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Abstract: Fungal pathogens can have devastating effects on global crop production, leading to annual
economic losses ranging from 10% to 23%. In light of climate change-related challenges, researchers
anticipate an increase in fungal infections as a result of shifting environmental conditions. However,
plants have developed intricate molecular mechanisms for effective defense against fungal attacks.
Understanding these mechanisms is essential to the development of new strategies for protecting
crops from multiple fungi threats. Public omics databases provide valuable resources for research
on plant–pathogen interactions; however, integrating data from different studies can be challenging
due to experimental variation. In this study, we aimed to identify the core genes that defend against
the pathogenic fungi Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis thaliana. Using a
custom framework to control batch effects and construct Gene Co-expression Networks in publicly
available RNA-seq dataset from infected A. thaliana plants, we successfully identified a gene module
that was responsive to both pathogens. We also performed gene annotation to reveal the roles of
previously unknown protein-coding genes in plant defenses against fungal infections. This research
demonstrates the potential of publicly available RNA-seq data for identifying the core genes involved
in defending against multiple fungal pathogens.

Keywords: public RNA-seq datasets; weighted gene co-expression network analysis; gene module;
arabidopsis; fungal pathogens; plant defense

1. Introduction

Pathogenic fungi are a significant factor in global crop production. Pathogen-related
crop damage leads to annual losses ranging from 10% to 23%—equivalent to over
USD 200 billion in economic damages [1–3]. Climate change has led to unprecedented
challenges in food production, including the growing resistance to antifungal agents. In a
warmer world, fungal infections are expected to become more widespread among crops, as
the life cycle of fungi is directly influenced by temperature and humidity [4–6]. According
to prediction models, the prevalence of pathogenic fungal infections in commercial crops
will rise by 5% to 100% by 2050 as a result of climate change [7,8].

Pathogenic fungi can be classified into three groups: biotrophs, which feed on living
tissues; necrotrophs, which kill the host cell and obtain nutrients from dead tissues; and
hemibiotrophs, which exhibit an intermediate lifestyle, combining traits of both biotrophs
and necrotrophs [9–12]. One highly important pathogen is Colletotrichum higginsianum, an
ascomycete fungus with a hemibiotrophic nature. This fungus causes anthracnose, a disease
that affects numerous monocotyledonous and dicotyledonous plants worldwide [9,13,14].
Another important pathogen, Botrytis cinerea, is a necrotrophic fungus with a broad range of
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hosts that has devastating effects on various plant tissues, including foliage, stems, flowers,
and fruits [13,15–17].

Plants have developed complex molecular mechanisms to protect themselves from
invading pathogens, including the ability to identify pathogens via pathogen-associated
molecular patterns (PAMPs) with the help of pattern recognition receptors (PRRs). This
leads to a process known as PAMP-triggered immunity (PTI), which limits the progression
of disease. This pattern recognition is typically linked with calcium influx, callose deposi-
tion, bursts of reactive oxygen species (ROS), activation of miRNA pathways, activation
of MAPK cascades, and increased expression of various defense-related genes, such as
disease-related proteins (PR) [18–20]. In some cases, effectors produced by pathogens are
recognized by plant resistance proteins, promoting a response known as effector-triggered
immunity (ETI). One of the roles of ETI is to stimulate the hypersensitive response (HR),
which results in rapid cell death at the site of pathogen invasion, limiting the spread of the
pathogen. In addition, various signal transduction events, such as nitrous oxide, lipids, and
various phytohormones that identify pathogen invasions, initiate plant immune defense
responses [21–24]. The PTI and ETI immune responses are interconnected, as the activation
of ETI improves the PTI signaling pathway. Both responses share functions related to the
recognition of danger signals and the activation of defense mechanisms [18,25–28].

In the era of next-generation sequencing and machine learning, and considering the
need for proactive responses to climate change, it is crucial to implement more comprehen-
sive strategies in modern agriculture. One useful resource is the NCBI SRA, which contains
more than 17 petabytes of public sequence data [29]. This underused data repository can
be exploited using novel computational methods. A large portion of the sequence data is
relevant to the agricultural sector, and opportunities are emerging to implement machine
learning strategies that incorporate this immense pool of genomic data.

There is a growing interest in using public RNA-seq datasets to investigate intricate
biological processes such as plant defense [30–32]. Publicly available RNA-seq expression
data are a valuable resource for improving crop quality, particularly when conducting
experiments under various environmental stressors or diseases is not feasible. However, the
reutilization of public RNA-seq data is limited by the challenge of integrating batch datasets
generated from different studies due to experimental variation, which can introduce bias;
this must be carefully considered during analysis to ensure accurate and reliable results [30].

Traditionally, transcriptome studies with RNA-seq have been widely used for the iden-
tification of specific genes expressed during the fungal infection process, with a focus on
specific characteristics of the plant or fungus [9,33–37]. In this study, our objective is to iden-
tify the core genes involved in defending against B. cinerea and C. higginsianum pathogens.
We define core defense genes as those that confer a broad-spectrum defense mechanism and
are not restricted to specific pathogens. We used publicly available RNA-seq expression in-
formation from the C. higginsianum–A. thaliana and B. cinerea–A. thaliana pathosystems. Both
of these valuable models have been extensively studied with regard to specific responses
during plant–pathogen interaction [14–17,38–41]. Additionally, only a limited number of
studies have been conducted to understand common defense mechanisms against biotic
stress, and our understanding of this topic is still at an early stage [42,43]. To date, the
common reactions that these fungal pathogens can elicit in the host remain unclear.

