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Abstract: To investigate the cold response mechanism and low temperature regulation of flowering
in tulips, this study identified 32 MADS-box transcription factor family members in tulips based
on full-length transcriptome sequencing, named TgMADS1-TgMADS32. Phylogenetic analysis
revealed that these genes can be divided into two classes: type I and type II. Structural analysis
showed that TgMADS genes from different subfamilies have a similar distribution of conserved
motifs. Quantitative real-time PCR results demonstrated that some TgMADS genes (e.g., TgMADS3,
TgMADS15, TgMADS16, and TgMADS19) were significantly upregulated in buds and stems under
cold conditions, implying their potential involvement in the cold response of tulips. In summary, this
study systematically identified MADS family members in tulips and elucidated their evolutionary
relationships, gene structures, and cold-responsive expression patterns, laying the foundation for
further elucidating the roles of these transcription factors in flowering and the cold adaptability
of tulips.
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1. Introduction

Tulips require a period of low-temperature treatment for proper growth and flowering;
however, the underlying molecular mechanism is still elusive. MADS-box genes are likely
involved in the tulip’s response to cold treatment and the regulation of flowering [1,2]. The
MADS-box gene family, as a wide range of transcription factor coding genes, is involved
in the coding of transcription factors in almost all eukaryotes [3]. These transcription
factors play an important role in development control and signal transduction in eukary-
otes, especially in plants [4–6]. The MADS-box gene family is named from four subgene
families: the MCM1 (MiniChromosome Maintenance 1) gene in yeast, AG (Agamous) gene
in Arabidopsis thaliana, DEF (Deficiens) gene in Antirrhinum majus, and human SRF (Serum
Response Factor) gene [4,5]. They encode transcription factors with a common DNA binding
domain MADS-box and recognize similar target DNA sequences [4]. In the following study,
the MADS-box gene family is divided into two categories according to the presence of
additional domains: type I and type II. Type I MADS contains only the SRF domain, while
type II MADS contains a mediating domain (I-box) and a keratin helix domain (K-box)
in addition to the MADS domain [7]. Since the type II MADS-box gene has a MADS-box
domain at the N-terminus of the protein and an I-box and K-box at the C-terminus of the
protein, the type II MADS-box gene is also called the MIKC type. With further research,
according to the structural differences of the I-box domain, MIKC can be divided into
two subgroups: MIKCC and MIKC* [8].

In plants, MADS-box proteins contain a DNA binding domain (M), mediating domain
(I), keratin helix domain (K), and C-terminal domain (C), belonging to the MIKC type [3].
Members of the MADS-box gene family play an important role in many biological functions
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of plants. The transcription factors encoded by MADS-box genes control a variety of devel-
opmental processes from roots to flowers and fruits in flowering plants [9], such as biotic
and abiotic stress tolerance, the flowering process, seed development, and fruit ripening [10].
Up to now, genome-wide identification methods have been carried out in various plants, in-
cluding Citrullus lanatus [11], Malus pumila [12], Brassica oleracea [13], Triticum aestivum [14],
Zea mays [15], Gossypium [8], Chrysanthemum × morifolium [16], Cymbidium [17], etc. The
expression of related genes was also analyzed in Tulipa gesneriana [18–20], and the members
of the MADS-box gene family in different plants were identified, and their functions were
verified. The results of these studies have confirmed that the MADS-box gene family plays
an important role in the homologous selection of floral organs, flowering time, and fruit
ripening during plant growth and development [21,22].

In some flowering plants, mutations in MADS-box genes can lead to homologous
transformation between different floral organs, which proves that these genes play a role in
floral organ homology selection during development, and the genetic floral organ model
is derived based on this phenomenon. The genetic floral organ model was developed
from the ABC model proposed in 1991 [23] to a more accurate ABCDE model; that is, the
MIKCC family genome merger determines the identity of floral organs: sepals (A + E),
petals (A + B + E), stamens (B + C + E), carpels (C + E), and ovules (D + E) [24,25]. In
previous studies, 39 MIKCC genes were found in A. thaliana [26].

It is worth mentioning that compared with higher dicotyledonous plants, there are
many non-gramineous monocotyledonous plants, such as lilies and tulips. The floral
organs of these plants are composed of three outer tepals, three inner tepals, six stamens,
and three carpels. It is difficult to fully explain the morphology of this type of flower with
the classical ABC model. In order to reveal the reasons for the formation of this flower
morphology, researchers proposed a modified ABC model in 1993 [27], which was derived
based on the morphological characteristics of wild-type and mutant tulip flowers.

In addition to providing homologous and heterogeneous functions of plant flowers,
members of the MADS-box gene family also affect the gene network of the reproductive
development of flowering plants. Some MADS-box genes are flowering time genes, which
depend on internal or environmental factors such as plant age, day length, and coldness to
inhibit or promote flower transition [28,29].

Members of the MADS-box gene family are also involved in the development of seeds
and fruits after flower fertilization. Studies have shown that some genes encode proteins
required for the development of Arabidopsis fruit dehiscence, and there are also some
genes encoding proteins required for the normal pattern of cell division, growth, and
differentiation during the morphogenesis of long siliques [30].

