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Abstract: Diabetes is characterized by persistently high blood glucose levels and severe complications
and affects millions of people worldwide. In this study, we explored the epigenetic landscape
of diabetes using data from the Korean Genome and Epidemiology Study (KoGES), specifically
the Ansung—Ansan (AS-AS) cohort. Using epigenome-wide association studies, we investigated
DNA methylation patterns in patients with type 2 diabetes mellitus (T2DM) and those with normal
glucose regulation. Differential methylation analysis revealed 106 differentially methylated probes
(DMPs), with the 10 top DMPs prominently associated with TXNIP, PDK4, NBPF20, ARRDC4,
UFM]1, PFKFB2, C70rf50, and ABCG1, indicating significant changes in methylation. Correlation
analysis highlighted the association between the leading DMPs (e.g., cg19693031 and ¢g26974062
for TXNIP and cg26823705 for NBPF20) and key glycemic markers (fasting plasma glucose and
hemoglobin Alc), confirming their relevance in T2DM. Moreover, we identified 62 significantly
differentially methylated regions (DMRs) spanning 61 genes. A DMR associated with PDE1C showed
hypermethylation, whereas DMRs associated with DIP2C, FLJ90757, PRSS50, and TDRD9 showed
hypomethylation. PDE1C and TDRD9 showed a strong positive correlation between the CpG sites
included in each DMR, which have previously been implicated in T2DM-related processes. This
study contributes to the understanding of epigenetic modifications in T2DM. These valuable insights
can be utilized in identifying potential biomarkers and therapeutic targets for effective management
and prevention of diabetes.
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1. Introduction

Diabetes is a chronic disease that affects the ability of the body to produce or utilize
insulin, which is necessary for regulating blood sugar levels. Over time, high blood sugar
levels can lead to serious, life-threatening complications that can affect different body
parts, including the eyes, kidneys, nerves, and cardiovascular system [1]. The International
Diabetes Federation has reported that approximately 537 million adults aged between
20-79 years were affected by diabetes in 2021, accounting for approximately 9.3% of the
total global population. The prevalence of diabetes is increasing at a significant pace, and
the number of people with diabetes will reach 700 million by 2045 [2].

An epigenome-wide association study (EWAS) is a study that aims to identify epi-
genetic changes associated with a particular trait or disease. Epigenetic changes refer
to the modifications of DNA and associated proteins that do not involve changes in the
underlying genetic code [3]. EWAS has several applications, including identification of epi-
genetic changes associated with complex diseases and environmental exposure, discovery
of epigenetic biomarkers, identification of potential therapeutic targets, and understanding
the mechanisms underlying complex diseases. A genome-wide association study (GWAS),
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which is a study that tests the associations of a plethora of single nucleotide polymorphisms
(SNPs) that encompass the entire genome with a specific trait [4], has been applied to
identify genetic risk factors for T2DM, and, to date, more than 120 genetic variants have
been found to be associated with T2DM risk [5]. However, epigenomic profiling studies
have been less performed for T2DM in humans.

An EWAS strives to identify epigenomic variants associated with a phenotype of
interest, which provides complementary information to a GWAS. So far, most EWASs have
applied DNA methylation microarrays such as the Illumina Infinium HumanMethylation
BeadChip arrays. Although genomic variations are static, epigenomic variations tend
to be dynamic, and interindividual epigenetic variabilities could play a critical role in
disease pathogenesis. Rather than studying rare changes in the epigenome, currently, an
EWAS mainly studies common DNA methylation variations in the population, which could
be a powerful approach in unraveling risk-associated epigenetic biomarkers [6]. Several
EWASs have identified epigenetic changes associated with both type 1 and type 2 diabetes
mellitus and complications such as diabetic nephropathy and retinopathy. Furthermore, the
potential of EWAS has been leveraged to investigate the impact of environmental factors
on the risk of having diabetes and explore potential targets of intervention for preventing
and treating diabetes [7,8].

EWASs have been used in several cohorts to identify epigenetic changes associated
with diabetes. For instance, an EWAS conducted in the EPIC-Norfolk Study has identified
changes in DNA methylation associated with T2DM, which were linked to the expression of
genes involved in insulin signaling and glucose metabolism [9]. In addition, a meta-analysis
of four European cohorts has identified 227 differentially methylated positions associated
with T2DM, many of which were located in genes involved in glucose metabolism and
insulin signaling pathways [10].