One strategy, Weighted Gene Co-expression Network Analysis (WGCNA) [44], has
contributed to crop improvement by revealing complex gene–gene interactions and helping
to identify key genes that regulate important traits [45]. For instance, in soybeans, a
gene module related to seed development was recognized and was found to include
several genes involved in fatty acid biosynthesis [46]. In wheat, a set of genes associated
with resistance to Fusarium head blight, a devastating fungal disease, was identified [47].
Furthermore, gene co-expression networks have been constructed using publicly available
expression datasets. One of these studies used gene expression data to functionally annotate
the rice proteome [48]. Moreover, other studies used gene co-expression networks to
identify core genes in A. thaliana that respond to biotic stress using microarray data [42]
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and those in maize that respond to fungal infection using RNA-seq data [43]. However,
neither of these studies considered batch-effect correction.

To identify core genes expressed during C. higginsianum and B. cinerea defense in
A. thaliana, publicly available RNA-seq data were preprocessed for batch-effect correction
using an in-house method, allowing us to obtain integrated gene expression data that could
be used with the WGCNA [44]. Our preprocessing framework includes data integration,
normalization and standardization based on variability identification while emphasizing
a minimal loss of data, and it is based on statistics such as Gaussian distributions, kernel
density estimation (KDE), and quantiles, which assist with the generation of evaluation
metrics [49]. A module containing core genes that respond to infection with B. cinerea and
C. higginsianum was identified. Using the DAVID agglomeration method [50], 33 genes were
annotated by function across six categories, providing new insights into the functions of
currently unknown protein-coding genes. Our findings demonstrate that publicly available
RNA-seq data are a valuable resource for identifying broad-spectrum genes related to the
defense against multiple fungal pathogens.

2. Materials and Methods
2.1. RNA-Seq Data Selection

Twenty-five RNA-seq datasets of fungus-infected leaves of A. thaliana (Col-0) were
obtained from the National Centre for Biotechnology Information’s Sequence Read Archive
(NCBI SRA) database. The C. higginsianum–A. thaliana dataset was composed of 8 samples
from BioProject accession number PRJNA148307 [9,51]; the B. cinerea–A. thaliana dataset
comprised 6 samples from BioProjects with accession numbers PRJNA315516 and PR-
JNA593073; the Sclerotinia sclerotiorum–A. thaliana dataset consisted of 3 samples from
BioProject accession number PRJNA418121 [52], and this dataset was used as an outlier
control. The control dataset comprised 8 samples of healthy plants from BioProjects PR-
JNA315516 and PRJNA418121. The sample collection was performed from 12 to 30 h for
control samples, and from 12 to 40 h for fungus-infected leaf samples (Supplementary
Table S1). The transcriptomes were sequenced on Illumina platforms. The number of reads
ranged from 10 to 30 million, with read lengths ranging from 93 to 150 bp (Table 1).

Table 1. Description of public RNA-Seq datasets downloaded from the SRA.

BioProject Sample ID HPI 1 Run Layout Reads (M 2) % Clean Reads % Aligned
Reads

PRJNA148307

Ch22

22

SRR364389 SE 12.6 92.12 87.17
Ch22.1 SRR364390 SE 12.4 92.03 77.45
Ch22.2 SRR364391 SE 12.4 92.18 77.4
Ch22.3 SRR364392 SE 12.2 92.08 87.29

Ch40

40

SRR364400 SE 11.9 91.40 82.08
Ch40.1 SRR364401 SE 11.9 91.40 82.25
Ch40.2 SRR364398 SE 13.2 92.55 80.25
Ch40.3 SRR364399 SE 13.2 92.73 80.25

PRJNA315516
PRJNA593073

Bc12
12

SRR3383696 SE 12.1 100.00 98.2
Bc12.1 SRR3383697 SE 15 100.00 98.14

Bc18
18

SRR3383779 SE 10.3 97.37 93.55
Bc18.1 SRR3383780 SE 13.6 97.26 95.2

Bc24
24

SRR10586397 PE 22.2 95.53 89.07
Bc24.1 SRR10586399 PE 22 95.70 88.69

PRJNA418121
Ss30

30
SRR6283146 SE 20.8 95.01 36.48

Ss30.1 SRR6283147 SE 20.9 96.09 32.35
Ss30.2 SRR6283148 SE 21.2 92.90 29.5
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Table 1. Cont.

BioProject Sample ID HPI 1 Run Layout Reads (M 2) % Clean Reads % Aligned
Reads

PRJNA315516
PRJNA418121

healthy12
12

SRR3383640 SE 10.9 97.12 98.31
healthy12.1 SRR3383641 SE 22.6 97.50 98.34

healthy18
18

SRR3383782 SE 29.8 97.62 98.13
healthy18.1 SRR3383783 SE 14.2 97.69 98.34

healthy24
24

SRR3383821 SE 15 97.18 98.09
healthy24.1 SRR3383822 SE 10.2 95.98 97.87

healthy30
30

SRR6283144 SE 22.1 95.31 97.51
healthy30.1 SRR6283145 SE 19.7 95.72 97.99

1 Hours Post Inoculation; 2 Million reads.

2.2. Sequence Quality Filtering and Expression Estimation

Reads from each dataset were processed for quality and filtered using FastQC v0.11.5 [53]
and Trimmomatic v.0.38 [54] tools, using a Phred Score ≥20 and a minimum sequence
length ≥40 bp. Filtered sequences were aligned to the A. thaliana genome TAIR10 [55]
and the latest Araport 11 annotation (GenBank accessions CP002684–CP002688), using STAR
alignment tool v2.7.5 [56], with parameters sjdbOverhang = 92 and genomeSAindexNbases = 7
to adjust the tool to the genome size and alignIntronMin = 8 and alignIntronMax = 1999 to
adjust the minimum and maximum intron lengths [57]. The alignment quality reported
in SAM/BAM files [58] were evaluated with the HTSeq-qa tool v0.11.1 and the expression
abundance was estimated using the HTSeq-count tool v0.11.1 [59].