In addition, studies have verified that in flowering plants, in addition to flowers and
fruits, other tissues and organs such as embryos, roots, or leaves [31] also observed a
large number of MADS-box gene family member expressions. Other studies have found
the existence of MADS-box genes in gymnosperms, ferns, and even mosses. The above
results indicate that the function of MADS-box gene family members is not limited to the
development of flowers or fruits [32–34].

In summary, the MADS gene family is widely involved in the growth and development
of various plants, and its importance is particularly reflected in the flowering process of
plants. An in-depth understanding of MADS genes is essential for exploring the regulation
of plant growth and development. However, as a very important flowering ornamental
crop in the world, the research on the MADS gene family in tulips is very insufficient. On
this basis, 32 TgMADS genes found in tulips were identified and divided into two major
types and 15 subfamilies according to their domains. In addition, the expression patterns of
all members under different treatments at room temperature and low temperature were also
analyzed in this study, aiming to provide a basis for breeding cold tolerance in tulips, the
molecular mechanism of low-temperature regulation of tulip flowering, and the functions
of MADS genes.
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2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The bulbs of tulip variety Dow Jones were preserved in our laboratory. The bulbs
were first pretreated at 5 ◦C for four weeks. After that, the bulbs were treated at a low
temperature: the temperature of the incubator was set to 5 ◦C, the treatment time points
were 0 d, 15 d, 30 d, and 60 d, respectively, and the bulbs and buds were collected. In
addition, the bulbs of different treatments were sown in nutrient soil with a photoperiod
of 16/8 h (day/night) and a temperature of 5 ◦C. The bulbs were cultured for two weeks
under conventional watering and fertilization conditions, and the stems of tulip plants
were collected. After sampling, the samples were immediately placed in liquid nitrogen for
quick freezing and then stored in a −80 ◦C refrigerator for subsequent research.

2.2. Identification and Sequence Analysis of TgMADS Gene Family Members

The reference sequence for the identification of the TgMADS gene family was de-
rived from the full-length transcriptome of tulips obtained by previous sequencing in
our laboratory. A total of 108 Arabidopsis MADS protein sequences were downloaded
from the Arabidopsis Information Resource (TAIR, http://www.arabidopsis.org, accessed
on 10 July 2023). According to the 108 AtMADS protein sequences, HMMER 3.0 soft-
ware was used to construct the MADS protein Hidden Markov Model (HMM), and the
potential TgMADS protein sequences were searched in all protein sequences of tulips
according to the constructed HMM file [35]. For the accuracy of the results, blastp soft-
ware (version: ncbi-blast-v2.10.1+) was used to compare the sequences of all proteins
of tulips with the obtained TgMADS family reference sequences. The e-value was set
to 10−5, and the sequences on the alignment were used as all potential TgMADS family
sequences [36]. Finally, all the potential sequences obtained by the above two methods
were used as candidate TgMADS family protein sequences, and the target sequences
were subjected to domain annotation using the software PfamScan [37,38] (version: v1.6)
and PfamA [39] (version: v33.1) databases. The sequence containing the PF00931 do-
main was used as the final TgMADS protein sequence. The subcellular localization
of tulip TgMADS family members was predicted using the softberry online tool (http:
//linux1.softberry.com/berry.phtml?topic=index&group=programs&subgroup=proloc, ac-
cessed on 11 July 2023). The TgMADS protein was predicted by DeepTMHMM software
(version 1.0.8) based on a deep learning model to determine whether it was a membrane
protein [40]. In order to predict whether there is a potential signal peptide cleavage site in
TgMADS protein and where it is located, this study used SignalP software (version v5.0b)
to predict the protein based on a variety of artificial neural network algorithms [41].

2.3. Phylogenetic and Multiple Alignment Analysis of TgMADS Proteins

Multiple-sequence alignment of the identified MADS protein family sequences of
T. gesneriana and A. thaliana was performed using mafft (v7.427) software [42], and then
an NJ tree was constructed using MEGA10 software. The parameters were set as follows:
the model was p-distance, the missing data method was Partial deletion, the cutoff was
50%, and the Bootstrap was set to 1000 [43]. The online tool iTOL v6 (https://itol.embl.de/,
accessed on 12 July 2023) was used to annotate the NJ tree. To further understand the
characteristics of TgMADS proteins, this study used Jalview software (version 2.11.2.0)to
perform multiple sequence alignment analyses of TgMADS proteins to determine the types
of different TgMADS proteins [44].

2.4. Distribution Analysis of TgMADS

In this study, the TgMADS gene of tulips was determined based on the unigene
file constructed from the full-length transcriptome data. According to the location of
TgMADS family genes in tulips, the distribution of TgMADS was mapped by MG2C
(http://mg2c.iask.in/mg2c_v2.1/, accessed on 10 July 2023) [45].

http://www.arabidopsis.org
http://linux1.softberry.com/berry.phtml?topic=index&group=programs&subgroup=proloc
http://linux1.softberry.com/berry.phtml?topic=index&group=programs&subgroup=proloc
https://itol.embl.de/
http://mg2c.iask.in/mg2c_v2.1/
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2.5. Sequence Similarity Analysis of TgMADS Genes

At present, there is no reference genome for tulips, and gene collinearity analysis
cannot be carried out. Therefore, blast comparison is carried out according to the sequence
similarity between genes to obtain the correlation between genes, which is used to explore
the evolutionary relationship between TgMADS. Comparison parameters: evalue: 10−10,
-qcov_hsp_per: 90, -max_hsps 1.

