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Abstract: The elevation of Synthetic Biology from single cells to multicellular simulations would be
a significant scale-up. The spatiotemporal behavior of cellular populations has the potential to be
prototyped in silico for computer assisted design through ergonomic interfaces. Such a platform would
have great practical potential across medicine, industry, research, education and accessible archiving in
bioinformatics. Existing Synthetic Biology CAD systems are considered limited regarding population
level behavior, and this work explored the in silico challenges posed from biological and computational
perspectives. Retaining the connection to Synthetic Biology CAD, an extension of the Infobiotics Work-
bench Suite was considered, with potential for the integration of genetic regulatory models and/or
chemical reaction networks through Next Generation Stochastic Simulator (NGSS) Gillespie algorithms.
These were executed using SBML models generated by in-house SBML-Constructor over numerous
topologies and benchmarked in association with multicellular simulation layers. Regarding multicel-
lularity, two ground-up multicellular solutions were developed, including the use of Unreal Engine 4
contrasted with CPU multithreading and Blender visualization, resulting in a comparison of real-time
versus batch-processed simulations. In conclusion, high-performance computing and client–server
architectures could be considered for future works, along with the inclusion of numerous biologically
and physically informed features, whilst still pursuing ergonomic solutions.

Keywords: synthetic biology; systems biology; CAD; multicellular simulation; stochastic Gillespie;
unreal engine; chemical reaction networks; automation; biophysics; SBML

1. Introduction

The objective of Synthetic Biology has been described as the utilization of biology
technologically [1], especially from the DNA level, for essentially unlimited possible out-
comes. The challenge explored here is in elevating CAD (computer assisted design) to
the multicellular level. Data is available within various repositories upon which models
and simulations can be constructed. In fact, bioregulatory models acquired from reposito-
ries can be harnessed and applied dynamically to spatiotemporal simulations [2]. Thus,
computers are poised for the computer assisted design of blueprints, upon which in silico
proofing can be performed, with potential parameter optimization [3] and finally laboratory
application and/or verification [4] from ‘in silico first’ efforts.

The integration of the NGSS (Next Generation Stochastic Simulator) [5] into two
unique multicellular simulation layers was pursued, with subsequent benchmarking of
performances with and without this subcellular processing layer. In this way the scalability,
tractability and feature differences could be assessed, commencing at the personal com-
puting level. With NGSS integrated into the Infobiotics Workbench (IBW) platform [6], the
present work pursued the extension of this Synthetic Biology CAD system to the multicel-
lular context through the mutual SBML [7] model exchange format. Multicellularity was
found to be absent or limited in such suites [1,6,8], especially with regards to compelling
physical, spatiotemporal 3D solutions. Coupled with a phenomenological assessment of
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cellular behavior and the respective microenvironment (Section 1.3), the work sets the
foundation for promising developments towards increasingly realistic, instructive and
useful multicellular simulations with diverse, emergent spatiotemporal potential. Such
elucidation coordinates with the phenomenological approach that was encouraged in the
literature [9].

Unreal Engine 4 (UE4) as a real-time platform (including physics) for multicellular
simulation and CAD design was assessed as contrasted to a rules-based batch-processed
dynamic mesh generation approach. The distinction between real-time and batch processed
performances in multicellular simulation are not clear from the literature and is one of
the critical design aspects to consider when developing a multicellular simulator (see
Section 1.4). The work would demonstrate the call for batch processing over real time
solutions, as well as performance profiles of parallel NGSS processing that highlighted
the need for future high-performance computing (HPC) implementations for subcellular
models (see Section 3.3) in the pursuit of expanding IBW.

The features of multicellular simulation as well as the data exchange technologies
discussed in this section were considered for the construction of the multicellular layers
presented in the methods section (Section 2) as well as for the subcellular bio-chemical
processing layer used in association with IBW’s stochastic simulator (NGSS).