2.3. Data Preprocessing and Batch-Effect Correction

Central tendency and statistical dispersion measures were calculated, including the
mean (µ), standard deviation (σ), and range (R), and histograms with KDE of distributions
and percentiles were created using Seaborn [49] (Figure 1).

2.3.1. Integration of Raw Counts and Data Normalization (Figure 1a,b)

A single expression matrix was generated using the raw count files for each dataset.
Protein-coding genes (henceforth referred to as genes) with expression values equal to
zero were eliminated. Transcripts per million (TPM) [60] were used to perform data
normalization with the TPM normalization tool v0.9.1 using Gene_length_extraction_from_
GTF.ipynb [61]. For TPM normalization, the gene length was obtained from the A. thaliana
genome GTF/GFF file [55]. The script 1_Step1_integrating_raw_counts.ipynb and script
2_Step2_TPM_normalization.ipynb were used to organize the gene expression data and
perform data normalization, respectively (Table S2).

2.3.2. Data Standardization and Outlier Identification (Figure 1c,d)

The gene expression values were divided into percentiles, and top and bottom extreme
tails were calculated. Genes with TPM values between the 1st and 99th percentile were
retained, while genes beyond this range were discarded. After filtering, TPM values were
transformed to log2 (TPM + 1). To evaluate the efficiency of our methods in detecting sam-
ples with atypical distributions, we included 3 samples with known atypical distribution as
negative controls. The 3_Step3_TPM_standardization.ipynb and 4_Step4_Log2_scale.ipynb
scripts were used (Table S2).
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Figure 1. Framework for integrating publicly available RNA-seq data. (a) Step 1. Raw counts are
integrated in a single expression matrix and evaluation metrics (standard deviation (σ), mean (µ) and
range (R)) are calculated. Genes with zero expression values are removed. (b) Step 2. Data arrays are
normalized by TPM and evaluation metrics are recalculated. (c) Step 3. Percentiles and distribution
are calculated to identify tail values within the distribution. TPM values below the 1st and above
the 99th percentile are removed, and evaluation metrics are recalculated. (d) Step 4. Normalized
and filtered TPM values are transformed to log2(TMP + 1) to identify atypical distributions, and
evaluation metrics are recalculated.
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2.4. Weighted Gene Co-Expression Networks and Identification of Core Genes

Weighted gene co-expression network analysis (WGCNA v1.69-81) was performed
using R package [44]. The pickSoftThreshold function according to the Scale Free Topology
model fit was used to define the appropriate soft-thresholding power. The adjacency matrix
was generated using a signed topological overlap matrix (TOM), along with dissimilarity
values (1-TOM). Gene clusters were detected using a dynamic cutting algorithm with a
minimum module size of 20 and a default cutoff height (0.99). Merged networks were
derived at 0.1 distances. Pearson’s correlation analysis (r2 > 0.75) was used to identify
modules linked to phenotype. The moduleEigenes, cor, corPvalueStudent functions were
used to define module membership (MM) and gene significance (GS) with a cutoff of
r2 > 0.75, r2 < 0.75 and p-value < 0.05.

To identify the core genes, genetic modules from healthy-control and infected-plant
gene networks were compared. Modules in the infected-plant gene network with a dif-
ference >75% in genes (unique genes) were selected as exclusive gene modules for the
infected-plant gene co-expression network. The correlation cutoff was set at R2 > 0.50. Gene
modules that fit these criteria were selected as core genes.

2.5. Functional Annotation of the Gene Co-Expression Networks and Core Genes

A Gene Ontology (GO) overrepresentation test was performed using PANTHER
v17.0 [62,63]. Gene modules with coefficients of R2 > 0.75 were selected, and a binomial
test with Bonferroni correction was used to identify GO-Slim terms for biological pro-
cess and molecular function GO modules [64,65] (http://geneontology.org/, accessed on
11 July 2023).

The core genes were analyzed using The Database for Annotation, Visualization and
Integrated Discovery (DAVID, https://david.ncifcrf.gov/home.jsp, accessed on 15 July
2023). Nine of the fourteen DAVID annotation categories were used in this study. To
identify closely related genes within the module, the DAVID Gene Functional Annotation
tool applies a kappa score distribution and an agglomeration method based on heuristic
fuzzy multiple-linkage partitioning. These methods are implemented through the tool’s
web-based interface, and allow the user to select different levels of stridency, ranging from
low to very high [66] (in this study, medium and high levels were selected). The selected
gene groups were those repeated across the selection criteria. To identify the functional
gene groups most relevant to the study (e.g., those of plants infected with pathogenic fungi),
the DAVID tool uses the EASE score, which is a modified Fisher’s exact test, to assign an
enrichment score to each annotated gene group. The cutoff was >0.80 [50,66].

The Arabidopsis Information Portal (Araport) through ThaleMine webtool
(https://bar.utoronto.ca/thalemine/, accessed on 4 September 2023) was used to identify
each A. thaliana gene [67,68].

