stabilizing adherens junctions, and promoting
cell–cell adhesion. The association of KCNQ1 with β-catenin at the cell membrane is
essential to preserve a well-differentiated epithelial phenotype by maintaining a stable
KCNQ1: β-catenin:E-cadherin complex at adherens junctions and preventing epithelial–
mesenchymal transition [211]. Trapping β-catenin with KCNQ1 at the cell membrane has
been shown to retard the nuclear translocation of β-catenin and prevent the transcriptional
activation of proliferative genes [207]. These observations suggest that oestrogen-regulated
KCNQ1 channel quells the Wnt:β-catenin nuclear signalling pathway to suppress CRC cell
proliferation and EMT, but only in females [212].Genes 2023, 14, x FOR PEER REVIEW 14 of 28 
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Figure 4. KCNQ1 anchors β-catenin at the plasma membrane, stabilizing adherens junctions and
promoting cell–cell adhesion to maintain a highly differentiated, tight junction epithelial phenotype
in healthy colon. Oestrogen uncouples KCNQ1 from KCNE3, allowing the channel protein to enter
an endocytosis recycling pathway and capture activated β-catenin in the cytosol, returning it to the
cell membrane in association with E-cadherin. The trapping of β-catenin at the plasma membrane
prevents its nuclear translocation and suppresses the Wnt pathway activation of cell proliferation
genes as well as inhibiting epithelial–mesenchymal transition. Adapted from References [201,203,204].
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6.2. Oestrogen Regulation of Wnt Receptor Oncogenic Signalling in Colon Cancer

The receptor tyrosine kinase pathway, particularly the EGFR pathway, can cross-
regulate Wnt signalling in colon cancer [213]. Additionally, the Transforming Growth
Factor-β (TGF-β) pathway can modulate Wnt signalling through Smad proteins [214], all
of which could amplify the cell proliferation responses in CRC. In contrast, a recent study
has provided evidence for a role of GPER in protecting against CRC progression by selec-
tively reducing the oncogenic effects of hyperactive Wnt/β-catenin signalling pathways
in CRC [215]. Firstly, sex differences were observed in the gene expression of the Wnt
receptor FZD1 (Frizzled 1) in Kaplan–Meier survival analyses across multiple CRC patient
gene microarray datasets. High expression of FZD1 was associated with poor relapse-free
survival rates in the male but not in the female CRC population. Secondly, activation
of GPER with the G1 agonist prevented the Wnt-pathway-induced upregulation of the
JUN oncogene. These novel findings indicate a mechanistic role for GPER in protecting
against CRC progression in females by selectively reducing the tumorigenic effects of
Wnt/β-catenin oncogenic signalling pathways.

7. Oestrogen Regulation of Epigenetic, Microbiome and Metabolic Factors in
Colon Cancer

Other emerging factors underpinning sex differences in CRC include microRNAs
and the gut microbiota. MicroRNAs (miRNAs) are small noncoding RNA molecules
that regulate gene expression by targeting specific messenger RNAs for degradation or
translational repression. Differential expression of miRNAs has been observed between
males and females in CRC [216,217]. Oestrogen can modulate the expression and activity
of specific miRNAs, which in turn influence the expression of genes involved in CRC
development [218]. These sex-specific miRNA profiles may contribute to the oestrogen-
mediated sex differences in CRC. This has been shown for miR-30c-5p expression which was
associated with better survival in females and was downregulated in males [219]. Several
miRNAs are currently under investigation for therapeutic applications in CRC [220].

Recent studies suggest that the gut microbiota can influence CRC development and
responses to oestrogen [221]. The composition and function of the gut microbiota can
differ between males and females [222], potentially affecting oestrogen metabolism and
signalling. Thus, another contributory factor to sex disparities in CRC is the oestrogen–
gut microbiome axis [223]. Microbial metabolites produced by the gut microbiota may
modulate oestrogen receptor activity and alter oestrogen levels, contributing to sexual
differentiation in CRC [224]. In addition, E2 may alter the gut microbiota to reduce the risk
of developing CRC [225].

