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Abstract: The sweet potato, which is an important tuber crop in China, is susceptible to a variety of
pathogens and insect pests during cultivation and production. Stem rot is a common sweet potato
disease that seriously affects tuber yield and quality. Unfortunately, there have been relatively few
studies on the mechanism mediating the stem rot resistance of sweet potatoes. In this study, a
transcriptome sequencing analysis was completed using Xushu 48 samples at different stages (T1, T2,
and T3) of the stem rot infection. The T1 vs. T2, T1 vs. T3, and T2 vs. T3 comparisons detected 44,839,
81,436, and 61,932 differentially expressed genes (DEGs), respectively. The DEGs encoded proteins
primarily involved in alanine, aspartate, and glutamate metabolism (ko00250), carbon fixation in
photosynthetic organisms (ko00710), and amino sugar and nucleotide sugar metabolism (ko00520).
Furthermore, some candidate genes induced by phytopathogen infections were identified, including
gene-encoding receptor-like protein kinases (RLK5 and RLK7), an LRR receptor-like serine/threonine
protein kinase (SERK1), and transcription factors (bHLH137, ERF9, MYB73, and NAC053). The results
of this study provide genetic insights that are relevant to future explorations of sweet potato stem
rot resistance, while also providing the theoretical basis for breeding sweet potato varieties that are
resistant to stem rot and other diseases.

Keywords: sweet potato; stem rot; transcriptome; gene; transcription factor

1. Introduction

Sweet potatoes, which are widely cultivated in China, have been used as an important
food source, feed material, and industrial raw material because they are rich in carbohy-
drates, nutrients, and functional ingredients [1]. In terms of planting area and output,
China is the primary producer of sweet potatoes worldwide. However, the continuous
planting of sweet potatoes for many years has increased the prevalence of a variety of
diseases. Sweet potato stem rot has recently become one of the most serious sweet potato
diseases in various parts of China, including Zhejiang, Guangdong, Hebei, Henan, and
other provinces [2,3]. Serious cases of sweet potato stem rot often lead to seedling death
and decreases in yield and quality. Moreover, sweet potato stem rot can occur in all life
stages, as well as during post-harvest storage. The main symptoms of stem rot are dark
brown and waterlogged disease spots on the stem or petiole. As the disease worsens, the
stem segment softens and dissociates, ultimately resulting in wilting and death [4].
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Sweet potato stem rot was first detected and reported in the United States in 1974 [5].
The causative pathogen was initially identified as Erwinia chrysanthemi, but it was later re-
classified as a species in the genus Pectobacterium according to an analysis of 16S rDNA [6].
The use of new techniques for identifying species resulted in the classification of some
stem rot pathogens in the genus Pectinobacillus, whereas others were classified in the new
genus Dickeya [7]. Efforts to identify sweet potato stem rot pathogens started relatively
late in China. On the basis of molecular biology and sequencing data, E. chrysanthemi
and D. dadantii were identified as the main pathogens responsible for sweet potato stem
rot in China [3,4,8]. More specifically, the pathogen causing sweet potato stem rot in
Zhejiang province was identified as D. dadantii [9], which can infect more than 60 different
host plants, such as ornamental plants (e.g., Convolvulaceae, Compositae, and Orchidaceae)
and agricultural plants (e.g., Solanaceae, Leguminosae, Gramineae, Dioscorea, and Cruciferae),
especially important food crops, including sweet potatoes, rice, corn, onions, eggplants,
peppers, carrots, and tomatoes [10]. Therefore, molecular plant pathologists consider
D. dadantii as one of the top 10 phytopathogenic bacteria [11].