2.6. Implementation

Data processing was implemented using Jupyter Notebooks [69] for Python v3.8.10
and WGCNA v1.69-81 [44] for R v4.1.0. The R scripts and code are freely available via
GitHub at https://github.com/cyntsc/RNA-Seq-raw-integration (accessed on 28 Septem-
ber 2023) (DOI 10.5281/zenodo.7076416) (Table S2).

3. Results

To improve our understanding of the core genes involved in defending against multi-
ple fungal infections, we conducted a comparative study using publicly accessible transcrip-
tome data from C. higginsianum– and B. cinerea–A. thaliana pathosystems (Tables 1 and S1).
First, we controlled the batch effects of public data to reduce data variability using an in-
house framework (Figure 1). Next, we performed a weighted gene co-expression network
analysis (WGCNA) [44] of the preprocessed data to identify the core genes. These core
genes were then subjected to further agglomerative analysis using DAVID [50] to identify
functions in closely related gene groups.

http://geneontology.org/
https://david.ncifcrf.gov/home.jsp
https://bar.utoronto.ca/thalemine/
https://github.com/cyntsc/RNA-Seq-raw-integration
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3.1. Controlling the Batch Effect in Public RNA-seq Data to Construct Gene Co-Expression
Networks (GCN)

RNA-seq sequences were filtered for quality, recovering more than 92% of the reads.
These were aligned to the A. thaliana TAIR10 genome [55], achieving an alignment coverage
rate of 97.5% to 98.3% for the healthy samples and 77.4% to 98.2% for the infected samples.
S. sclerotiorum samples (Ss30, Ss30.1 and Ss30.2), with alignment coverages ranging from
29.5% to 36.5%, were included as an outlier control to track data changes (Table 1, Figure 2).
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After read mapping, two gene expression matrices were obtained, one containing
more than 221 thousand expression values (27,655 genes × 8 samples) derived from
healthy-control samples and another containing more than 470 thousand expression values
(27,655 genes × 17 samples) from infected-plant samples. Genes with an expression value
equal to zero were eliminated (Figure S1), resulting in a total of 22,426 and 24,239 genes in
the healthy-control and infected expression matrices, respectively.

The expression values were normalized to TPM to set the means of the distributions
to the same point, and the evaluation metrics showed a µ = 44.6, σ = 333 ± 6 and R = [0 to
36,543] for the healthy-control gene expression matrix and a µ = 41.2, σ = 284.5 ± 84.5 and
R = [0 to 30,000] for the infected-plant gene expression matrix (Figure 3a). Extreme values
in both expression matrices were identified and removed to reduce data variability. In the
healthy-control expression matrix, 2262 genes were below the 1st percentile, in which TPM
values were smaller than 0.1, and 372 genes were above the 99th percentile, with TPM values
larger than 840. A total of 2634 genes were removed. In the infected-plant expression matrix,
a total of 3965 genes were filtered. Of these, 3495 genes were below the 1st percentile and
470 genes were above the 99th percentile, where the TPM values were smaller than 0.1 and
larger than 845, respectively. In total, 19,792 and 20,274 were obtained for the healthy-control
and infected-plant expression matrices, respectively (Figure 3b). Data were transformed
to log2(TPM + 1) to reduce the scale, and the metrics for the healthy-control samples were
σ = 2.1 ± 0.1, µ = 3.4 ± 0.2 and R = [0 to 9.28] while for the infected-plant samples, the metrics
were σ = 2.1 ± 0.1, µ = 2.9 ± 0.8 and R = [0 to 9.72] (Figure 3c).
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Figure 3. Integration of RNA-seq datasets. (a) The expression matrix was normalized to TPM and
evaluation metrics were calculated, µ = 41.2, σ = 284.5 ± 84.5, and R = [0 to 30,000]. (b) Percentiles
and distribution were calculated to identify tail values within the distribution. TPM values below
the 1st percentile (TPM < 0.1) and above the 99th percentile (TPM > 845) were removed. Evaluation
metrics were calculated (µ = 27.21 ± 6.25, σ = 62.5 ± 4.5 and R = [0 to 845]). (c) TPM values were
transformed to log2(TMP + 1) to reduce the scale and to identify atypical distributions. Evaluation
metrics were calculated (σ = 2.93 ± 0.78, µ = 2.13 ± 0.13, and R = [0 to 9.72]). (d) Fungal-infected
samples with atypical distributions were removed (Ss30, Ss30.1 and Ss30.2) and evaluation metrics
were calculated (σ = 2.075 ± 0.075, µ = 3.55 ± 0.16, and R = [0 to 9.72]). The colored lines represent
the RNA-seq data used in this study; colored bars represent percentiles.