Therefore, this work pursued the extension of Synthetic Biology CAD towards multi-
cellularity, comparing different methodologies and approaches, including the use of UE4
for modern graphics and design, novel use of NGSS, furthermore reviewing computa-
tional, physical and biological features and integrating them for user manipulation via
a “Cell Editor”, whilst also ensuring 3D capabilities, ease-of-use, ergonomic GUIs and
native Windows accessibility unlike other agent-based platforms [10,11]. Additionally, such
platforms tended to emphasize specific physical dynamics, whilst this work emphasized
SBML biochemical model integration, phenotypic modulation and benchmarking of chem-
ical reaction networks (CRNs) in association with the originally designed multicellular
simulation layers, also with automated CRN generation of varying topologies. Client–
server architecture would also present as a solution to a variety of challenges, including
ergonomics and performance, as explored in parts of this work. Also discussed are other
intricacies, such as design features, that should prove useful to developers.

This research article for Genes is an expansion of a selected conference paper [12].

1.1. Bioregulatory/Metabolic Simulations and Exchange Standards

SBML is an exchange format designed to exchange modeled data within Systems
Biology and between computational modeling and metabolic simulation tools [7]. There
are a number of simulators available for the chemical level that can solve various biological
computations, such as biochemical reactions or state transitions (e.g., transport). These
simulators tend to be designed for solving SBML models, which can capture the mathe-
matics of biochemical reactions and regulatory models, and such simulators have been
used to compute subcellular models within multiscale, multicellular simulations [13]. They
can utilize various biochemical simulation modalities [14], including ordinary differential
equations (ODEs), stochastic algorithms and flux balance analysis, and may even possess
parameter estimation capabilities. Whilst stochastic approaches are computationally expen-
sive, they are considered more principled than ODEs, and the justification for their use has
been given [15] by the argument that stochastic models can capture the noise of biochemical
systems, whilst also effectively fulfilling the modelling of genetic switches. It was argued
that deterministic ordinary differential equations are incapable of fulfilling these objectives
effectively. Hybrid approaches have also been pursued [14], where low particle numbers
suited stochastic simulations whilst faster reactions containing more reactants could be
solved deterministically. Boolean models provide a convenient alternative solution by
avoiding the need for kinetics data [16].
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1.2. Gillespie Stochastic Simulation Algorithms and Performance Prediction via SSAPredict

NGSS [15] possesses one approximate and 8 exact Gillespie stochastic algorithms [6]
and was notably incorporated into the Infobiotics Workshop Synthetic Biology suite.
Stochastic Simulation Algorithms (SSAs) behave equivalently to Chemical Master Equa-
tions; a set of probabilistic differential equations. NGSS can operate on a single logical core
(i.e., serially) or on multiple CPU logical cores, and outputs average concentrations over
one or more parallel runs. The web-based SSAPredict tool [5] can purportedly predict the
fastest SSA to use for a given model via topological network property analysis. As will be
seen, it is not always correct. According to Sanassy et al. (2015) [5], despite being one of
the top 4 algorithms out of the 9, Tau Leaping still performed worse than other algorithms
on many occasions. However, Tau Leaping often far outperforms other algorithms for
economy of time (see Section 3) and reportedly has better performance at higher reaction
and species graph densities. Thus, SSAPredict should only be treated as a guideline for the
best algorithm, especially given its incorrect recommendations as seen in Section 3.

1.3. Biological Multicellular Characterization In Silico and Otherwise

With regards to the mechanisms underlying multicellular simulation, it is apparent that
small cellular phenotypic changes can have significant biological implications [2]. The outcome
of understanding the genetic and phenotypic properties of cells is the ability to mechanically
predict their emergent consequences. Cellular and subcellular phenotypic phenomena can be
derived from a variety of multicellular and biological literature sources [2,16–24] and operate
in conjunction with extracellular characteristics [10,16,17,19,25,26] to produce emergent conse-
quences such as cell sorting [9,26], morphogenesis [9], patterning [26], fitness [27] and many
more. As a reassurance to modelers, it was observed that the emergent phenomena list was
far more extensive than the fundamental cellular and extracellular phenomena from which
they emerged, although the permutations, including spatial organizations, are innumerable.

Cellular and subcellular phenomena may include metabolic and gene regulatory net-
works, cellular morphology [2] and viscoelasticity [17], receptors [18], adhesion molecules [19],
cellular polarity [20], membrane evagination/protrusions/projections [16], membrane invagi-
nations, phagocytosis [16], endocytosis [21], exocytosis, secretions [19,22] fluorescence [23],
motility [19] and contraction [24].