The Korean Genome and Epidemiology Study (KoGES) is a large-scale and population-
based investigation aimed at exploring the genetic and environmental factors underlying
common diseases in the Korean population. KoGES has generated an extensive dataset on
DNA methylation from the Ansung-Ansan (AS-AS) cohort, which is valuable for exploring
the impact of epigenetic modifications on various health outcomes [11]. Ko et al. (2022)
examined the correlation between fatty liver index (FLI) and DNA methylation patterns in
the Korean population using the Illumina Infinium HumanMethylation 450k (HM450k)
data and observed that FLI is linked to alterations in DNA methylation of genes involved
in lipid metabolism, inflammation, and insulin resistance [12]. Kim et al. (2023) have
demonstrated an association between DNA methylation patterns across approximately
400,000 CpG sites and development of chronic kidney disease in KoGES [13]. Although the
AS-AS cohort within KoGES encompasses the Illumina Infinium HumanMethylation 850k
(HMS850k) data for more than 1000 participants, HM450k has been commonly utilized for
EWAS in this cohort.

In this study, we examined the distinct methylation patterns between participants
with T2DM and those with normal glucose regulation using the extensive HM850k dataset
from the AS-AS cohort to identify DMPs and assessed their correlation with key blood
markers of diabetes, including fasting plasma glucose (FPG) and hemoglobin Alc (HbAlc).
Additionally, we identified DMRs in individuals with T2DM compared to those in in-
dividuals with normal glucose regulation and conducted further analyses to explore
co-methylation patterns.

2. Materials and Methods
2.1. Participants and Data Source

Clinical, epidemiological, and DNA methylation array datasets were obtained from
the AS-AS cohort of the KoGES, facilitated by the Korea Center for Disease Control and
Prevention [11]. Participants’ ages ranged between 40 and 69 years. For this study, data
from the HM850k array were utilized, specifically from the 5th follow-up cohort, which
encompassed 1528 samples with 865,918 CpG probes. This study was ethically approved
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by the Institutional Review Board (IRB) of the Korea Food Research Institute (Approval
No.: 2022-01-002-001).

2.2. Study Design

The study design is depicted in Figure 1. T2DM cases were identified based on
abnormal levels of FPG and HbAlc and plasma glucose level after 2 h (2 h PG) levels.
Specifically, abnormalities were defined as FPG level > 126 mg/dL, HbAlc level > 6.5%,
or 2 h PG > 200 mg/dL. For an individual to be classified as having T2DM, two or more of
these conditions needed to be simultaneously fulfilled [1]. Individuals with undetermined
T2DM or normal status were excluded from the analysis. After processing the data of
DNA methylation for normalization, correction for technical batch effects, adjustment for
covariates (age, sex, body mass index (BMI), and smoking habit), and corrections of cell
type heterogeneity, DMPs, and DMRs were identified. We selected the 10 top DMPs and
subjected them to correlation analyses with FPG and HbAlc levels (p < 0.05; Spearman
correlation). Additionally, we focused on DMRs that exhibited significant CpG probes
numbering over three and performed an in-depth analysis of their co-methylation patterns
using the “CoMET” package v.1.34.0 in Bioconductor [14].

KoGES Ansung-Ansan cohort (5% follow-up)
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Figure 1. Flowchart of this study. Among the initial 1528 potential participants from the AS-AS
cohort in KoGES at the 5th follow-up, individuals were categorized into either the T2DM (case) or
normal (control) groups based on blood parameters, including FPG, HbAlc, and 2 h PG, as described
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in the Section 2. This process resulted in 1134 remaining participants (T2DM = 887, normal = 247)
eligible for DNA methylation analysis. Subsequently, the HM850k data for these 1134 samples under-
went preprocessing, involving normalization using the 3-mixture quantile normalization (BMIQ)
method, technical batch effect correction for slides using the Combat algorithm, and adjustment
for covariates (utilizing the limma package; confounders = age, sex, BMI, and smoking habit), and
removal of cell type heterogeneity using the champ.refbase function. The -value matrix resulting
from the preprocessing of raw idat files was then employed for analyses of DMPs and DMRs. The
identified DMPs were subjected to correlation analysis with FPG or HbAlc. Additionally, selected
DMRs from the pool of identified DMRs underwent co-methylation pattern analysis using the COMET
Bioconductor package.