2.6. Ka/Ks Analysis of TgMADS Genes

Ka/Ks analysis is one of the most common analyses in bioinformatics, which has im-
portant applications in studying the evolution of nucleic acid molecules. In genetics, Ka/Ks
represents the ratio between the nonsynonymous substitution rate (Ka) and the synony-
mous substitution rate (Ks) of two protein-coding genes. This ratio can determine whether
there is selective pressure acting on this protein-coding gene. In this study, KaKs_Calculator
(version 2.0) software was used to analyze TgMADS family genes [46].

2.7. Gene Structure and Conserved Motif Analysis TgMADS Genes

By analyzing the distribution of introns/exons and understanding the structural
characteristics of the protein family genes, it can be used as a new source of evolutionary
information. The software GSDS v2.0 (http://gsds.gao-lab.org/, accessed on 12 July 2023)
is used to visualize the gene structure of the gene family members [47].

To better understand the similarity and diversity of conserved motifs of TgMADS
family proteins, this study used MEME software (version: v5.0.5) to analyze the conserved
motifs of the tulip TgMADS family [48]. The number of parameters for finding conserved
motifs was set to 15, and the remaining parameters refer to Mo’s study [49].

2.8. Expression Analysis of TgMADS Genes Based on RNA-Seq

To explore the cold induction of MADS genes in bulbs, we downloaded RNA-seq data
from the public database to reveal the expression of MADS genes. After mapping and
expression quantitative analysis, the expression information of 32 TgMADS members was
obtained, and the expression heatmap was drawn by R. The RNA-seq data can be obtained
from http://www.ncbi.nlm.nih.gov/bioproject/327809, accessed on 12 July 2023 [50].

2.9. Expression Analysis of TgMADS Genes Based on qRT-PCR

An RNA extraction kit (BioRun Biosciences Co., Ltd., Wuhan, China) was used to
extract total RNA from the materials preserved in 2.1 (each extraction used 0.1 g samples),
and cDNA was synthesized (100 ng RNA for each synthesis) using a reverse transcription
kit (Youcan Biosciences Co., Ltd., Shanghai, China). Nine TgMADS genes that showed
good cold response ability in the transcriptome were selected for qRT-PCR analysis, and
the Tgactin gene was used as the control for normalization. Each reaction contained 7 µL
SYBR qPCR Master Mix (Youcan Biosciences Co., Ltd., Shanghai, China), 1 µL cDNA,
0.5 µL F-primer, 0.5 µL R-primer, and ddH2O to 20 µL. The primers used in this study are
shown in Table S1, and primer 5 software was used to design the primers [51]. The relative
expression level was calculated by the 2−∆∆Ct method.

3. Results
3.1. Identification of TgMADS Gene Family Members

According to homologous sequence alignment and conserved domain analysis, a
total of 32 TgMADS members were identified in this study, named TgMADS1-TgMADS32
(Table 1). The length of 32 TgMADS proteins ranged from 100 aa (TgMADS32) to 336 aa
(TgMADS1). The isoelectric point and molecular weight of TgMADS protein were 6.06 (Tg-
MADS29) −11.16 (TgMADS32) and 11462.43Da (TgMADS32) to 37396.38Da (TgMADS1),
respectively. According to the distribution of the grand average (GRAVY) from −0.484
(TgMADS27) to −1.029 (TgMADS9), we know that all TgMADSs are hydrophilic proteins.

http://gsds.gao-lab.org/
http://www.ncbi.nlm.nih.gov/bioproject/327809
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Table 1. Physicochemical properties of TgMADS gene family members.

Gene Name Subcellular
Localization

Protein
Length (aa)

Molecular
Weight (Da)

Isoelectric
Point

Stability
Index

Liposolubility
Index GRAVY

TgMADS1 Intercellular
space 336 37,396.38 7.54 53.86 81.34 −0.625

TgMADS2 nucleus 110 12,828.82 9.35 50.10 77.91 −0.642
TgMADS3 nucleus 110 12,828.82 9.35 50.10 77.91 −0.642
TgMADS4 nucleus 110 12,828.82 9.35 50.10 77.91 −0.642
TgMADS5 nucleus 110 12,828.82 9.35 50.10 77.91 −0.642
TgMADS6 nucleus 247 27,919.65 9.16 52.28 78.70 −0.655
TgMADS7 nucleus 303 35,098.54 8.94 59.48 70.86 −0.889
TgMADS8 nucleus 266 30,840.78 9.15 56.99 73.38 −0.878
TgMADS9 nucleus 237 27,825.35 9.33 61.48 68.73 −1.029