In addition to the cellular phenotype, extracellular considerations must be factored
in, whether or not they arise from the phenotype of local cells. These include diffusion
and degradation of chemical concentrations, the extracellular matrix [17] (synthetic [16] or
otherwise), extracellular polymeric substances [10], contact signals, obstacles and surfaces,
hydrodynamics [10,25], gravity [19], pH dynamics and thermodynamics [10], extracellular
reactions [26] (e.g., digestive). These phenomena can have relevance to disease states, just
as an example the inflow and outflow of aqueous humor in the development of acute
closed angle glaucoma, which influences histological pressure (specifically intraocular
pressure) [28].

The combined consequence of cell level and extracellular phenomena are emergent
consequences such as cell sorting [9,26], phenotype switching and determination [27], necro-
sis [11], cellular decay [10] and death [9], differentiation [9], undifferentiation [24], carcino-
genesis [29], morphogenesis [9], patterning [26], fitness [27], symbiosis and synergism [30],
competition [25], cross-feeding [31], ecosystems, migration [16,23] and chemotaxis [31], pop-
ulation level viscoelastic effects and deformations [17], metastasis [16], population growth
and regulation of growth [20], apoptosis [16,22], cellular boundaries [32] and edge detec-
tion [23], population heterogeneity [33], attachment [25], detachment and reattachment of
agents [10,27], signal sinks [34]. degradation of extracellular materials, including the extracellu-
lar matrix [11], immune responses, vascular behavior (e.g., anastomosis [26], angiogenesis [30],
extravasation [35]), electrophysiology [4], cell sloughing [29] including of cancer cells, tor-
tuosity [2], intelligence and synapses [36], tissue/exterior interfaces [2], ligand mediated
interactions, drug delivery [35], photoreception [34] and more.
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1.4. Computational Considerations

High-performance computing and extensive parallelization is not uncommon with
multicellular simulation [10,11,26]. Other computational enhancements include the cluster-
ing of similar cells phenotypically [27], referred to as ‘super-individuals’ [10], perhaps based
on the assumed similarity of the local biochemical microenvironment [11,31], or into nearest
neighbor lists by proximity [10], use of state outputs with subsequent external visualiza-
tion [10,11] following “batch processing” [22], as opposed to real-time approaches [19,23],
GPU and CPU parallelization [11,22,36] with as few as one cell per CPU, random update
ordering [27] to remove bias, Voronoi tessellations to abstract spatial distributions [29],
graphical merging of objects [30], client–server architecture [22] and the use of small scale
representations of a functionally identical larger system [31]. Domain-based computing is
an essential hallmark of multicellular simulation tractability and computation, allowing for
parallelization, as well as structural and functional discretization. Also, with the need to
consider multiscale phenomena, multiple timesteps are often used, referred to as a “pseudo
steady-state approximation”, because temporal resolutions may be different enough that
certain processes are “frozen” during those smaller time steps [10,37].

The initialization of spatial configurations, or what might be considered ‘bioprinting’
in silico, can allow for proportionally distributed heterogenous populations, for example
in the cortical layers of neurological tissue simulations [36], thereby bypassing stages of
developmental emergence. Initial simulated arrangements of cells [19] as well as model
generation [38–40] have also been attempted using micrographs. Multicellular states,
emergent or otherwise, could be saved and experimented on in silico [2] and manipulated
by playback controls [22].