Recent serious outbreaks of stem rot in sweet potato-producing areas in China have
restricted the development of the sweet potato industry. The disease management strategies
used to date (e.g., chemical control and agronomic practices) have been insufficient for
controlling sweet potato stem rot. Moreover, there are no sweet potato varieties that are
highly resistant or immune to stem rot [9]. Thus, there is an urgent need for developing
and cultivating stem rot-resistant sweet potato resources, which largely depends on the
identification of disease resistance genes. As a powerful analytical tool, transcriptome
sequencing (RNA-seq) technology has been widely used to investigate different plant
types. There has been considerable research on the transcriptomes of plants infected with
pathogens, which has resulted in the identification of many pathogen-responsive genes
as well as the characterization of disease resistance mechanisms. For example, Xiao et al.
sequenced the transcriptomes of resistant and susceptible wheat materials, which revealed
that PR5 and PR14 expression levels are significantly up-regulated in disease-resistant
wheat [12]. In another study, an RNA-seq analysis showed that during the lettuce response
to an infection with Botrytis cinerea, the expression of genes related to phenylpropane and
terpenoid synthesis is up-regulated, whereas the photosynthetic pathway is inhibited [13].
A resistance gene (SWC) in a Capsicum species was identified via RNA-seq, with the
encoded protein involved in the perception of the effector AvrBs4 released by Xanthomonas
species [14]. The continual enhancement of RNA-seq technology will enable researchers
to conduct more detailed and in-depth sequencing analyses of plant transcriptomes in
response to pathogen infections. By studying the differential expression of plant genes,
we can mine for more reliable candidate genes related to disease resistance and further
clarify the molecular mechanism underlying plant disease resistance. Therefore, in this
study involving the moderately resistant sweet potato variety Xushu 48, we analyzed the
expression of stem rot-responsive genes in different stem rot infection stages. Moreover,
candidate sweet potato stem rot resistance genes were identified, which may be relevant to
breeding disease-resistant sweet potato varieties.

2. Materials and Methods
2.1. Plant Materials and Treatments

Xushu 48 is a new stem rot-resistant sweet potato variety selected by the Xuzhou
Agricultural Science Research Institute in the Xuhuai region of Jiangsu province, China.
Sweet potato stem rot pathogen D. dadantii strains Dd1 and Dd2 were collected, isolated,
identified, and preserved by the Institute of Plant Protection and Microbiology of the
Zhejiang Academy of Agricultural Sciences. The Dd1 and Dd2 mixtures were used to
evaluate sweet potato stem rot resistance under laboratory conditions [15]. For both Dd1
and Dd2, a single colony on an NA medium was selected and cultured on fresh NA medium
at 28 ◦C for 36 h. The bacterial mass was rinsed with sterile water and then the bacterial
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suspension was prepared (107/mL) for the subsequent inoculation of sweet potato samples,
as previously described [9].

The resistance of sweet potato seedlings grown in vermiculite was assessed according
to the method developed by the Institute of Plant Protection and Microbiology of the
Zhejiang Academy of Agricultural Sciences. Briefly, 500 mL of Guangkou tissue culture
bottles were filled with vermiculite moistened with sterile water. The stems of seedlings
with 3–4 leaves were wounded with sandpaper (5 cm from the stem base), after which the
seedlings were placed in vermiculite so that part of the wound site was exposed to the
air. The wounded site of each sweet potato stem was inoculated with 1 mL of bacterial
suspension, while the control was treated with sterile water instead of bacterial suspension.
The same wounded plants were used in the control group and the treatment group, and the
other operations were consistent with those in the treatment group except for aseptic water
infection in the control group. The inoculated seedlings were incubated in a temperature-
and light-controlled culture room set at 28 ◦C and 80% relative humidity. The inoculation
was completed with three biological replicates, each comprising 10 seedlings (one seedling
per tissue culture bottle). Disease incidence was monitored daily. According to the previous
experimental basis (the data were not published), it was found that sweet potato stem
rot began to occur after 3 days of inoculation in some disease-resistant varieties, and
waterlogged disease spots appeared. When it reached 6 days, the inoculated stem segment
blackened seriously and the plants began to die. Therefore, the following three sample
types were collected for the subsequent analysis: infected with sterile water for 0 days (T1),
infected for 3 days (T2), and infected for 6 days (T3).