To understand and demonstrate the effect of highly variable gene expression, Ss30,
Ss30.1 and Ss30.2 samples were added to introduce variability in the data collection, with
the aim of monitoring the efficacy of the workflow corrections. The histograms with
KDE reveal a clear contrast between the preponderant and the outlier distributions of the
Ss30, Ss30.1 and Ss30.2 samples (Figure 3c). The violin plots with KDE show individual
distributions and reveal a pronounced difference in the distributions of the Ss30, Ss30.1 and
Ss30.2 samples compared to other samples (Figure S2). Once the Ss30, Ss30.1 and Ss30.2
samples were eliminated, a more homogeneous dataset was obtained for the co-expression
analysis (Figures 3d and S2).
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3.2. Gene Co-Expression Network Analyses and Gene Ontology Overrepresentation Test for
Healthy and Infected Plants with Fungal Pathogens

Two gene co-expression networks were built. In the healthy-control gene network, a
coefficient R2 = 0.80 was reached, and 237 clusters were identified with a Node-Connectivity
Mean (NCM) of 374 genes per cluster (β = 28; R2 = 0.78). The merged network provided
23 clusters (Figure 4a, Table 2). In the infected-plant gene network, a coefficient R2 = 0.83
was reached, and 100 clusters with a NCM of 270 genes per cluster were identified (β = 27;
R2 = 0.79). The merged network contained 36 clusters (Figure 4b, Table 2). A correlation of
module eigengenes to disease trait data was performed, with a significant cutoff value of
|GS| > 0.75 and p-value <0.05 (Datas S1 and S2).
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Figure 4. Co-expression network and clustering. The Scale-Free-Topology model was used to
assess healthy-control samples and infected-plant gene networks. A signed network was built using
Pearson’s method. (a) Control -sample gene network reached a maximum of R2 = 0.80. The soft
threshold cutoff was set at β = 28 for network discovery, which resulted in R2 = 0.78 and a Node Mean
Connectivity (NMC) of 374 genes. The merged network comprised 23 gene clusters. (b) Infected-plant
gene network reached a maximum of R2 = 0.83. The soft threshold cutoff was β = 27, which resulted
in a model fit of R2 = 0.79 with an NCM of 270 genes. The merged network contained 36 gene clusters.

Table 2. TOM network results and the Node-Connectivity Mean (NCM).

Condition R2 # Clusters of
Standard Network NCM # Clusters of

Merged Network

Healthy-control samples β = 28; 0.78 237 374 23
Infected-plant samples β = 27; 0.79 100 270 36
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To confirm the biological relevance of the identified networks, biological and molecular
functions for each gene network were identified via a Gene Ontology (GO) overrepresenta-
tion gene test on the genetic modules with coefficients R2 > 0.75. Three and four genetic
modules were analyzed to identify molecular function and biological processes from the
healthy-control and infected-plant gene networks, respectively (Table S3). The number of
genes in each module of the healthy-control sample gene network ranged from 79 to 2024,
and 34–96% of these were assigned to ontology classes. In contrast, the infected-plant gene
network modules contained 72 to 818 genes, 25–30% of which were classified into ontology
classes (Table S4).

The results for the healthy-control gene network showed overrepresentation of 16 molec-
ular functions mainly related to binding (GO:0005488) and translation (GO:0045182) in the
“Coral3” module, which contains 1991 genes. The “Navajowhite3” module has 489 genes,
and two biological processes related to vesicle-mediated transport (GO:0016192) and Golgi
vesicle transport (GO:0048193) were overrepresented. The “Blue3” module contains 79 genes,
and response to light (GO:0009416) and radiation (GO:0009314) are the main functions asso-
ciated with this module (Figure 5a,b). In contrast the infected-plant gene network modules
showed overrepresentation of 19 molecular functions in the 805-gene “Chocolate” module,
in which protein binding (GO: 0005515) and kinase activity (GO: 0004672) are the main
molecular functions. The “Chocolate2” and “Green3” modules each had only one molecular
function class. The molecular function for the “Chocolate2” module is related to RNA
binding (GO:0003723), while the “Green3” module is associated with unfolded protein
binding (GO:0051082) (Figure 5c, Data S3).
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Figure 5. Gene Ontology (GO) overrepresentation test. (a) Bar plots of overrepresented molecular
function GO-slim classes in Coral3 gene module and overrepresented biological process GO-slim
classes in Navajowhite3 gene module obtained for control sample gene network. (b) Bar plot of
overrepresented biological process GO-slim classes in Blue3 gene module obtained for control sample
gene network. (c) Bar plots of overrepresented molecular function GO-slim classes in Chocolate,
Chocolate2 and Green3 gene modules obtained for infected-plant gene expression network.
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3.3. Identification and Functional Annotation of Core Defense Genes in A. thaliana

To identify defense core genes related to multi-fungal infections, healthy-control and
infected-plant networks modules were compared, and modules in the infected-plant gene
network with at least 75% unique or different genes were identified (Figure S3). Finally,
modules that showed a positive correlation (R2 > 0.50) were selected. It was determined
that the “Darkmagenta” module fit our criteria, with a correlation coefficient of R2 = 0.75 for
B. cinerea at 24 hpi and a R2 = 0.59 for C. higginsianum at 22 hpi (Figure 6). It contains
113 genes, and of these, 103 (77.4%) were exclusively in this module (Figure S3). The
functional annotation of this module was performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov/home.jsp, ac-
cessed on 28 September 2023), which helps to identify closely related gene groups [50,66].

(a) (b)

Figure 6. Core gene module. (a) The heatmap shows the different treatments analyzed in the study.
The rectangle highlights the treatments with significant correlation. B_24 hpi represents the sample
with B. cinerea at 24 h pos infection. Ch_22 hpi corresponds to the sample with C. higginsianum at
22 h postinfection. (b) Selected modules are displayed. The ellipses represent the consensus module
“Darkmagenta”, with a R2 > 0.59 for C. higginsianum and a R2 > 0.57 for B. cinerea.