TgMADS10 nucleus 258 29,553.34 8.95 57.47 73.80 −0.909
TgMADS11 nucleus 244 27,871.45 7.02 52.36 79.14 −0.72
TgMADS12 nucleus 246 28,678.39 9.06 55.32 75.37 −0.855
TgMADS13 nucleus 268 30,635.63 9.07 48.64 73.88 −0.799
TgMADS14 nucleus 222 25,059.44 6.43 59.46 88.74 −0.609
TgMADS15 nucleus 244 27,881.48 7.07 49.34 79.14 −0.721
TgMADS16 nucleus 264 30,754.68 9.16 56.43 73.94 −0.884
TgMADS17 nucleus 235 26,910.46 9.18 35.68 75.49 −0.784
TgMADS18 nucleus 262 30,382.42 8.48 69.94 79.27 −0.767
TgMADS19 nucleus 233 26,757.12 9.28 45.40 79.61 −0.713
TgMADS20 nucleus 251 28,962.96 9.14 47.27 75.78 −0.757
TgMADS21 nucleus 247 27,919.65 9.16 52.28 78.70 −0.655
TgMADS22 nucleus 251 28,627.34 7.74 50.81 76.93 −0.747
TgMADS23 nucleus 216 25,461.11 9.05 65.98 73.10 −0.965
TgMADS24 nucleus 233 26,880.42 8.69 42.52 76.14 −0.791
TgMADS25 nucleus 248 28,396.23 6.38 60.33 80.20 −0.698
TgMADS26 nucleus 237 27,159.91 8.93 47.53 80.25 −0.662
TgMADS27 nucleus 232 26,620.5 8.58 51.10 102.03 −0.484
TgMADS28 nucleus 246 28,341.24 9.08 46.61 77.32 −0.744
TgMADS29 nucleus 220 24,846.2 6.06 59.73 89.55 −0.592
TgMADS30 nucleus 209 24,012.38 6.20 75.65 78.42 −0.765
TgMADS31 nucleus 136 15,554.62 9.80 45.92 77.50 −0.857
TgMADS32 nucleus 100 11,462.43 11.16 65.23 74.10 −0.673

Subcellular localization analysis showed that 31 of the 32 TgMADS proteins were
located in the nucleus, while only one protein (TgMADS1) was located in the extracellu-
lar space.

In order to explore whether TgMADS gene family proteins have transmembrane
transport function, this study also used DeepTMHMM (version: 1.0.8), a software based on
a deep learning model, to predict transmembrane helices. It combines the hydrophobicity
of the transmembrane region, charge bias, helix length, and topological limitation of
membrane proteins and predicts the transmembrane region and inside and outside the
membrane as a whole to determine whether a protein is a membrane protein. The results
showed that the predicted probability of amino acids of all 32 TgMADS proteins was 100%,
indicating that the proteins encoded by the TgMADS gene family do not have the biological
function of participating in transmembrane transport.

In addition, this study also used SignalP (version v5.0b) software to predict the signal
peptide of the TgMADS gene family. The software can predict whether there are potential
signal peptide cleavage sites and their locations in a given amino acid sequence. According
to the results, the presence of signal peptides was not predicted in the entire TgMADS
gene family.
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3.2. Phylogenetic Analysis of the TgMADS Gene Family

In order to more systematically understand the evolution and phylogenetic relation-
ship of tulip MADS proteins, we introduced the Arabidopsis MADS protein sequence
and the identified TgMADS protein sequence to construct a phylogenetic tree. The re-
sults showed that there were two groups of MADS proteins in all members involved in
the construction, namely MADS protein type I (Figure 1A) and MADS protein type II
(Figure 1B). In the MADS type I protein, TgMADS2-TgMADS5 and some Arabidopsis
MADS proteins are divided into three subfamilies: Mα, Mβ, and Mγ. The Mα subfamily
contains 25 Arabidopsis MADS proteins and does not contain TgMADS proteins; Mβ con-
tains 21 Arabidopsis MADS proteins and does not contain TgMADS proteins; Mγ contains
15 Arabidopsis MADS proteins and 5 tulip TgMADS proteins. Four tulip TgMADS proteins
(TgMADS2-TgMADS5) in MADS protein type I are present in the Mγ subfamily.
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Figure 1. The protein sequence analysis of TgMADS proteins. (A) Phylogenetic analysis results of
TgMADS proteins, type I. The phylogenetic tree was constructed based on the identified TgMADS
proteins and the MADS proteins of A. thaliana. Figure 1A is a protein belonging to MADS gene
type I, in which three colors correspond to Mα, Mβ, and Mγ, respectively. (B) Phylogenetic analysis
results of TgMADS proteins, type II. The phylogenetic tree was constructed based on the identified
TgMADS protein and the A. thaliana MADS protein. Figure 1B is a protein belonging to the MADS
gene type II, of which 12 colors correspond to AG-like (C/D), FLC-like, SVP-like, TT16/PI, MIKC*,
SEP-like (E), TM3-like, AP1-like (A), AP3-like (B), AGL6-like, AGL12-like, and AGL17-like, a total of
12 subfamilies. (C) Multiple sequence alignment results of the TgMADS gene family. The identified
32 TgMADS proteins were divided into two categories: type I (SRF-like) and type II (MEF-like).
Different colors represent the consistency of amino acids.
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All the remaining TgMADS proteins and all the remaining Arabidopsis MADS pro-
teins were clustered into MADS protein type II by a clustering relationship. Among them,
AG-like (C/D) subfamily proteins have the function of regulating floral organ differen-
tiation and determining flowering [9]. FLC-like subfamily proteins have the function of
inhibiting flowering [52]. This subfamily contains eight Arabidopsis MADS proteins and
does not contain TgMADS proteins. The SVP-like subfamily is also an important flowering
suppressor gene [53], which contains two Arabidopsis MADS proteins and two TgMADS
proteins; tT16/PI subfamily proteins are involved in the accumulation of proanthocyani-
dins in the endodermis [54]. The subfamily contains two Arabidopsis MADS proteins
and one TgMADS protein. MIKC* subfamily proteins are involved in the regulation of
pollen maturation and germination [55]. The subfamily contains seven Arabidopsis MADS
proteins and does not contain TgMADS proteins; SEP-like (E) subfamily proteins play an
important role in pollen maturation and pollen tube formation [56]. This subfamily contains
four Arabidopsis MADS proteins and five TgMADS proteins. TM3-like subfamily proteins
are regulators of flower branching [9]. This subfamily contains six Arabidopsis MADS
proteins and two TgMADS proteins. AP1-like (A) subfamily proteins not only play a central
role in the regulatory network of plant floral induction but also determine the formation
of floral organs [57]. This subfamily contains four Arabidopsis MADS proteins and three
TgMADS proteins. AP3-like (B) subfamily proteins are involved in the development of
stamens [58]. This subfamily contains two Arabidopsis MADS proteins and three TgMADS
proteins. AGL6-like subfamily proteins are involved in regulating the development of floral
organs and floral meristems [9]. This subfamily contains two Arabidopsis MADS proteins
and four TgMADS proteins. AGL12-like subfamily proteins play an important role in root
development and flowering transition [9]. This subfamily contains one Arabidopsis MADS
protein and does not contain the TgMADS protein. AGL17-like subfamily proteins play an
important role in plant photoperiod [9]. This subfamily contains four Arabidopsis MADS
proteins and one TgMADS protein.