1.5. Pre-Existing Multicellular Simulation Methodologies

An on-lattice [9] approach refers to a spatially discretized space, where only the dis-
cretized spaces of fixed resolution can be occupied. Off-lattice refers [11] to less defined
increments of space, for example 3D localization at floating point precision, often using an
agent/individual based approach. That said, hybrid methods are common, for example
diffusion is often represented through voxel discretization [10,19,41] in otherwise agent-based
solutions, providing for fine and even spatial control. Some solutions are entirely on-lattice [9],
notably the Cellular Potts method, which was described as an Ising lattice [42], utilizing
‘index-copy’ occurrences via Monte-Carlo Metropolis dynamics method with Boltzmann
acceptance [9]. Lattice approaches tend to be more morphologically manipulable due to total
discretization, but with inevitable computational costs. Cellular Potts (aka. Glazier-Graner-
Hogeweg) multicellular simulators include, perhaps most convincingly, CompuCell3D [9].
Vertex approaches can take on a nodal form in the case of the Finite Element Method, with the
discretization of a body into nodes on a mesh to solve complex problems utilizing degrees
of freedom. An example using a “subcellular element model” with nodal meshes was the
multicellular EmbryoMaker [24] solution, which alluded to an apparently computationally
expensive yet high resolution solution with significant morphological flexibility. A hybrid
Finite-Element Cellular Potts approach is in VirtualLeaf [43]. Agent-based multicellular
simulators, almost always hybridized with a domain-based discretized layer or possibly
other modalities, are apparently the most abundant, e.g., Gro [23], BSim [18], Simbiotics [19],
NUFEB [10], CellModeller [34], iDynomics [27], Biocellion [26], PhysiCell [11], EPISIM [2],
SimuLife [30], Cell Studio [22] and MecaGen [42]. Some, such as Chaste [4], offered hybrid
solutions, such as both on and off lattice modalities. Smoldyn 2.1 [44] spatial stochastic
simulator possessed reaction-diffusion-compartmentalization capabilities.

2. Materials and Methods

The overall methodology can be seen in Figure 1. The benchmarking of two novel
3D multicellular simulators with and without NGSS integration on a high-end personal
computing system will be described to demonstrate computational limits, reveal enhance-
ments and demonstrate the scalabilities of different approaches. A specific NGSS version
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was tailored for Windows and its integration with multicellular layers was pursued to
bridge the gap between multicellular simulation and Synthetic Biology CAD design. This
methodology would provide insights into CAD considerations regarding simulation archi-
tecture, ergonomics, and demonstrated principled in silico population level emergence from
the algorithms.
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Figure 1. A novel workflow was developed involving utilities, backend components/engines, as
well as two multicellular spatiotemporal methodologies featuring different technical approaches.
Modularity could be considered across the workflow and/or at the algorithmic level.

SBML-Constructor was a utility developed to automatically generate simple SBML
format biological reaction pathways of differing homogeneity, lengths and topologies
for benchmarking with the NGSS stochastic simulator coupled to a multicellular simula-
tion layer. It was developed using SBML documentation as formatting guidance [45] to
overcome interoperability issues [6].

NGSS-Invoker was a simple utility program developed to execute and benchmark an
adapted Windows version of NGSS multiple times and hence fully saturate the CPU to
measure the time taken for a user defined number of NGSS activations to complete.

2.1. UnrealMulticell3D

UnrealMulticell3D (UM3D) is a prototype, agent-based, off-lattice, real-time, 3D multi-
cellular simulation software developed in Epic Games’ Unreal Engine 4 (UE4) and C++. A
version is available via GitHub [46]. UM3D addressed inferior graphical solutions [19,23]
with the state of the art 3D UE4 used for blockbuster gaming productions. UE4 performs
physics calculations utilizing PhysX which has the potential to utilize GeForce GPUs to per-
form Newtonian physics, although UE4 apparently only harness its CPU implementations
(see Section 3.3.2). UM3D also addressed the lack of real time ergonomic user interfaces
and Windows accessibility compared to otherwise very robust methods [10,11].

Figure 2 demonstrates a dimensionally constrained bacillus colony monolayer that,
took approximately 21.248 s to reach 8192 cells from a single cell, as measured by the epoch-
based timer. Circular, raised bacillus colony morphology was used for benchmarking
purposes, which was the physical outcome of proliferation and growth interacting with the
Newtonian physics native to UE4, thus reflecting the state of software parameterization
at that time. Note the emphasis on emergent colony behavior as a result of individual
cell parameterization. See supplementary Video S1 for other example morphologies and
parameter settings. As will be discussed subsequently, additional biophysically influential
phenotypic traits were layered upon this initial design.
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Figure 2. UnrealMulticell3D (UM3D) dimensionally constrained monolayer colony of bacillus cells.
See also supplementary Video S1 for more UM3D capabilities and dynamic visuals.