Another potential factor contributing to CRC sex differences is oestrogen metabolism.
The metabolism of oestrogen is an important process that can influence its bioavailability
and activity. In females, oestrogen is predominantly metabolized by cytochrome P450
enzymes, including CYP1A1 and CYP1B1, which convert estradiol to 2-hydroxyestradiol
(2-OHE2) [226]. In males, oestrogen is mainly metabolized by CYP1A2 and CYP3A4,
leading to the formation of 4-hydroxyestradiol (4-OHE2) [227]. The different metabolic
pathways can result in distinct oestrogen metabolite profiles, which may contribute to
sex variances in CRC susceptibility. There is some evidence that testosterone can exert
neoplastic actions in CRC [227] and strong evidence for the presence of upregulated
genes on the Y chromosome that contribute to colorectal cancer in males by driving
tumour invasion and aiding immune escape [41,228,229].

8. Comparison of Oestrogen and Testosterone Signalling in Colon Cancer

Over 90% of CRC cases are sporadic, arising from transition from normal mucosa
to adenoma, followed by the development of carcinoma usually involving mutations in
antiproliferative genes, which include APC (adenomatous polyposis coli), and prolifera-
tive tumorigenic genes, such as K-ras and p53. CRC is not solely a hormone-dependent
cancer compared to predominantly oestrogen- or androgen-driven cancers such as breast
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or prostate, respectively. However, oestrogen and testosterone have been implicated in
modulating the initial adenoma and mesenchymal transitions through effects on tumour
promoter genes, and on inflammatory, apoptosis, and angiogenesis signalling pathways.

Sex-based prevalence and mortality of colon cancer have been observed in many
animal studies where ovariectomized rats and mice are more prone to develop CRC while
castrated male animals have a lower risk in developing CRC in response to mutations in
the Apc tumour-suppressor gene [230]. These studies indicate that female sex hormones
are actively protective in CRC whereas male sex hormones can actively promote CRC [231].
More precisely, oestrogen protection appears to be conferred through cell signalling via ERβ
receptors [232], while the nuclear androgen receptor A (AR-A) transduces the exacerbating
effects of testosterone [233]. The B-isoform of the nuclear AR (AR-B) may confer protection
in CRC as its loss is associated with adenoma formation, although the membrane-associated
AR (mAR) may also confer protection in CRC [234]. These protective/exacerbating effects
of oestrogen or androgens in CRC are also observed in human subjects supplemented
with oestrogen therapy [235] or testosterone [236]; there is debate, however, on the ex-
act role of testosterone in CRC [237]. Although the precise oestrogen and testosterone
signalling pathways underpinning sex differences in CRC still remain elusive, we can
make certain observations supported by the literature and highlight testable hypotheses on
potential pathways that differentiate males and females in CRC outcomes, as summarized
in schematic form in Figure 5.
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Figure 5. Schematic representation of advantages for oestrogen and disadvantages for testosterone
cell signalling mechanisms underpinning sex differences between females and males in colon cancer.
In females, oestrogen inactivates the Wnt/β-catenin nuclear transcription pathway to suppress the ex-
pression of proliferative genes while allowing the expression of antiproliferative genes. Oestrogen also
reinforces mucosal immunity while supressing inflammatory mediators. These oestrogen-induced
antitumorigenic actions are permissive in maintaining a well-differentiated epithelial phenotype and
enhancing CRC patient survival. In males, testosterone activates the expression of proliferative genes
and proinflammatory mediators to promote cell growth, invasiveness, and epithelial–mesenchymal
transition, leading to an enhanced tumorigenic potential and higher risk of mortality.
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Oestrogen may offer protection in females through switching off the Wnt/β-catenin
signalling pathway, thereby reducing nuclear translocation of β-catenin (by promoting its
localization at adherens junctions) with its transcription factor TCF-4 [201] and suppress-
ing the activation of proliferative genes such as JUN, K-ras, CTNNB1.Myc, PROX1, and
P35 [215,238–241]. Oestrogen can also reduce the potential for activation of Wnt signalling
by reducing the expression of the WNT receptor FZD1 [215]. Moreover, oestrogen, by
inactivating Wnt/β-catenin, may synergise with APC to negatively regulate canonical Wnt
signalling and stabilization of β-catenin to counteract cell proliferation, invasion, and EMT
by promoting epithelial differentiation and apoptosis, thereby suppressing tumour pro-
gression [242]. If some β-catenin:TCF-4 complex does escape into the nucleus, APC could
further antagonize Wnt signalling by counteracting β-catenin in the nucleus. Oestrogen
also has anti-inflammatory actions which may combat chronic inflammation, which, in
some cases, can be a precursor of CRC. Oestrogen has been shown to reduce the activa-
tion of proinflammatory cytokines IL-1, IL-2, IL-6, IL-8, and monocyte chemoattractant
protein-1 (MCP-1), as well as suppressing inflammatory transcription factor NFκB and
inhibiting Tumour Necrosis Factor-α (TNF-α) [243–247]. Moreover, oestrogen activates
anti-inflammatory IL-4 and IL-1 and prevents monocyte and neutrophil invasion [248]. Oe-
strogen also reinforces the immune system by activating Interferon-γ (IFN-γ) [249], which
plays a key role in the activation of cellular immunity and the stimulation of antitumour
immune-responses via helper T-cells and B-cells. In addition, the double XX chromosome
also confers approximately 20% more immune genes to females [250] and reinforces the
expression of immune genes [251] such as the X-linked immune gene TLR7 [252]. Finally, oe-
strogen inhibition of HIF-1α and VEGF in normoxia may confer a female advantage in early
CRC stages by suppressing the initial transition from normal mucosa to adenoma [178].