2.2. RNA Extraction, Library Preparation for Transcriptome Analysis

Using a Trizol reagent kit (Invitrogen, Carlsbad, CA, USA), total RNA was extracted
from the stems of Xushu 48. An Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA) and RNase-free agarose gel electrophoresis were used to measure the
quality of the RNA. Oligo (dT) beads were used to enrich eukaryotic mRNA following
the extraction of total RNA, and the Ribo-ZeroTM Magnetic Kit (Epicentre, Madison, WI,
USA) was used to remove rRNA from prokaryotic mRNA. Then, the enriched mRNA
fragments were cut into short segments using a fragment buffer and reverse-transcribed
into cDNA using random primers. Second-strand cDNA was synthesized by utilizing DNA
polymerase I, RNase H, dNTP, and buffer. Next, the cDNA fragments were purified using
the QiaQuick PCR extraction kit (Qiagen, Venlo, The Netherlands), followed by end repair,
the addition of PolyA, and connection to the Illumina sequencing adapter. The agarose gel
electrophoresis method was used to screen according to the size of the ligation products,
and the Illumina HiSeq 2500 from Gene Denovo Biotechnology Co., (Guangzhou, China)
was used for amplification and sequencing.

2.3. Transcriptome Assembly and Screening of DEGs (Differentially Expressed Genes)

Transcriptome sequencing was completed based on NGS and 3GS, and TPM, FPKM,
RPKM, and fold changes (Fc) for each repeat of each library were recorded. The se-
quences obtained from NGS and 3GS were aligned, and similar sequence data from all
libraries/samples were gathered. The transcriptome data were compared and annotated
with the reported sweet potato genome database (http://sweetpotato.uga.edu/, accessed
on 18 June 2023).

A DEG analysis was performed between the two groups using the DESeq2 software
version 1.20.0 [16], while EdgeR version 3.38.1 [17] was used for DEG analysis between
the two samples. When the false discovery rate (FDR) of a gene/transcript is ≤0.05 and
the absolute folding change is ≥2, it is confirmed as a significantly differentially expressed
gene/transcript [18].

http://sweetpotato.uga.edu/
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2.4. Gene Functional Annotation and KEGG (Kyoto Encyclopedia of Genes and Genomes)
Enrichment Analysis

Gene functions were annotated based on the following databases: NR (https://www.
ncbi.nlm.nih.gov/, accessed on 17 August 2023), NT (https://www.ncbi.nlm.nih.gov/, ac-
cessed on 17 August 2023), Pfam (http://pfam.sanger.ac.uk/, accessed on 17 August 2023),
KOG/COG (https://www.ncbi.nlm.nih.gov/cog/, accessed on 17 August 2023), and
SWISS-PROT (http://www.ebi.ac.uk/uniprot/, accessed on 17 August 2023). The differ-
entially expressed genes were analyzed via GO [19] annotation and KEGG [20] pathway
enrichment analysis using the GOSeqR software package version 1.22.0 and KEGG Orthol-
ogy software version 4.2.

2.5. qRT-PCR (Real-Time Quantitative PCR) Validation

Thirteen randomly selected unigenes were included in the quantitative real-time poly-
merase chain reaction (qRT-PCR) analysis, which was performed using the QuantStudio™
6 Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA). Total RNA
was extracted from sweet potato stems using the Total RNA Rapid Extraction kit (Shanghai
Generay Biotech Co., Ltd., Shanghai, China) and then reverse-transcribed to cDNA using
the ReverTra Ace® qPCR RT Master Mix with a gDNA Remover Kit (FSQ-301, Toyobo Co.,
Ltd., Osaka, Japan). The qRT-PCR analysis was conducted using the SYBR Green Real Time
PCR Master Mix (10 µL), forward/reverse primers (10 µM, 0.5 µL), a cDNA template (1 µL),
and ddH2O (8 µL), with ARF (JX177359) serving as the reference gene [21]. The qRT-PCR
primers for each unigene were designed using Primer3Plus (Supplementary Table S1). The
relative expression levels for three independent experiments were calculated using the
2−∆∆Ct method [22].

3. Results
3.1. Phenotypic Analysis of Inoculated Sweet Potato Seedlings

The phenotypic changes in the healthy Xushu 48 seedlings inoculated with the isolated
sweet potato stem rot pathogen were examined (Figure 1). The stems and leaves of
the control (i.e., uninoculated) sweet potato seedlings were green, with no black spots,
and the leaves were extended normally. At 3 days post-inoculation, the seedlings had
a black–brown stem lesion and leaves that started to droop. At 6 days post-inoculation,
the stem was rotted and the leaves were severely drooping. Moreover, the seedlings were
beginning to die.