The 113 genes in the “Darkmagenta” module were mapped to nine DAVID func-
tional categories. To categorize highly related genes into functional groups relevant to the
pathogenic fungal infection, the DAVID gene functional annotation tool [66] employs a
kappa distribution score, an agglomeration method and an EASE enrichment score. The web
tool implementation enables users to select different stringency levels. We identified gene
groups that remained consistent at medium and high stringency. Thus, 14 enriched func-
tional groups were obtained and then filtered using an EASE score >0.80 and p-value < 0.05,
resulting in six enriched functional groups (Tables 3 and S5). Of these six groups, seven
genes were classified in the “WD40/YVTN repeat-like-containing” group, three genes in the
“sterol metabolism” group, ten genes in the “glycosyltransferase” group, seven genes in the
“intracellular protein transport” group, four genes in “Zinc finger, FYVE/PHD-type”, and
six genes in “Methyltransferase” (Table 3). Four of these thirty-seven genes have multiple

https://david.ncifcrf.gov/home.jsp
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functions (AT5G06050, AT5G13960, AT5G40870 and AAT5G45660) and are associated with
at least two functional groups (Table 4). Finally, 33 defense-related genes and their roles
in B. cinerea and C. higginsianum infection in A. thaliana at 22 and 24 hpi were identified
through DAVID functional annotation (Table 4).

Table 3. Enriched functional groups from “Darkmagenta” gene module.

Category Term (Group #) p Value P Benjamin #Genes Gene E. Score

IPR015943
WD40/YVTN

repeat-like-containing
(group 1)

0.0029 0.5307 7
AT5G23430, AT3G13340,
AT3G18060, AT5G51980,
VPS11, AT1G79990, VCS

1.5527

KW-1207
KW-0752

GO:0016126

Sterol metabolism
(group 2)

0.0125
0.0275
0.0277

0.4613
0.7459
0.9995

3 SMT1, SMO1-1,
3BETAHSD/D1 1.3511

GO:0016757
KW-0328

Glycosyltransferase
(group 3)

0.0113
0.0346

0.8358
0.7467 10

ALG3, FUT13, CALS1,
UK/UPRT1, AT4G38040,
GUT2, PARVUS, SETH2,
AT5G45660, AT1G34270

1.3489

KW-0968
GO:0006886

Intracellular protein
transport
(group 4)

0.0066
0.0428

0.1592
0.9999 7

PLA2-α, PAT2,
AT1G60070, AT4G13730,

AT1G14910, VPS11,
AT1G79990

1.1112

IPR011011
IPR019787

Zinc finger,
FYVE/PHD-type

(group 5)

0.0190
0.0477

0.9928
0.9999 4 EMB1135, ATX2,

AT5G12350, AT1G50620 1.0173

KW-0489 Methyltransferase
(group 6) 0.0403 0.7991 6

AT3G15530, SUVH4,
AT2G34300, SMT1, ATX2,

AT5G06050
0.8795

Table 4. Description of core genes involved in multiple fungal infections.

Group TAIR ID Gene Chr Description

1 AT5G23430 AT5G23430 Chr5 Transducin/WD40 repeat-like superfamily protein.
1 AT3G13340 AT3G13340 Chr3 Transducin/WD40 repeat-like superfamily protein
1 AT3G18060 AT3G18060 Chr3 Transducin/WD-40 repeat family protein
1 AT5G51980 AT5G51980 Chr5 Transducin/WD40 repeat-like superfamily protein

1–4 AT1G79990 AT1G79990 Chr1 Coatomer subunit β-2. WD repeat COPB2 family
1–4 AT2G05170 VPS11 Chr2 Vacuolar protein sorting 11

1 AT3G13300 VCS Chr3 VARICOSE. Transducin/WD40 repeat-like superfamily protein

2–6 AT5G13710 SMT1 Chr5 Sterol methyltransferase 1
2 AT4G12110 SMO1-1 Chr4 Sterol-4alpha-methyl oxidase 1-1
2 AT1G47290 3BETAHSD/D1 Chr1 3beta-hydroxysteroid-dehydrogenase/decarboxylase isoform 1

3 AT2G47760 ALG3 Chr2 Asparagine-linked glycosylation 3
3 AT1G71990 FUT13 Chr1 Fucosyltransferase 13
3 AT1G05570 CALS1 Chr1 Callose synthase 1
3 AT5G40870 UK/UPRT1 Chr5 Uridine kinase/uracil phosphoribosyltransferase 1
3 AT1G27440 GUT2 Chr1 Exostosin family protein
3 AT5G12350 AT5G12350 Chr5 Exostosin family protein(AT4G38040)
3 AT1G05570 CALS1 Chr1 Uridine kinase/uracil phosphoribosyltransferase 1(UK/UPRT1)
3 AT1G19300 PARVUS Chr1 Nucleotide-diphospho-sugar transferases superfamily
3 AT3G45100 SETH2 Chr3 UDP-Glycosyltransferase superfamily protein
3 AT4G38040 AT4G38040 Chr4 Exotosin family protein. Glycosyltransferase 47 family
3 AT5G45660 AT5G45660 Chr5 Adenine phophoribosyltransferase
3 AT1G34270 AT1G34270 Chr1 Exotosin family protein
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Table 4. Cont.