2.3. Data Preprocessing and Adjustment of Confounding Effects

The HM850k data for a cohort of 1134 participants (887 with T2DM and 247 classified
as normal) were imported using champ.load function of the “ChAMP” Bioconductor pack-
age v.2.26.0 [15]. Following this, a filtration process (Supplementary Figure S1) resulted in
the selection of 723,301 CpG probes from an initial pool of 865,918 probes. Discrepancies
between the two types of probes, probe I and probe II, were addressed through the BMIQ
method [16], using the champ.norm function. To counteract batch effects stemming from dif-
ferent slides, the champ.SVD function was used for detection of Principal Components, the
components correlated with the covariates, followed by correction using champ.runcombat
function, both integral to the ChAMP package (Supplementary Figure 52). Additionally,
confounding factors, specifically age, sex, BMI, and smoking habit were accounted for
by adjustments using the limma Bioconductor package [17]. The Q-Q plot, assessing the
model fit, is presented in Supplementary Figure S3.

2.4. Identification of DMPs

The DMPs distinguishing individuals with T2DM from normal individuals were
identified using champ.dmp function within the ChAMP Bioconductor package. To qual-
ify as DMPs, the CpG probes had to satisfy two criteria: a false discovery rate (FDR)
also called a multiplicity-adjusted p-value < 0.05 and an absolute (3-value > 0.02. The
DMPs meeting these criteria were graphically represented using a volcano plot employing
EnhancedVolcano Bioconductor package for visualization [18].

2.5. Identification of DMRs

The DMRs were identified using champ.dmr function from ChAMP package, and
Bumphunter algorithm with maximum gap of 300 bp, minimum seven probes, and an
adjusted p-value < 0.05 was used for identifying DMRs.

2.6. Statistical Analyses

Statistical analyses were performed using R v.4.2.1. Student’s ¢-test was employed to
determine the significant differences in means of 3-values between two groups (p < 0.05).
Furthermore, the correlation coefficient (R) between -values of the identified DMPs and
blood parameters, such as FPG or HbAlc, was calculated using Spearman’s correlation
analysis (p < 0.05).

3. Results
3.1. Clinical Characteristics of the Study Participants

In the KoGES cohort study, the participants with normal glycemic status (n = 247)
and those with T2DM (n = 887) were compared. Fasting glucose levels were significantly
higher in the T2DM group (161.05 mg/dL) than in the normal group (89.26 mg/dL). Simi-
larly, HbAlc levels were elevated in participants with T2DM (7.56%) compared to those
in the normal group (5.35%). The 2 h PG levels were higher in participants with T2DM
(261.96 mg/dL) than in those in the normal group (105.49 mg/dL). Additionally, individ-
uals with T2DM had a higher mean BMI (25.31 kg/m?) than had the normal individuals
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(23.64 kg/m?). The normal group comprised 50.20% males, whereas the T2DM group com-
prised 57.50% males. The mean age of participants in the normal group was 57.77 years
(standard deviation (SD), 8.38), whereas that in the T2DM group was 62.45 years (SD,
8.22). The difference in the mean age between the two groups was statistically signifi-
cant (p < 0.001). Additionally, the prevalence of smoking was higher in the T2DM group
(47.30%) compared to the normal group (37.80%) (Table 1). These findings underscore
the significant impact of T2DM on glycemic control and associated metabolic parameters
while highlighting age, sex, BMI, and smoking habit as potential confounders within the
KoGES cohort.

Table 1. Comparisons of Clinical and Biochemical Parameters in the KoGES Cohort Participants with
Different Glycemic Status.