3.2. Transcriptome Analysis

The principal component and heat map analyses of the stem rot pathogen-infected
Xushu 48 samples, collected in three stages (T1, T2, and T3), revealed that the T1, T2, and
T3 samples were clearly separated, whereas the replicates in each stage were clustered
(Figure 2A,B). These results reflected the stability and reliability of the transcriptome data.
Thirteen DEGs were selected for the qRT-PCR analysis. The transcriptome data (fold-
change in the FPKM values) were closely correlated with the qRT-PCR data for the 13 DEGs
(R2 = 0.826). Accordingly, the transcriptome data were accurate and reliable. For each
sample, more than 6 GB of sequencing data was generated (>99% clean data). Thus, the
amount of sequencing data satisfied the study requirements (Supplementary Table S2).

3.3. Identification and Analysis of DEGs

The DEGs in the stem rot pathogen-infected Xushu 48 samples, collected at different
stages, were analyzed. A total of 44,839 DEGs were detected between T2 and T1, including
17,351 up-regulated genes and 27,488 down-regulated genes. There were 81,436 DEGs
between T3 and T1, including 16,820 up-regulated genes and 64,616 down-regulated genes.
There were 61,932 DEGs between T3 and T2, including 11,369 up-regulated genes and
50,563 down-regulated genes (Figure 3).

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://pfam.sanger.ac.uk/
https://www.ncbi.nlm.nih.gov/cog/
http://www.ebi.ac.uk/uniprot/
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Figure 1. Xushu 48 seedling phenotypes at different stages of the stem rot infection. The red arrow 
indicates the stem lesion on the sweet potato seedling infected with stem rot. T1, T2, and T3 refer to 
the seedlings infected with sterile water for 0 days, the seedlings infected with stem rot for 3 days, 
and the seedlings infected with stem rot for 6 days, respectively. The blue area pointed to by the 
blue arrow in the picture is the wound area from sand wear. The yellow arrow indicates the location 
of the inoculated bacterial suspension. The red arrow indicates the epidemic area of stem rot. 
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Figure 1. Xushu 48 seedling phenotypes at different stages of the stem rot infection. The red arrow
indicates the stem lesion on the sweet potato seedling infected with stem rot. T1, T2, and T3 refer to
the seedlings infected with sterile water for 0 days, the seedlings infected with stem rot for 3 days,
and the seedlings infected with stem rot for 6 days, respectively. The blue area pointed to by the blue
arrow in the picture is the wound area from sand wear. The yellow arrow indicates the location of
the inoculated bacterial suspension. The red arrow indicates the epidemic area of stem rot.

3.4. Enriched GO Terms and KEGG Pathways

The five main enriched GO terms assigned to the DEGs in the three analyzed stages
(T1, T2, and T3) were cellular process, metabolic process, binding, catalytic activity, and
cellular anatomical entity. From T1 to T3, the number of DEGs annotated with the five main
GO terms initially increased and then decreased. Hence, T2 may be an important period for
resistance to the stem rot pathogen (Figure 4). The top 20 significantly enriched GO terms
assigned to the DEGs between T1 and T2 included catalytic activity (GO:0016194), oxidore-
ductase activity (GO:0003824), and small-molecule metabolic process (GO:0044281). As the
infection duration increased (i.e., comparison between T1 and T3), the main enriched GO
terms among the DEGs were cytoplasm (GO:00005737), organonitrogen compound biosyn-
thetic process (GO:1901566), and small-molecule metabolic process (GO:0044281), which
were assigned to 20,994, 10,101, and 16,605 DEGs, respectively. For the comparison between
T2 and T3, the DEGs were mostly annotated with cytoplasm (GO:00005737), organonitro-
gen compound biosynthetic process (GO:1901566), and cellular nitrogen metabolic process
(GO:0034641) (Figure 5).
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Figure 2. Analysis of the relationships among the transcriptome samples and verification of the
expression data via qRT-PCR. Principal component (A) and heat map (B) analyses of the stem rot
pathogen-infected Xushu 48 stem segments collected at different infection stages. (C) Correlation
analysis of the transcriptome data and the qRT-PCR data.