Group TAIR ID Gene Chr Description

4 AT2G06925 PLA2-α Chr2 Phospholipase A2 family protein
4 AT3G55480 PAT2 Chr3 Protein affected trafficking 2
4 AT1G60070 AT1G60070 Chr1 Adaptor protein complex AP-1
4 AT4G13730 AT4G13730 Chr4 Ypt/Rab-GAP domain of gyp1p superfamily protein
4 AT1G14910 AT1G14910 Chr1 ENTH/ANTH/VHS superfamily protein

5 AT1G79350 EMB1135 Chr1 RING/FYVE/PHD zinc finger superfamily protein
5–6 AT1G05830 ATX2 Chr1 Trithorax-like protein 2

5 AT5G12350 AT5G12350 Chr5 RCC1 family with FYVE zinc finger domain-containing protein
5 AT1G50620 AT1G50620 Chr1 RING/FYVE/PHD zinc finger superfamily protein

6 AT5G13960 SUVH4 Chr5 Histone-lysine N-methyltransferase, H3 lysine-9

6 AT3G15530 AT3G15530 Chr3 S-adenosyl-L-methionine-dependent
methyltransferases superfamily

6 AT2G34300 AT2G34300 Chr2 S-adenosyl-L-methionine-dependent
methyltransferases superfamily

6 AT5G06050 AT5G06050 Chr5 Putative methyltransferase family protein

4. Discussion

Pathogenic fungi-induced diseases are among the main causes of losses in commercial
crops. In light of major challenges such as climate change and fungicide resistance, it is
imperative to develop global strategies to tackle these losses. Conducting experiments
under a wide range of environmental stresses can be both challenging and time consuming.
However, the advent of NGS technologies has allowed the collection of large amounts of
data that could help to address the challenges associated with modern agriculture. The
utilization of publicly available RNA-seq expression data holds great potential for further
study of complex plant–pathogen interactions, leading to the identification of candidate
genes and molecular markers and optimization of breeding strategies by targeting specific
genes. However, utilizing publicly available RNA-seq data remains challenging. To tackle
this, we based our study on computational approaches using public data from RNA-seq
transcriptome studies of A. thalian-B. cinerea and A. thaliana-C. higginsianum pathosystems to
identify core genes that respond to multiple types of fungal infection using GCN. Reanalysis
of public RNA-seq expression data requires the minimization of technical biases, known as
the batch effect, to obtain high-quality co-expression networks [30]. Although several tools
may be used for batch-effect correction (such as ComBat-Seq [70], ComBat [71], svaseq [72]),
further efforts may be required, particularly when sample sizes are limited (<30) [30].
Therefore, we developed a straightforward workflow to preprocess data in order to correct
the batch effect that allowed us to recover over 80% of genes for WGCNA (Figure 1).

Previous studies revealed that gene modules generated by WGCNA from condition-
dependent gene expression experiments are more informative than gene modules identified
by combining the entire dataset regardless of condition [48]. Thus, two gene co-expression
networks were constructed using filtered data from healthy (control) and infected A. thaliana
plants with B. cinerea and C. higginsianum. The network for healthy-control plants included
23 gene modules with an NCM of 374, while for the network for infected plants, 36 gene
modules with an NCM of 270 were obtained (Figure 4, Table 2). Additionally, the qual-
ity of each network was confirmed through GO overrepresentation analysis, resulting in
biological processes and functions that are overrepresented in each network and linked
to each phenotype. Modules with an R2 values greater than 0.75 were selected for both
networks, and it was determined that within the healthy-control plant network, genetic
modules coral3, blue3 and navajowhite3, modules with positive correlation (R2 of 0.98, 0.96,
and 0.79, respectively) were related to plant development and growth, exhibiting functions
such as translation and protein binding (GO:0005488), vesicle-mediated protein trans-
port (GO:0016192), as well as response to light and radioactivity (GO:0016192) (Figure 5,
Table S2). The gene modules from the plant-infected network, chocolate, dodgerblue1,
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green and chocolate2 with positive correlations (R2 of 0.98, 0.96, 0.95, 0.91, respectively),
displayed overrepresented molecular functions of genes associated with regulating gene ex-
pression and signal transduction, which are the primary stress response mechanisms. These
functions included protein binding (GO:0005515), kinase activity (GO:0004672), RNA bind-
ing (GO:000373) and unfolded protein binding (GO:0051082) (Figure 5, Table S2) [73,74].

To identify core genes that respond to B. cinerea and C. higginsianum infection in
A. thaliana, the genetic modules in the network of infected plants should differ by at least
75% compared to the network of healthy-control plants with a positive correlation (R2 > 0.5)
for the infection conditions. Therefore, we selected the “Darkmagenta” module due to
its differentiation in 77.4% of genes compared to the control. This module displayed an
R2 = 0.57 with the B. cinerea treatment at 24 hpi and an R2 = 0.59 with the C. higginsianum
treatment at 22 hpi, as shown in the heatmap (Figure 6). This module contained 113 genes
that were functionally annotated using the DAVID tool [66], revealing 33 genes distributed
across six functional categories (Tables 3, 4 and S5).

The first group of genes in the “Darkmagenta” module consisted of seven genes
(AT5G23430, AT3G13340, AT3G18060, AT5G51980, AT1G79990, VPS and VSC) that con-
tained the WD40/YVTN repeat-like domain (IPR015943). In A. thaliana, 237 proteins have
been reported to contain four or more copies of the WD40 domain and participate in diverse
biological processes, including defense against pathogens [75,76]. The most extensively
studied of the WDR proteins are the Gβ proteins, which are associated with type-1 mem-
brane receptors in the plant innate immunity signaling pathway. Interactions between Gβ

and type-1 membrane receptors convert extracellular signals into intracellular chemical
defense responses, including reactive oxygen species (ROS) production, callose deposition,
MAPK activation, defense gene activation and programmed cell death [77]. In this group,
we identified at least 3 Gβ-type genes (AT5G23430, AT5G51980, AT1G79990) (Table 4).