Normal (n = 887) T2DM (n = 247)
KoGES Cohort (1 = 1134) p Value ?
Mean SD n Mean SD n
Sex (% male) 50.20 887 57.50 247 -
Age (years) 57.77 8.38 887 62.45 8.22 247 o
BMI (kg/m?) 23.64 2.77 887 25.31 2.79 247 ot
Smoking habit (%) 37.80 887 47.30 247 -
Fasting glucose (mg/dL) 89.26 5.64 887 161.05 40.97 247 o
HbA1lc (%) 5.35 0.21 887 7.56 1.05 247 i
2-h plasma glucose (mg/dL) 105.49 21.25 887 261.96 58.38 56 et
Fasting insulin (uIU/mL) 7.63 3.04 887 13.57 18.69 247 ok
2-h plasma insulin (uIU/mL) 28.69 27.68 887 36.68 29.04 56 *xx
Newly detected DM (1, %) 215, 87.0 247 -
DM treatment (11, %) 191, 88.8 215 -
Oral DM medication (1, %) 180, 83.7 215 -
Insulin treatment, (1, %) 20,9.3 215 -
BUN (mg/dL) 15.26 3.94 887 16.43 5.89 247 *
Creatinine (mg/dL) 0.93 0.15 887 0.99 0.38 247 *
AST(SGOT) (IU/L) 25.28 9.19 887 26.47 11.88 247 n.s.
ALT(SGPT) (IU/L) 22.16 12.60 886 27.90 16.19 247 ek
Total Cholesterol (mg/dL) 191.87 32.92 887 188.01 36.08 247 n.s.
HDL-Cholesterol (mg/dL) 44.68 11.50 887 39.51 8.56 247 ok
Triglyceride (mg/dL) 123.48 73.37 887 181.91 112.83 247 i
hs-CRP (mg/L) 1.33 3.81 887 2.12 4.96 247 n.s.
W.B.C. blood (Thous/uL) 522 1.35 887 6.13 1.59 247 et
R.B.C. blood (Mil/uL) 443 0.42 887 446 0.46 247 n.s.
Hemoglobin (Hb) (g/dL) 13.70 1.38 887 13.73 1.49 247 n.s.
Hematocrit (Hct) (%) 41.17 3.84 887 41.06 4.23 247 n.s.
Platelet (Thous/uL) 255.22 60.11 887 255.35 66.94 247 n.s.

2,%, p <0.001; ***, p < 0.000001; n.s., not significant (p > 0.05).

3.2. Identification of DMPs

To identify the features of DNA methylation associated with T2DM, we analyzed
DMPs between the T2DM and normal groups. A total of 106 DMPs were detected with an
adjusted p-value < 0.05 and an absolute change in 3-value > 0.02. Among these, 61 DMPs
exhibited hypermethylation, whereas 45 DMPs displayed hypomethylation in patients
with T2DM (Figure 2A). Within these 106 DMPs, CpG sites were predominantly enriched in
the gene body (51 CpGs; 48.11%), followed by the intergenic region (IGR; 27 CpGs; 25.47%),
transcription start site 1500 (TSS1500; 9 CpGs; 8.49%), 5’ untranslated region (5'UTR; 7 CpGs;
6.60%), transcription start site 200 (TSS200; 7 CpGs; 6.60%), 3’ untranslated region (3'UTR;
3 CpGs; 2.83%), and the first exon (2 CpGs; 1.89%) (Figure 2B, left panel). The majority of
CpG sites were located in open sea regions (56 CpGs; 52.83%), followed by shore (30 CpGs;
28.30%), island (16 CpGs; 15.09%), and shelf (4 CpGs; 3.77%) (Figure 2B, right panel). The
10 top DMPs are documented in Table 2, with the two highest-ranked DMPs (cg19693031
and ¢g26974062) found within the 3'UTR or body of TXNIP. These two DMPs exhibited
significant hypomethylation in patients with T2DM (p < 0.05). Similarly, cg17075888,
€g26823705, and cg10217853 within PDK4, NBPF20, and ARRDC4, respectively, showed
significant hypomethylation, whereas cg04816311, cg16740586, cg19750657, and cg00683922
located within C70rf50, ABCG1, UFM1, and PFKFB2 displayed significant hypermethylation
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in patients with T2DM, respectively. Additionally, substantial hypomethylation of one of
the 10 top DMPs, c¢g(02841972, which are found in the intergenic region of chromosome 2,
was noticed (p < 0.05) (Figure 2C).
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Figure 2. DMP analysis results. (A) Volcano plot of the DMPs. The 10 top DMPs are labeled
with the names of their CpG probes, and all DMPs are depicted as red dots. The x-axis repre-
sents A B-values between T2DM and normal groups, whereas the y-axis indicates FDRs, also called
multiplicity-adjusted p-values. A total of 723,301 CpG probes are depicted as dots. Dark grey,
green, blue, and red dots correspond to not significant (n.s.), | Ap-values| > 0.02 and adjusted
p-value > 0.05, | AB-values| < 0.02 and adjusted p-value < 0.05, and | AB-values| > 0.02 and ad-
justed p-value < 0.05, respectively. (B) Distribution of the locations of CpG sites in DMPs. The
left-panel histogram displays the distribution of CpG sites in various regions, including the first exon,
3’ untranslated region (UTR), 5'UTR, gene body, intergenic region, transcription start site (TSS) 1500,
and TSS200. The y-axis represents the count of each region. The right-panel histogram illustrates the
distribution of CpG sites in different locations including CpG island, open sea, shelf, and shore. The
y-axis represents the count of each CpG location. (C) Box plots for 10 top DMPs. The x-axis represents
the sample groups, and the y-axis represents 3-values for each group. Outliers are depicted as dots.
Asterisks (****) indicate significant differences between the normal and diabetes groups (p < 0.0001;
Student’s t-test).
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Table 2. Top 10 differentially methylated probes (DMPs).