In order to further determine the similarity between the TgMADS domains of tulips,
32 TgMADS domain sequences were compared in this study (Figure 1C). The results
showed that there were 4 type I (SRF-like) TgMADS genes and 28 type II (MEF-like)
TgMADS proteins, and they were highly conserved, with type I (SRF-like) being more
conserved in the tulips.

3.3. Localization and Collinearity Analysis of TgMADS Gene

In this study, 32 unigenes were found to be MADS genes using full-length transcrip-
tome assembly technology. They were unigene010469, unigene018255, unigene018385, uni-
gene020915, unigene024549, unigene025760, unigene026652, unigene026652, unigene026652,
unigene031745, unigene029457, unigene029230, unigene030827, unigene030439, unigene-
030689, unigene030689, unigene032208, unigene032456, unigene031167, unigene031167, uni-
gene031436, unigene031436, unigene031338, unigene031338, unigene031338, unigene032552,
unigene033254, unigene032588, unigene035257, unigene035257, and unigene046506. The
specific distribution is shown in Figure 2.

In order to explore the evolutionary relationship between TgMADS genes in tulips, this
study obtained the correlation between genes by blast comparison of the sequence similarity
between all TgMADS genes. The results are shown in Figure 3. Through analysis, it was
found that there were 21 pairs of fragment repeats among the 32 TgMADS genes, among
which TgMADS1, TgMADS7, and TgMADS32 genes did not have any repeat relationship
with TgMADS genes. Since each of the identified 32 TgMADS genes is distributed on
the corresponding different unigenes, TgMADS genes do not have any gene pairs with
tandem repeats.

In genetics, Ka/Ks analysis plays an important role in studying the evolution of nucleic
acid molecules. The results showed that there were five pairs of genes with Ka/Ks values
greater than or equal to 1: TgMADS12-TgMADS8, TgMADS16-TgMADS8, TgMADS26-
TgMADS28, TgMADS12-TgMADS16, and TgMADS12-TgMADS7. Among them, four pairs
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of genes (TgMADS12-TgMADS8, TgMADS16-TgMADS8, TgMADS26-TgMADS28, and
TgMADS12-TgMADS16) had Ka/Ks values greater than 1, which were 50, 50, 50, and
47.3832, respectively. Except for the above five pairs of genes, the Ka/Ks values of other
gene pairs were less than 1 (Table S2).
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3.4. Analysis of TgMADS Gene Structure and Conserved Motifs

Motif 1 exists in all TgMADS proteins, while motif 3 is distributed on all TgMADS
proteins except TgMADS1 and TgMADS32. Combined with the results of gene collinearity
analysis, this may be the reason why TgMADS1 and TgMADS32 do not have any genes
related to replication in tulips. In addition to the above-conserved motifs, there are also
some specific conserved motifs, some of which exist in a single TgMADS protein, and the
other part also shows conservation among some TgMADS proteins. For example, motif 8
and motif 10 are distributed on TgMADS2-TgMADS5, and these four proteins are members
of the type I Mγ subfamily of MADS genes, while motif 12 only exists on TgMADS14 and
TgMADS29. In phylogenetic analysis, TgMADS14 and TgMADS29 belong to the type II
SVP-like subfamily of MADS genes. These phenomena all point to the fact that TgMADS
protein members of the same subfamily may have similar biological functions due to their
similar motif distribution (Figure 4).
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Gene structure is an important factor determining the relationship between genome
evolution and functional differentiation of multigene family members. The analysis results
(Figure 5) showed that among the 32 TgMADS genes, only the TgMADS31 gene did not
contain non-coding regions, and approximately 18.8% (6/32) of TgMADS genes: TgMADS1,
TgMADS2, TgMADS3, TgMADS4, TgMADS5, and TgMADS10 contained 5′ and 3′ non-
coding regions, and the remaining 78.1% (25/32) of TgMADS genes only contained 3′

non-coding regions.