Genes 2023, 14, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. Analysis of the relationships among the transcriptome samples and verification of the ex-
pression data via qRT-PCR. Principal component (A) and heat map (B) analyses of the stem rot 
pathogen-infected Xushu 48 stem segments collected at different infection stages. (C) Correlation 
analysis of the transcriptome data and the qRT-PCR data. 

3.3. Identification and Analysis of DEGs 
The DEGs in the stem rot pathogen-infected Xushu 48 samples, collected at different 

stages, were analyzed. A total of 44,839 DEGs were detected between T2 and T1, including 
17,351 up-regulated genes and 27,488 down-regulated genes. There were 81,436 DEGs be-
tween T3 and T1, including 16,820 up-regulated genes and 64,616 down-regulated genes. 
There were 61,932 DEGs between T3 and T2, including 11,369 up-regulated genes and 
50,563 down-regulated genes (Figure 3). 

 
Figure 3. Total number of differentially expressed genes (DEGs) in stem rot pathogen-infected 
Xushu 48 stem segments collected at different stages. (A) Venn diagram of DEGs. The number in 
each circle represents the number of DEGs in the corresponding group. The number of common 

Figure 3. Total number of differentially expressed genes (DEGs) in stem rot pathogen-infected Xushu
48 stem segments collected at different stages. (A) Venn diagram of DEGs. The number in each circle
represents the number of DEGs in the corresponding group. The number of common DEGs between
groups is provided in the overlapping regions. (B) Multi-point difference scatter diagrams of the
comparisons. Red and green dots represent up-regulated and down-regulated DEGs, respectively.
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DEGs, respectively.

The main enriched KEGG pathways among the DEGs in the three stages were
global and overview maps, carbohydrate metabolism, transcription, signal transduction,
and other biological pathways (Figure 6A). The analysis of the associations between
the enriched metabolic pathways among the DEGs between T1 and T2 indicated that
metabolic pathway ko01100 was associated with other metabolic pathways, includ-
ing glycolysis/gluconeogenesis (ko00010), carbon fixation in photosynthetic organisms
(ko00710)/amino sugar and nucleotide sugar metabolism (ko00520), and fructose and
mannose metabolism (ko00051) (Figure 6B). For the T1 vs. T3 comparison, the following
three enriched metabolic pathways were the main nodes connected with other metabolic
pathways: alanine, aspartate, and glutamate metabolism (ko00250); carbon fixation in
photosynthetic organisms (ko00710); and amino sugar and nucleotide sugar metabolism
(ko00520) (Figure 6C). For the comparison between T2 and T3, alanine, aspartate, and glu-
tamate metabolism (ko00250) was the main node, which was associated with amino sugar
and nucleotide sugar metabolism (ko00520) and glycolysis/gluconeogenesis (ko00010)
(Figure 6D). These results suggest that carbohydrate metabolism may be critical for the
stem rot resistance of sweet potatoes.
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T2 and T3.

3.5. Analysis of the DEG Expression Trends

The DEG expression trends in the three stages were grouped into eight modules. Increases
in the duration of the stem rot infection may lead to increases or decreases in the expression of
genes responsive to stem rot. Therefore, we focused on the DEGs in modules 0 and 7. There
were 20,767 DEGs in module 0 and 4422 DEGs in module 7 (Figure 7). Many of the genes
in these two modules encode proteins related to responses to infections and defenses against
plant pathogens, including the receptor-like protein kinases RLK5 (Ibat.Brg.05B_G013520) and
RLK7 (Ibat.Brg.08C_G006740), the LRR receptor-like serine/threonine protein kinase SERK1
(Ibat.Brg.06B_G025950), and the serine/threonine protein kinase 11-interacting protein-like
STK11IP (Ibat.Brg.10A_G016990). Thirteen plant disease resistance-related genes were selected
for a qRT-PCR analysis of their relative expression levels. The qRT-PCR data were consistent
with the transcriptome data (Supplementary Table S3).
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48 stem segments at different stages. (A) Quantitative statistics of the DEGs associated with different
metabolic pathways. The numbers next to the orange, blue, red, green, and yellow bars represent
the number of DEGs associated with metabolism, genetic information processing, environmental
information processing, organismal systems, and cellular processes, respectively. Correlations among
the metabolic pathways associated with the DEGs between T1 and T2 (B), T1 and T3 (C), and T2 and
T3 (D). Each purple dot in (B–D) represents a metabolic pathway, and the lines connecting the two
points indicate that there is an upstream and downstream relationship between the two metabolic
pathways or that there are common differentially expressed genes.