Probe ]%tht:- p-Value Adj. p-Value CHR MAPINFO Gene Feature cgi Methylation
cg19693031  —0.058 295 x107% 213 x10°% 1 145441552 TXNIP 3'UTR opensea hypo
€g26974062  —0.022 2.76 x 107%  9.97 x 10731 1 145440734 TXNIP Body opensea hypo
¢g26823705 —0.029 322 x 1073 5.82 x 10718 1 145435523 NBPF20 Body opensea hypo
cg04816311 0.021 234 x 1070 242 x 10715 7 1066650 C7orf50 Body shore hyper
cg17075888  —0.033 252 x 107 203 x 10714 7 95225339 PDK4 Body shore hypo
cg16740586 0.026 3.05 x 10718 221 x 10713 21 43655919 ABCG1 Body shore hyper
cg02841972  —0.021 1.90 x 10°1°  1.06 x 1010 2 10176151 IGR opensea hypo
cg19750657 0.025 410 x 10715 1.98 x 10710 13 38935967 UFM1 3'UTR opensea hyper
cg10217853  —0.037 399 x 107 170 x 1077 15 98505199 ARRDC4 Body shore hypo
cg00683922 0.021 466 x 1074  1.87x 1077 1 207242569 PFKFB2 Body opensea hyper

3.3. Correlation between Methylation Levels of Top DMPs and Glycemic Markers
(FPG and HbA1c)

To validate the link between the previously identified DMPs and T2DM, a correlation
analysis was performed between the methylation levels of the 10 top DMPs and markers
associated with T2DM, including FPG and HbA1lc. Spearman’s correlation coefficient (R)
was calculated for each CpG probe and the diabetic markers. Three DMPs (cg19693031,
€g26974062, and cg26823705) exhibited significant negative correlations (Figure 3A). For
HbAlc, two DMPs (cg19693031 and cg26974062) demonstrated significant negative correla-
tions (Figure 3B). Notably, the 3-values of cg19693031 and cg26974062 were significantly
correlated with FPG and HbAlc.
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Figure 3. Correlation between methylation levels of DMPs and diabetic markers of the blood.
(A) Correlation analysis between FPG and DMPs with p < 0.05; IR| > 0.2 (Spearman correlation). The
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x-axis indicates $-values for individuals, and the y-axis indicates FPG levels (mg/dL). Individuals in
the T2DM and normal groups are indicated by red and blue dots, respectively. The red line represents
the regression line. (B) Correlation analysis between HbAlc and DMPs with p < 0.05; IR| > 0.2
(Spearman correlation). The x-axis indicates 3-values for individuals, and the y-axis indicates HbAlc
(%). Individuals in the T2DM and normal groups are indicated by red and blue dots. The red line
represents the regression line.