3.5. TgMADS Gene Expression Pattern Analysis

In the expression pattern analysis (Figure 6), the samples rich in meristem from seven
individual tulip bulbs were mixed together to form a biological repeat, and the selected
TgMADS family was treated at room temperature (19 ◦C and low temperature (8–9 ◦C). The
expression genes were subjected to hierarchical clustering analysis, and the genes with the
same or similar expression behavior were clustered. In this experiment, two sets of biologi-
cal repeats, DmI and DmII, were performed, in which the sample w tail was labeled as the
room temperature treatment and the c tail was labeled as the low-temperature treatment.
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As shown in Figure 6, the downregulated genes at low-temperature treatment (8–9 ◦C)
are TgMADS14, TgMADS29, TgMADS1, TgMADS5, TgMADS2, TgMADS7, TgMADS10,
TgMADS20, and TgMADS25.
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TgMADS27 and TgMADS30 showed an overall upregulation trend during most of the
low-temperature treatment. In addition to the above genes, the remaining TgMADS family
members did not show regular expression changes with temperature changes. Based on this
result, it is impossible to infer the changes in other gene functions affected by temperature.

3.6. qRT-PCR Analysis of TgMADS Genes under Cold Treatment

The transcriptome data reveal the expression pattern of TgMADS genes in response to
low temperatures in bulbs. In this study, nine TgMADS genes with good responses to low
temperature were selected, which were TgMADS3, TgMADS4, TgMADS15, TgMADS16,
TgMADS19, TgMADS22, TgMADS26, TgMADS27, and TgMADS30. These genes were
tested by qRT-PCR in the bulb, bud, and stem tissues to explore their expression patterns.
As shown in Figure 7, the expression levels of TgMADS3 and TgMADS4 in buds were
significantly higher than those in bulbs and stems, and the expression of both in buds
always showed an upward trend with the prolongation of cold treatment time. TgMADS15
and TgMADS16 also showed similar expression patterns, both of which had strong cold
response ability in buds and stems (upregulated by more than 10 times). TgMADS19 has
good cold response ability in bulbs, buds, and stems. The upregulation of TgMADS22 and
TgMADS27 in bulbs, buds, and stems was less than four times in 0 to 60 days, indicating
that the response of the two genes to cold was weak. The response of TgMADS26 to cold
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treatment showed a trend of increasing first and then decreasing, no matter in which tissue.
The expression of TgMADS30 in flowers was not significantly upregulated. All TgMADS
genes showed different response patterns to cold treatment, which also proved that the
response of TgMADS genes to cold treatment was tissue-specific.

Genes 2023, 14, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. Transcriptome expression pattern analysis of 32 TgMADS genes in tulip bulb meristems 
under normal temperature (19 °C) and low-temperature (8–9 °C) treatments. The abscissa represents 
the name of the sample under normal temperature (19 °C) and low temperature (8–9 °C) treatments, 
where DmI is the first group of biological repetitions, DmII is the second group of biological repeti-
tions, the sample w tail is normal temperature treatment, and the c tail is low-temperature treatment; 
the ordinate represents the identified TgMADS family genes and the clustering results of the genes; 
color represents the expression level of the gene in the sample, and red to blue represents the ex-
pression level of the gene from high to low. 

3.6. qRT-PCR Analysis of TgMADS Genes under Cold Treatment 
The transcriptome data reveal the expression pattern of TgMADS genes in response 

to low temperatures in bulbs. In this study, nine TgMADS genes with good responses to 
low temperature were selected, which were TgMADS3, TgMADS4, TgMADS15, 
TgMADS16, TgMADS19, TgMADS22, TgMADS26, TgMADS27, and TgMADS30. These 
genes were tested by qRT-PCR in the bulb, bud, and stem tissues to explore their expres-
sion patterns. As shown in Figure 7, the expression levels of TgMADS3 and TgMADS4 in 
buds were significantly higher than those in bulbs and stems, and the expression of both 
in buds always showed an upward trend with the prolongation of cold treatment time. 

Figure 6. Transcriptome expression pattern analysis of 32 TgMADS genes in tulip bulb meristems
under normal temperature (19 ◦C) and low-temperature (8–9 ◦C) treatments. The abscissa represents
the name of the sample under normal temperature (19 ◦C) and low temperature (8–9 ◦C) treat-
ments, where DmI is the first group of biological repetitions, DmII is the second group of biological
repetitions, the sample w tail is normal temperature treatment, and the c tail is low-temperature
treatment; the ordinate represents the identified TgMADS family genes and the clustering results of
the genes; color represents the expression level of the gene in the sample, and red to blue represents
the expression level of the gene from high to low.
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4. Discussion

The MADS gene family encodes transcription factors that are widely involved in
regulating plant growth and development, including flower, seed, and root development,
as well as morphological diversity. Therefore, understanding the structure and function
of MADS genes is crucial for understanding how plant growth and development are reg-
ulated. Up to now, the MADS gene family has been studied in many plants, including
watermelon [11], apple [12], cabbage [13], wheat [14], maize [15], cotton [8], chrysanthe-
mum [9], orchid [17], etc. However, the related research on the MADS gene family found in
tulips is not sufficient. In this study, the MADS gene of tulips was identified in the whole
genome, and its gene structure and genetic evolution were discussed. The expression
difference in the MADS gene in the tulip bulb meristem after room temperature (19 ◦C)
and low-temperature (8–9 ◦C) treatment was discussed. This study provides an effective
argument for exploring the above-mentioned molecular processes and promoting tulip
resistance breeding.