Cellular assets were produced through 3D skeletal mesh designs in Blender 2.90.1,
including the use of shape key animations for cellular cleavage during division. The file
format for transfer to UE4 was FBX [47]. FBX is a popular file format for conveniently
interchanging rigs, meshes, animations and texture information between 3D graphics
software. The basis mesh consisted of 3551 vertices for a bacillus shaped cell, but a
simplified mesh was successfully trialed using only 8 vertices with only visual implications
since physical interactions used a ‘Capsule Component’, inherent to the UE4 ‘Character’
blueprint class. The bacteria in UM3D would split upon reaching a shape key setting of
double the size, from 1.5 microns to 3 microns in length in the case of bacilli, based in
the simulation literature [19]. UE4 use has the capacity to overcome limitations in the
modelling of morphology and heterogeneity compared to the most promising agent-based
multicellular solutions [10,11]. Also, such solutions lack interdisciplinary ease of use, with
the literature recommending the harnessing of graphical user interfaces [14] as exhibited
in UM3D. In fact, a modern alternative to standard programming, in the form of visual
scripting, has been harnessed within industry such as the “design of experiments” company
Synthace [48], who reportedly coordinated with AstraZeneca, but also occurs to an extent
in various Synthetic Biology tools [1,6,8] through drag and drop designs. Both Blender and
UE4 offer such capabilities, and these were exploited particularly in UE4. Such scripting
methodologies allow for fast, reliable, ergonomic designs; undoubtedly contributing to the
great successes of tools that exploit these methods.

Within Unreal Engine 4, “Blueprints” were harnessed, which is the node based pro-
grammatic method available to UE4 developers. The conditional cellular logistics operate
on the “Tick” event that was set to fire every frame on an agent by agent basis. Each
agent would run a copy of this blueprint. The “Tick Gate”, as it was referred to during
development, is a blueprint control structure utilizing the C++ blueprint function library
that was written specifically for the integration of the NGSS stochastic simulator into
UnrealMulticell3D. The “Tick Gate” is elucidated in Figure 3 (see also supplementary
Video S2).
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Figure 3. Control Flow featuring NGSS integration into UM3D using a custom C++ blueprint
function library. Blueprinting was also used for other cellular computations/functions. Top Left: The
construction script defaults Tick Gate to 2, allowing the biochemical model to be fired. Tick Gate is set
to 0. Top Right: NGSS completion is awaited and cellular functions besides physics are arrested. Tick
Gate is set to 1 when the output file is detected. Lower Left: NGSS output file is cleared, and deletion
is confirmed. Tick Gate is set to 2. Lower Right: The Boolean value of “FiredNGSS” is true so the
“Run NGSS” node is bypassed allowing for growth, division and other phenotypic computations
on the agent cell. In this prototype the biochemical model was fired only once per cell cycle, hence
daughter cells would undergo the same process.

Additionally, an ergonomic cell editor was designed that would permit the manip-
ulation of rates and parameters influencing proliferation, contact inhibition, cell death,
neoplastic mutation, cell to cell adhesion, differentiation, cell shape (coccus or bacillus),
motility force and the inheritance of color (fluorescence/pigmentation). To contrast with
potential biological features (see Section 1.3). It should be evident that proliferation rate,
adhesion, differentiation, morphology, motility, and even color, are fundamental to the na-
ture of a cell’s behavior, and hence immediately necessary to model. However, phenotypic
parameter modulation would likely be best described through bioregulatory, metabolic
and signaling models. The means by which regulatory models could be simulated were
discussed in Section 1.1. For example, division at twice the cell volume would be insuffi-
cient to describe mitosis of the zygote in the formation of a blastomere, which involves no
volumetric change [49]. During these extremely rapid divisions the G1 and G2 cell cycle
phases are reportedly absent; with elevated concentrations of MPF (maturation promoting
factor) being a key regulator of cyclical mitotic events as per the Tyson’s Cell Model [50]
available on BioModels [51]. Indeed, this model was utilized by the EpiSim multicellular
simulator [13]. Assuming accuracy and utility of Tyson’s Cell Model, the multicellular
layer (e.g., UM3D) would need to be adapted to accommodate these division processes,
respecting collision, physical demarcations and presumably individual logical processing
for each daughter cell, since computation as a synchronized, homogeneous population
would be inappropriate for developmental biology and subsequent differentiation unless
population groupings could be solved together as clusters. A major challenge for accurate
multicellular biophysical simulations is cellular morphology, achieved here only for two
types of cell/collision shapes. The challenge is not only the mesh visualizations, but also
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the viscoelastic variations, cytoskeletal modulation of shape and accurate modelling of
collision. Not to mention the computational expense complex shapes might require without
abstraction, and the potential requirement to represent cell polarity.