3.4. Identification of DMRs

Subsequently, we identified the genomic regions exhibiting divergent patterns of
DNA methylation between the diabetic and normal groups. We identified 62 significant
DMRs (p < 0.05). Further enrichment analysis revealed the involvement of 61 genes in this
process (Figure 4A). The 10 highest-ranked DMRs are listed in Table 3. Remarkably, DMR_1
situated within TXNB had the highest impact. Additionally, the 10 top DMRs encompassed
annotations for genes such as RNF39, MIR886, DIP2C, S100A13, HLA-DPB1, and Cé6orf25
(Table 3). Upon delving into co-methylation pattern analysis within TXNB, we observed
a tendency towards positive correlation in the methylation levels of individual CpG sites
within the genomic region containing the CpG island of TXNB. However, 47 out of the 48
CpG sites within the DMR for TXNB was not significant as a differentially methylated probe
(adjusted p-value < 0.05) (Figure 4B). For DMRs related to PDE1C, more than 50% CpG sites
within each DMR exhibited significant hypermethylation. Conversely, for DIP2C, FL]90757,
PRSS50, and TDRDY, we observed significant hypomethylation (adjusted p-value < 0.05)
(Figure 4A). Furthermore, co-methylation pattern analysis of the DMRs for PDE1C and
TDRDS9 showed a pronounced positive correlation among the CpG sites encompassed
within each DMR, respectively (Supplementary Figures S4 and S5, respectively).

Table 3. Top 10 differentially methylated regions (DMRs).

Chromosome Start End Width p Value p Value Area Gene

DMR_1 chr6 32063114 32065211 2097 0 0.00040626 TNXB
DMR_2 chr6 30038910 30039600 690 0.0002208 0.00106864 RNF39
DMR_3 chrb 135415693 135416613 920 0.0006271 0.002040131 MIR886
DMR_4 chr10 530635 531584 949 0.0011923 0.003170594 DIP2C
DMR_5 chrl 153599479 153600156 677 0.0018193 0.004265729 S100A13
DMR_6 chré6 29648161 29649024 863 0.002049 0.010306638
DMR_7 chr6 33047944 33048879 935 0.0022698 0.005581658 HLA-DPB1
DMR_8 chr6 31691354 31692152 798 0.0024464 0.017168898 Cé6orf25
DMR_9 chré6 31275551 31275881 330 0.0026937 0.006924082
DMR_10 chrl6 875257 875626 369 0.0026672 0.037163952
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Figure 4. Results of DMR analysis. (A) Bar graph illustrating counts of hypermethylated or hy-
pomethylated DMPs in each DMR. Dark orange, cyan, and light grey sections in the bar graph
indicate the count of hypermethylated, hypomethylated, and not significant probes, respectively.
(B) Analysis of co-methylation pattern for the DMR surrounding TXNB. The upper panel dis-
plays a regional Manhattan plot of the DMR surrounding TXNB. The y-axis represents —logjo(p-
value) for each CpG probe in the DMR, and the x-axis represents the genomic location of each
CpG site. In the middle panel, annotation tracks for gene, broad ChromHMM, regulation, and
SNPs are presented. Within the broad ChromHMM track, pink and brown tracks correspond to
repressed and heterochromatin/low signal regions, respectively, and, within the regulation EN-
SEMBL track, sky blue track corresponds to CTCF binding site, as defined in the coMET user guide
(https:/ /www.bioconductor.org/packages/devel /bioc/vignettes/coMET/inst/doc/coMET.pdf; ac-
cessed on 30 November 2023). In the lower panel, the co-methylation pattern of CpG probes within
the DMR is depicted, displaying a heatmap of the Spearman correlation coefficients (R). In this
heatmap, red indicates a positive correlation with relatively high R values, whereas blue indicates a

negative correlation with relatively low R values.