In this study, a total of 32 MADS gene family members were identified in tulips.
According to subcellular localization analysis, it was found that all TgMADS proteins were
localized to the nucleus except TgMADS1, which indicated that TgMADS was specifically
accumulated in the nucleus. This phenomenon is not only similar to other plant MADS-box
proteins but also consistent with the role of MADS-box proteins as transcription factors.
Some transcription factors containing MADS-box have been shown to be localized in
the nucleus [59–62]. It is worth noting that [63] studied the subcellular localization of
NnMADS proteins in lotus flowers. It was found that except for NnMADS1 located on
the cell membrane, other NnMADS proteins were located in the nucleus, which was very
similar to the subcellular localization results of TgMADS proteins found in this study.

In addition, this study also predicted the transmembrane transport function and signal
peptide of the TgMADS gene family. The results showed that no protein members with
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transmembrane transport function and possible signal peptide molecules were found. Due
to the existence of no reference genome, this study identified the unigene and location of
these 32 MADS genes by full-length transcriptome splicing.

Through the clustering of MADS proteins in tulips and A. thaliana MADS proteins,
they can be divided into two types (MADS gene type I and MADS gene type II) and
15 subfamilies. Among them, MADS gene type I contains three subfamilies (Mα, Mβ,
and Mγ). MADS gene type II includes 12 subfamilies (AG-like (C/D), FLC-like, SVP-like,
TT16/PI, MIKC*, SEP-like €, TM3-like, AP1-like (A), AP3-like (B), AGL6-like, AGL12-like,
and AGL17-like). According to previous studies, these 12 subfamilies play an important
regulatory role in the growth and development of multiple plants. For example, AG-
like (C/D) subfamily proteins have the function of regulating floral organ differentiation
and determining flowering [7], FLC-like subfamily and SVP-like subfamily proteins have
the function of inhibiting flowering [64,65], TT16/PI subfamily proteins are involved in
the accumulation of proanthocyanidins in the endodermis [66], MIKC* subfamily and
SEP-like (E) subfamily proteins are involved in the regulation of pollen maturation and
germination and pollen tube formation, TM3-like subfamily proteins are regulators of
flower branching [7], AP1-like (A) subfamily proteins not only play a central role in the
regulatory network of plant flowering induction, but also determine the formation of floral
organs [57], and AP3-like (B) subfamily proteins are involved in stamen development [7].
The MADS gene type I Mα, Mβ subfamily, and MADS gene type II AGL12-like, MIKC*,
and FLC-like subfamily gene members are missing in tulips. Gene structure analysis
showed that there were significant differences in the structure and sequence length of
TgMADS genes in different subfamilies. Only 18.8% (6/32) of the genes had 5′ non-coding
regions, and the remaining gene members only had 3′ non-coding regions. The observed
discrepancies may arise from the transcriptomic, rather than the genomic, basis of the
present study, which could result in an incomplete representation of UTR in the assembled
unigene sequences. In addition, the study found that TgMADS2, TgMADS3, TgMADS4,
and TgMADS5 genes have very similar structures. These four genes are in the same
subfamily and are highly collinear in both phylogenetic analysis and collinearity analysis.
This indicates that the members with high homology have similar non-coding region and
coding region distribution structures, and the gene structure of Mγ subfamily members is
more conservative than that of other subfamily members.

Through the analysis of conserved motifs, it was found that all TgMADS proteins have
motif 1; motif 2 is present in all MADS gene type II (except TgMADS31 and TgMADS32)
member proteins. Based on this result, motif 2 is a highly conserved K-box domain, which
was previously confirmed in the conserved motif analysis of watermelon and melon MADS
gene family. In addition to TgMADS1 and TgMADS32, there is a motif 3 distributed on all
the remaining TgMADS proteins. Combined with the results of gene collinearity analysis,
this may be the reason why TgMADS1 and TgMADS32 do not have any replication genes
in tulips. The domain of motif 8 and motif 10 was found only in the four member proteins
of MADS gene type I, which was very conservative in this group. The results indicated that
motif 8 and motif 10 were special conserved motifs belonging to the Mγ subfamily. The
motif structure of each subfamily is relatively similar, indicating that the members of each
subfamily may have a similar function.

Studies have shown that the evolutionary process of genes and paragenes has an
important relationship with the function of gene families [64]. In this study, 32 TgMADS
genes in the whole genome of tulips were determined. The identification results based on
fragment repeats and tandem repeats showed that there were 21 pairs of fragment repeats
among the 32 TgMADS genes found, among which TgMADS1, TgMADS7, and TgMADS32
genes did not have any TgMADS genes with repetitive relationships. Combined with the
phylogenetic clustering results of TgMADS proteins previously investigated, except for
the TgMADS20 and TgMADS27 fragment repeat gene pairs that do not belong to the same
subfamily of phylogenetic analysis results (TgMADS20 belongs to the MADS gene type II
AGL6-like subfamily, TgMADS27 belongs to the MADS gene type II AGL17-like subfamily),
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all the remaining fragment repeat gene pairs are in the same phylogenetic analysis results
subfamily. The results of these two analyses provide strong and clear evidence for exploring
the evolutionary relationship of different TgMADS genes. Since all TgMADS genes exist on
different genes, there is no tandem repeat relationship in tulip MADS genes.