In males, testosterone exerts pro-tumorigenic actions by stimulating the expression
of proliferative genes and proinflammatory mediators that promote cell growth, cell sur-
vival [253], epithelial–mesenchymal transition, and cell invasiveness [254]. Moreover, it
is unlikely that oestrogen can promote antitumorigenic actions in males due to the low
circulating oestrogen levels and reduced oestrogen receptor expression. Estradiol produces
a negative feedback inhibition of luteinizing hormone secretion from the pituitary, and
subsequently testosterone, release [255], thus further lowering the production of oestrogen
via aromatase activity in the adrenals and adipose tissue. Therefore, contrary to females,
oestrogen may confer little or no protection against CRC in males [256].

9. Conclusions and Perspectives

An increasing number of epidemiological and molecular studies have demonstrated a
female sex advantage in colon cancer such that the incidence. morbidity and mortality of
CRC is lower in premenopausal females compared to males and postmenopausal females.
The protective effect of oestrogen against CRC has been proposed as a possible explanation
for this observation.

Membrane oestrogen receptors, particularly mERα, GPER, and nuclear oestrogen
receptor ERα, ERβ, have been detected in colon cancer tissue. The presence of these
receptors suggests that oestrogen nongenomic and genomic signalling could have an
impact on CRC tumourigenesis in a sex-specific manner. Oestrogen signalling may protect
against colon cancer development and growth through its effects on cell proliferation,
apoptosis, cell cycle progression, and epithelial differentiation. These beneficial effects
of oestrogen are absent in males, with the added disadvantage of testosterone and Y
chromosome tumorigenic actions in CRC (Figure 5). It is worth emphasizing that in
some cases, oestrogen signalling might be detrimental in CRC, as in a hypoxic tumour
microenvironment which is a hallmark of late-stage CRC.

Oestrogen receptor status in CRC tumours may serve as a prognostic marker, provid-
ing information on the likelihood of disease progression and patient outcomes. ER-positive
tumours in females might be associated with a better prognosis compared to ER-negative
tumours. Some colon cancers that express oestrogen receptors may be candidates for
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targeted hormonal therapies. Selective oestrogen receptor modulators or aromatase in-
hibitors, which are used in hormone-receptor-positive breast cancer, have been explored
in preclinical studies and early-phase clinical trials for colon cancer [257]. It is essential
to note that not all colon cancers express oestrogen receptors, and the clinical relevance
of oestrogen signalling targets may vary between individuals and tumour subtypes [258].
Therefore, identifying patients who may benefit from hormone-based therapies requires
careful patient selection and further research.
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