4. Discussion

In this study, we performed DNA methylome analysis of approximately 850,000 CpG
sites from blood samples of 247 patients with T2DM and 887 normal subjects included
in the AS-AS cohort of KoGES and identified potential DNA methylation sites, regions,
and genes associated with diabetes in the Korean population. In previous cohort studies,
several diabetes- or diabetic marker-related DMPs have been reported using EWAS. In
particular, the cg19693031 region located in the 3'UTR of TXNIP has been reported to be
highly associated with diabetic markers [19-21]. Thioredoxin-interacting protein (TXNIP),
encoded by TXNIP, plays a crucial role in cellular processes, including redox regulation,
metabolism, and cell growth. TXNIP is associated with diabetes mellitus, specifically T2DM,
and regulates diabetes-related cellular functions such as glucose homeostasis, insulin
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resistance, and pancreatic 3 cell function [22]. Intervention with TXNIP represents a new
strategy for treating diabetes mellitus [23,24]. Our DMP analysis identified cg19693031 as
the most significant DMP associated with diabetes, and cg26964062, located within TXNIP,
was sequentially identified as an important CpG site. Collectively, hypomethylation of the
two CpG sites in TXNIP identified through EWAS analysis suggests that it may play an
important role in the pathogenesis of diabetes mellitus in the Korean population.

CpG sites located within PDK4, ABCG1, NBPF20, UFM1, PFKFB2, and ARRDC4
were identified within the 10 top DMPs. Pyruvate dehydrogenase kinase 4, encoded by
PDK4, plays an important role in glucose metabolism and oxidation of fatty acids, and
its upregulation is a factor in developing diabetes [25,26]. Consistent with the results of
our DMP analysis, the cg17075888 CpG site of PDK4 has been found to be significantly
hypomethylated in patients with T2DM (n = 1534) [27]. ABCGI is also related to insulin
resistance [28], and the association of a related CpG site cg06500161 identified by DMP
analysis with diabetic markers has been reported [29]. The relationship between cg16740586
(located within ABCG1) and diabetes has not yet been reported; however, this is a novel
DMP associated with obesity [30]. A direct relationship between NBPF Member 20 and
pathogenesis of diabetes has not yet been reported; however, hypomethylation in the
diabetic group through EWAS analysis of c¢g26823705 located within NBPF20 has been
reported, which is consistent with our study [31]. PFKFB2, identified in this study of T2DM
mechanisms using 1026 Qatar BioBank samples, showed causal associations with HbAlc.
Analysis of 66 T2D-CpG associations and whole-genome SNP associations implicated
PFKFB2 in metabolic networks related to T2DM [32]. UFM]1, identified in a study of MKR
mice modeling T2DM, is associated with endoplasmic reticulum-associated degradation
in islet dysfunction, revealing its potential role in T2DM development [33]. ¢g10217853,
located within ARRDC4, has been identified as a novel CpG site in this study, and arrestin
domain—containing protein 4 is associated with diabetes by regulating insulin resistance
and lipid metabolism in {3 cells in response to glucose [28,34]. Collectively, the DMP
analysis in this EWAS suggests that relationships may exist between genes related to the
top DMPs with high significance and the pathogenesis of diabetes mellitus.

By analyzing DMRs between diabetic and healthy individuals, we identified five genes
that were hypomethylated (DIP2C, FLI90757, PRSS50, and TDRD9) or hypermethylated
(PDEIC) in the diabetic group compared to those in the normal group. Notably, the mRNA
expression of TDRDJ increases in the visceral adipose tissue of patients with T2DM [35].
The enzyme phosphodiesterase 1C is encoded by PDE1C and regulates the levels of CAMP
and cGMP in cells. It is also involved in the molecular pathway that regulates insulin
secretion from pancreatic 3 cells [36]. Collectively, the results of DMR analysis suggest the
potential significance of the DMR-annotated genes in the context of diabetes, indicating their
involvement in various cellular processes and relevance to diabetes-related mechanisms.