In the Ka/Ks analysis, five pairs of genes (TgMADS12-TgMADS8, TgMADS16-TgMADS8,
TgMADS26-TgMADS28, TgMADS12-TgMADS16, and TgMADS12-TgMADS7) had Ka/Ks
values greater than 1. Among them, four pairs of genes (TgMADS12-TgMADS8, TgMADS16-
TgMADS8, TgMADS26-TgMADS28, and TgMADS12-TgMADS16) had Ka/Ks values far
greater than 1, 50, 50, 50, and 47.3832, respectively. The above results indicate that these
five pairs of genes have positive selection effects in the evolutionary process, and the
first four pairs of genes have strong positive selection effects. These four pairs of genes
are genes that have rapidly evolved recently [65], which are of great significance for the
evolution of species. Except for the above five pairs of genes, other gene pairs were affected
by purification selection during evolution.

In this study, the samples rich in meristem from seven individual tulip bulbs were
mixed together to form a biological replicate. After preparing two sets of biological replicate
materials, they were treated at room temperature (19 ◦C) and low temperatures (8–9 ◦C),
respectively, and the selected TgMADS family expression genes were subjected to hier-
archical clustering analysis. Among the downregulated genes (TgMADS14, TgMADS29,
TgMADS1, TgMADS5, TgMADS2, TgMADS7, TgMADS10, TgMADS20, and TgMADS25)
at low-temperature treatment (8–9 ◦C), TgMADS5 and TgMADS2 belong to the type I Mγ

subfamily of MADS genes. TgMADS7 is the only TgMADS member belonging to the MADS
gene type II TT16/PI. TgMADS14 and TgMADS29 belong to the type II SVP-like subfamily
of MADS genes, which are important flowering inhibitory genes. Based on this result,
the low-temperature treatment may weaken the expression of flowering inhibitory genes,
thereby promoting the flowering of tulips. TgMADS10 and TgMADS25 belong to the AP1-
like (A) subfamily of MADS gene type II. This result indicated that low temperatures will
affect the flowering induction of tulips and inhibit the formation of floral organs. Among
the upregulated genes (TgMADS27 and TgMADS30) under low-temperature treatment
(8–9 ◦C), TgMADS30 belongs to the MADS gene type II TM3-like subfamily. Based on this
result, the relationship between flower branching and temperature changes can be further
studied. It is worth noting that TgMADS27 has a collinear relationship with TgMADS20
downregulated at low-temperature treatment, but the expression of the two affected by tem-
perature is completely opposite, and the reason needs to be further explored. TgMADS27 is
the only TgMADS member belonging to the type II AGL17-like subfamily of the MADS
gene. The low temperature may affect the photoperiod of tulips.

A previous study identified 167 MADS gene members in rapeseed and analyzed their
expression under low-temperature stress [66]. They belong to the TM3-like subfamily
(five members), FLC-like (three members), AGL17-like subfamily (one member), and Mα

subfamily (two members), respectively. Combined with the results of this study and this
result, it was found that the genes responding to low-temperature stress mainly belong to
MADS gene type II, and a small amount belongs to MADS gene type I. In addition, the
TM3-like subfamily and AGL17-like subfamily are subfamilies that respond to cold stress
in both crops. The above two subfamilies are highly conserved during long-term evolution.

TgMADS3 and TgMADS4 genes showed a continuous upward trend in bud tissues
under low-temperature treatment, indicating that they may be involved in the development
of flower tissues under low-temperature conditions. These two genes are worthy of further
functional verification to explore their specific roles in the process of flowering. TgMADS15
and TgMADS16 were highly sensitive to low-temperature treatment in bud and stem
tissues, and their expression levels were significantly upregulated by more than 10 times.
It indicates that these two genes may be important low-temperature response factors
in tulips and participate in the adaptation of tulips to low-temperature environments.
The next step is to study the effects of overexpression or deletion of these two genes
on the low-temperature adaptability and flower development of tulips. The TgMADS19
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gene showed a good response to low-temperature treatment in the three tissues of tulips,
indicating that it may be a systemic low-temperature response factor and participate in
regulating the systematic adaptation of tulips to low temperatures. It is worth noting
whether TgMADS19 also affects the flowering period of tulips. The response of TgMADS22
and TgMADS27 to low temperature was weak, indicating that they may not be the key
genes in the process of low-temperature adaptation of tulips. However, some of its specific
roles in low-temperature adaptation cannot be completely ruled out. The low-temperature
response patterns of TgMADS26 and TgMADS30 are special, and further research is needed
to explore their complex expression regulation mechanisms.

In summary, this study revealed that certain MADS-box genes in tulips, including Tg-
MADS15/16 and TgMADS19, are differentially expressed under low-temperature conditions
and may play important roles in the vernalization response pathway. These results advance
our understanding of the molecular mechanisms regulating cold-induced flowering in
geophytes. Further functional characterization of the identified MADS-box candidates
could elucidate their precise roles in transducing vernalization cues and inform molecular
breeding efforts to improve traits such as chilling tolerance and flowering time in tulips.
This work lays a foundation for continued investigation into the genes and pathways
governing vernalization, a pivotal yet poorly characterized process in geophyte flowering
and productivity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes14101974/s1, Table S1: TgMADS qRT-PCR primers; Table S2:
KaKs Stat of TgMADS.
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