In the second group, we identified three CPG for key enzymes in sterol biosynthesis,
SMT1, SMO1-1, and 3BETAHSD/D1 (Table 4). Sterols are a complex mixture of organic
compounds that are synthesized in plants and function as structural components of cell
membranes. They play a vital role in processes such as channel regulation, protein traf-
ficking, signal transduction and plant–pathogen interactions [78]. The SMT1, 4-methyl
sterol oxidase (SMO) and 3-BETAHSD enzymes participate in the biosynthesis of c24-alkyl
sterol and cholesterol in plants [79]. The role of sterols in plant defense has been stud-
ied more comprehensively in relation to abiotic stressors, such as drought, salinity, and
cold, than against biotic stress. However, certain sterols such as cholesterol activate biotic
stress response genes [78], while pathogenic bacteria and ROS stimulate biosynthesis of
stigmasterol. Moreover, PATHOGENESIS-RELATED PROTEIN 1 (PR-1) can bind various
sterols, including stigmasterol, to inhibit pathogen growth by sequestering sterols from
pathogens [80]. Although there is evidence suggesting that sterols might function as a
crucial element in plant defense, further studies are needed to demonstrate their efficacy.

The glycosyltransferase genes in group three consist of 10 CPG (ALG3, FUT13, CALS1,
UK/UPRT1, AT4G38040, GUT2, PARVUS, SETH2, AT5G45660, AT1G34270). Glycosylation
is one of the major posttranslational modifications in plants, playing an important role in
defense against pathogens by inactivating toxic microbial compounds and strengthening
the cell wall. Glycosylation also regulates secondary metabolite levels by increasing their
water solubility to facilitate metabolite transport throughout the plant, increasing the
metabolites’ stability to avoid degradation and even altering their biological activity to
increase toxicity to pathogens or decrease bioactivity for plants. An example of this is the
glycosylation of salicylic acid (SA), a phytohormone that functions as a signal molecule
during plant defense against pathogens, activating systemic acquired resistance (SAR). This
glycosylation is believed to facilitate detoxification of SA, allowing it to be safely stored and
moved within the plant, which helps to avoid excessive activation of defense responses
that could harm the plant’s growth and development [81–83]. Interestingly, within this
group of genes, we have identified CALS1 (AT1G05570), which responds to SA (Table 4).
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Four genes were identified as Zinc FYVE/PHD group (EMB1135, ATX2, AT5G12350,
and AT1G5062). The zinc finger protein (ZFP) transcription factors (TFs) constitute a
vast family in the plant kingdom and play a crucial role in stress tolerance. The ZFP TFs
mainly regulate genes involved in antioxidation activity, which reduce ROS accumulation.
Controlling the ROS level is critical, as it helps to avoid damage in molecules, including
DNA, proteins and lipids, and to enhance stress tolerance. AT1G50620 and EMB1135
(alternatively known as the FGT 1 gene, AT1G79350), containing the RING/FYVE/PHD-
type (RFP) domain (IPR011011) [84,85], have a zinc ion binding function, and recent studies
indicate that this function may help with ROS scavenging [85,86]. Additionally, rapid
accumulation of ROS during the development of fungal appressoria has been observed as a
defense mechanism to prevent penetration of the pathogenic fungi [87,88]. This is consistent
with the infection period of C. higginsianum, since at 22 h post inoculation, the fungus is
in the prepenetration stage and is engaged in forming the appressorium [9]. Additionally,
FGT 1 (EMB1135) encodes the FORGETTER 1 protein that binds directly to a specific class
of heat-inducible genes through nucleosome remodeling [89]. These types of ZFP TFs
regulate cellular responsiveness by binding to promoter regions of actively expressed genes
in a heat-dependent fashion, such as heat shock proteins (HSP). The HSPs are induced by a
variety of stresses, including oxidative stress; however, the crosstalk between abiotic and
biotic stress responses in the ROS network remains poorly understood [90].

A group of six methyltransferases were identified (AT3G15530, SUVH4, AT2G34300,
SMT1, ATX2, AT5G06050); all of these genes are involved in methylation. However, to
date, there have been few studies on the role of methylation in plant–pathogen interactions,
particularly with regard to infections caused by pathogenic fungi. The available evidence
suggests that epigenetic control of gene expression contributes to the fine-tuning of plant
defenses in response to pathogens [91,92]. Crespo-Salvador et al. (2018) demonstrated that
differentially expressed genes responding to B. cinerea infection were induced 24 h after
infection and displayed similar histone modification patterns, suggesting that epigenet-
ics marks may impact the transcriptional regulation in this particular pathosystem [93].
A. thaliana hypomethylated mutants showed resistance against the biotrophic pathogen
Hyaloperonospora arabidopsidis, whereas hypermethylated mutants were more susceptible to
this pathogen [92,94]. Additionally, research on geminivirus infections has shown that the
SUVH4 protein is a virus-silencing target that aims to evade host defenses [95]. Interest-
ingly, our results highlighted the presence of SUVH4 (AT5G13960) and ATX2 (AT1G05830),
which are involved in the maintenance of epigenetic control [96].

5. Conclusions

Core gene clusters that respond to multiple fungal infections were identified. However,
further studies are needed to elucidate the role of several important genes in plant immune
responses. Identifying coexpressed gene associations may provide insights into the func-
tions of currently unknown coding genes. In the context of climate change, genomic data
repositories are important resources for developing new tools for crop improvement and
disease prevention, positively influencing productivity, sustainability and food security.
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