In conclusion, the DNA methylation markers found through EWAS in the AS-AS
cohort of KoGES hold significant value for future research on diagnostic markers of dia-
betes and may indicate the pathogenesis of diabetes through changes in DNA methylation.
There are several limitations of the present study. First, the findings are based on a single
cohort using a case—control design, which lack replications from an independent cohort,
and, therefore, the results of the current study are hypothesis-generating in nature, which
need to be corroborated in other independent studies. Second, the study participants are
of Korean ethnicity, and the results may not be generalizable to other ethnic populations.
Third, additional analyses could be necessary for separate EWASs with FPG, HbAlc, and
2 h PG levels as outcome variables. We further suggest exploring different pathways
associated with DNA methylation by performing EWAS analyses with individual glycemic
markers and future research directions, including the construction of regression models and
the application of machine learning algorithms to interpret feature importance. Integrating
these advances into our study could provide comprehensive insights into the intricate rela-
tionships between DNA methylation patterns and glycemic markers, thereby increasing the
robustness and applicability of our findings. In addition, SNPs are the most prevalent type
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of genetic variant, and multiple linked SNPs in the same chromosomal region can be phased
to haplotypes [37]. Third-generation sequencing such as Oxford Nanopore Technologies
(ONT) and Pacific Biosciences (PacBio) single-molecule real-time sequencing are major
long-read sequencing technologies that can be applied to determine DNA sequence and to
detect DNA methylation simultaneously. Such long reads could cover more than several
kilobases, thus helping resolve haplotype phases in genomic regions with low contents
of SNPs. Recently, a software program called NanoMethPhase has been developed that
can perform DNA methylation phasing at Mb scale based on the long reads generated by
nanopore sequencing technologies [38]. In the future, such third-generation sequencing
technologies could be applied to perform methylome sequencing for identifying DMPs and
DMRs with haplotype phase information, which can facilitate identification of genetically
imprinted regions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ genes14122207 /s1, Figure S1: Filtration process of HM850k probes;
Figure S2: Singular value decomposition (SVD) analysis before (A) and after (B) batch effect correction.
The labels “PC-1" to “PC-20" correspond to the Principal Components showing the top components
correlated with the detected covariates (age, sex, Array, Slide, and Sample_Group), with the number
of PCs determined using Random Matrix Theory; Figure S3: Normal Q-Q plot. The x-axis displays
the theoretical quantiles expected under a normal distribution, whereas the y-axis represents the
observed quantiles from the dataset. A straight line indicates conformity to a normal distribution;
Figure S4: Co-methylation pattern analysis for the DMR surrounding the PDE1C. The upper panel
displays a regional Manhattan plot of the DMR surrounding the PDE1C gene. The y-axis represents
—logo(p-value) for each CpG probe in the DMR, and the x-axis represents the genomic location of
each CpG site. In the middle panel, annotation tracks for gene, CpG Island, Broad ChromHMM,
Regulation, and SNPs are presented. Within the Broad ChromHMM track, the pink track corresponds
to heterochromatin/low signal regions, and the sky blue and yellow tracks correspond to CTCF
binding site and predicted weak enhancer/Cis-regulatory element within the regulation ENSEMBL
track, respectively, as defined in the coMET user guide (https://www.bioconductor.org/packages/
devel/bioc/vignettes/coMET /inst/doc/coMET.pdf; accessed on 30 November 2023). In the lower
panel, the co-methylation pattern of CpG probes within the DMR is depicted, displaying a heatmap
of Spearman correlation coefficients (R). In this heatmap, red indicates a positive correlation with
higher “R” values, whereas blue indicates a negative correlation with lower “R” values; Figure S5:
Co-methylation pattern analysis for the DMR surrounding the TDRD9. The upper panel displays a
regional Manhattan plot of the DMR surrounding the TDRD9 gene. The y-axis represents -logyo(p-
value) for each CpG probe in the DMR, and the x-axis represents the genomic location of each CpG
site. In the middle panel, annotation tracks for gene, Broad ChromHMM, Regulation, and SNP are
presented. Within the Broad ChromHMM track, the brown track corresponds to repressed regions, as
defined in the coMET user guide (https://www.bioconductor.org/packages/devel /bioc/vignettes/
coMET /inst/doc/coMET.pdf; accessed on 30 November 2023). In the lower panel, the co-methylation
pattern of CpG probes within the DMR is depicted, displaying a heatmap of Spearman correlation
coefficients (R). In this heatmap, red indicates a positive correlation with higher “R” values, whereas
blue indicates a negative correlation with lower “R” values.
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