3.6. Analysis of Differentially Expressed Transcription Factors

The transcription factor-encoding genes among the DEGs were analyzed. Many
DEGs encoding the bHLH, ERF, MYB, NAC, and C2H2 transcription factors were
identified. Specifically, 1024 transcripts of genes in the bHLH transcription factor
family and 1018 transcripts of genes in the ERF transcription factor family were de-
tected. Additionally, 939, 826, and 700 transcripts of genes encoding MYB, NAC, and
C2H2 transcription factor family members were identified, respectively (Figure 8).
The bHLH, ERF, MYB, NAC, and C2H2 transcription factors accounted for 34.75%
of all of the identified transcription factors, implying that they may be related to
the sweet potato defense response to stem rot. Members of the bHLH, ERF, and
MYB transcription factor families are important for plant growth and development,
as well as for responses to biotic and abiotic stresses. According to the transcriptome
analysis, the bHLH family members bHLH137 (Ibat.Brg.04D_G021250) and bHLH162
(Ibat.Brg.06B_G028170), the ERF family members ERF9 (Ibat.Brg.09A_G006830) and ERF4
(Ibat.Brg.10F_G018750), and the MYB family members MYB73 (Ibat.Brg.01F_G031560)
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and MYB2 (Ibat.Brg.02A_G015020) may help to protect sweet potatoes from stem rot
infections. The NAC family members are plant-specific transcription factors that func-
tion as key regulators of plant stress resistance. A total of 820 NAC transcription
factor transcripts were identified in the transcriptome, including the transcripts of a
number of significantly up-regulated and down-regulated genes, including NAC053
(Ibat.Brg.02B_G005540), NAC078 (Ibat.Brg.02F_G003820), NAC081 (Ibat.Brg.03E_G007680),
and NAC021 (Ibat.Brg.04D_G028260).
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Figure 7. Analysis of the DEG expression trends in the stem rot pathogen-infected Xushu 48 stem
segments at different stages. (A) Analysis of the significance of the DEGs in each module. (B) Number
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corresponding to each module at different stages. Each gray line in the picture represents a DEG. The
Y axis represents the normalized value of gene expression at different infection time points, with
positive number being up-regulated and negative number being down-regulated.
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4. Discussion

Like other crops, sweet potatoes are susceptible to various pathogens that can ad-
versely affect cultivation, including the stem rot pathogen, which has detrimental effects on
sweet potato yield and nutritional quality. Sweet potato stem rot was first discovered and
reported in the United States in 1974 [5]. The pathogen responsible for sweet potato stem rot
was subsequently isolated and identified as D. dadantii [2]. However, there has been limited
research on the mechanism underlying the stem rot resistance of sweet potatoes. There
are few reports on the mining of stem rot resistance genes in sweet potatoes. Therefore,
in this study, the transcriptome of Xushu 48, which is moderately resistant to stem rot,
was analyzed during different stem rot infection stages. The results showed that after the
sweet potatoes were infected with pathogens of stem rot, the redox, catalytic activity, and
other related genes were induced and the autoimmune system was activated to resist the
infection of pathogens.

Plants rely on the innate immune system to perceive potential pathogens and limit
their harmful effects. Plant innate immunity is mediated by the following two related
systems: pathogen-associated molecular pattern-triggered immunity (PTI) and effector-
triggered immunity (ETI). More specifically, PTI represents the first layer of the plant
immune system [23]. Most pathogens are recognized by transmembrane pattern recogni-
tion receptors (PRRs). After perceiving the pathogen, PRRs transmit signals through several
proteins, including Botrytis-induced kinase 1 (BIK1) [24], mitogen-activated protein kinases
(MAPKs), and calcium-dependent protein kinases (CDPKs) [25], thereby activating appro-
priate immune responses (e.g., the accumulation of reactive oxygen species and callose).
In the current study, an RNA-seq analysis revealed DEGs encoding MAPKs and CDPKs,
including MAPK20 (Ibat.Brg.05A_G019550), MAPK18 (Ibat.Brg.06E_G014790), and CPK1
(Ibat.Brg.01E_G026440). In addition, the main enriched GO terms assigned to the DEGs
during the early stage of the stem rot infection were catalytic activity (GO:0016194) and
oxidoreductase activity (GO:0003824), whereas the enriched GO terms among the DEGs
during the later infection stage were mainly the organonitrogen compound biosynthetic
process (GO:1901566) and the small-molecule metabolic process (GO:0044281). The expres-
sion patterns of these DEGs were in accordance with the biological processes activated in
resistant plants in response to infections by phytopathogens.

Because they are continuously evolving, some phytopathogens produce effectors that
enable them to overcome the PTI of plants. However, ETI evolved as a second layer of
the plant immune system [26,27]. Plants also evolved specific resistance (R) genes, most
of which encode a nucleotide-binding leucine-rich repeat (NLR) receptor. These NLR
receptors can directly or indirectly detect toxic proteins in cells and trigger a series of
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immune responses, ultimately leading to disease resistance. The transcriptome analysis
conducted in the current study revealed many DEGs related to leucine-rich repeats and
their related regulatory kinases, including the LRR receptor-like serine/threonine protein
kinase-encoding gene FEI1 (Ibat.Brg.01D_G026840) and the plant intracellular Ras-group-
related LRR protein-encoding gene PIRL2 (Ibat.Brg.07D_G004510). These candidate genes
may be important for regulating sweet potato resistance to the stem rot pathogen.

Plant transcription factors have crucial functions related to the resistance to pathogens.
The WRKY transcription factors are the most prominent transcription factors involved in
molecular pattern-triggered immunity. Specifically, 15 WRKY transcription factors are strongly
induced, including WRKY18, WRKY33, and WRKY40 [28]. These three WRKY transcription
factors are also considered to be important nodes in the WRKY regulatory network [29]. A
total of 475 WRKY transcripts were detected in the transcriptome, including the transcripts of
WRKY33 (Ibat.Brg.15B_G007050) and WRKY40 (Ibat.Brg.S022350). Furthermore, bHLH [30],
ERF [31], NAC [32,33], MYB [34], and other transcription factor families are also reportedly re-
lated to plant resistance to pathogens or other biotic stressors. Several additional transcription
factors, such as bHLH137 (Ibat.Brg.04D_G021250), bHLH162 (Ibat.Brg.06B_G028170), ERF9
(Ibat.Brg.09A_G006830), ERF4 (Ibat.Brg.10F_G018750), MYB73 (Ibat.Brg.01F_G031560), and
MYB2 (Ibat.Brg.02A_G015020), were also detected. These candidate transcription factors may
be useful for studying the molecular mechanism underlying the stem rot resistance of sweet
potatoes.

5. Conclusions

In this study, an RNA-seq analysis was performed using Xushu 48 sweet potato stem
samples collected at different stem rot infection stages (T1, T2, and T3). The subsequent
comparisons detected 44,839 (T1 vs. T2), 81,436 (T1 vs. T3), and 61,932 (T2 vs. T3) DEGs.
These DEGs were mainly associated with alanine, aspartate, and glutamate metabolism
(ko00250); carbon fixation in photosynthetic organisms (ko00710); and amino sugar and
nucleotide sugar metabolism (ko00520). Moreover, some candidate genes related to plant re-
sponses to pathogen infections, such as receptor-like protein kinase genes (RLK5 and RLK7),
the LRR receptor-like serine/threonine protein kinase gene SERK1, and transcription factor
genes (bHLH137, ERF9, MYB73, and NAC053), were identified. These study findings may
be relevant to future investigations on the genetic basis of the stem rot resistance of sweet
potatoes, with potential implications for breeding disease-resistant sweet potato varieties.
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