Nevertheless, within UM3D initial conditions could be set pending emergent out-
comes. These parameters could be set to vary randomly through the simulation run, giving
rise to daughter cells with random properties/characteristics. Clearly, tight parametric con-
trol and regulation would be needed to produce desired geometrical and functional cellular
configurations, perhaps machine learned and/or evolutionarily selected [52]. With appro-
priate parameterization it can be envisaged that evolutionary mechanisms (e.g., heuristic
genetic algorithmics) could be applied to such a system towards single-objective [3] or
multi-objective [52–54] optimization. Stochasticity could be introduced at various levels,
not least using NGSS, however in this prototype the primary noise was generated by slight
variations in cell orientation following division.

Showcasing high-throughput morphogenesis, in UM3D, a cell limit could be set and
parameters could be randomized with an infinite loop of automatic simulation cycles, albeit
with temporally determined measures (e.g., simulation reset) taken in the case of limited
proliferation (i.e., simulation stagnation). Other parameters for experimental reset might
be considered. The main focus was proliferation from a single cell; however, a lattice of
cells could also be initialized and even spun stochastically or placed within a prototype
scaffold. As already noted, such strategies as heterogenous cellular distributions were
used for appropriate histological functionalization in silico [36]. Eventually, to improve
on the system in Figure 3 and reduce the latency of file I/O, a client–server architecture
was prototyped between a C++ client and UM3D to run an oscillatory sine function for
single cell bioluminescence (beware flashing images, supplementary Video S3). For this a
TCP socket connection was made using the UE4 “TCP Socket Plugin” by SpartanTools. The
above characteristics of UM3D could be considered for improvement in future installments.
Subsequent progress would also require the modulation of phenotype with biophysical
ramifications via specific stochastic simulation models.

2.2. SynthMeshBuilder

SynthMeshBuilder (SMB) is a procedural, multithreaded, vertex-based, batch pro-
cessed, 3D multicellular mesh generation prototype software, developed in .NET Core 3.1
C# for Windows, blurring the line between On-Lattice and Off-Lattice approaches, with an
agent-based character and utilizing generative rules-based decision making. Mesh genera-
tion is practical since vertices can be represented by minimal data and meshes can be used
to construct and regulate large objects such as tissues. SMB harbors similarity to a ‘family’
of multicellular tools [10,11,26,27]. Commonalities include batch processing, retrospective
visualization, spherical agents, proliferation focused, computationally parallelized, highly
scalable, independent solutions; although SMB has not yet utilized HPC. Batch processing
can be recommended as it negates the need for live rendering costs, and can provide for
interface-free computation if embedded in a suite. Animation of growth was possible in
SMB due to the ordered sequence of vertices in the OBJ output file that Blender 2.90.1 could
iterate over with particles (Figure 4).
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Figure 4. SynthMeshBuilder’s diverse morphology generation of mesh-based cell networks
(upper left), highly scalable one million cell colonies (upper right), parallelized “stochastic chain
extension” reminiscent of staphylococcus clusters [55] used for benchmarking (lower left) and an
alternative on-lattice algorithm with random update order (lower right), as visualized with Blender
(see supplementary Video S4).

SMB was trialed with various approaches, including on and off lattice solutions. The
“Pseudo Off-Lattice” algorithm used no fixed lattice boundaries but placed vertices at unit
distance from the parent and was used for benchmarking. Within this Pseudo Off-Lattice
approach, the “Stochastic Chain Extension” ruleset (see supplementary Videos S4 and S5)
insighted the most recently generated cell on a computational thread to replicate in a
random direction into an unoccupied location. Because the distribution was effectively
on lattice due to unit spacing, the exact coordinate could be checked for the presence of a
vertex without explicitly checking for a geometrical overlap based on cellular diameters.
“Tunnelling” of cells was used if the cell could find no free space to expand into locally.

CPU multithreading was achieved using System. Threading, with an array of threads
defined by Threads[x] = new Thread(() => BuildMesh(index, CellsPerThread, “Paral-
lel”)), where index denoted the thread index and given Threads[x].Priority = ThreadPrior-
ity.Highest. Inside BuildMesh(), each thread could create NGSS processes with different
input commands. Next, random displacement would be performed. The random dis-
placement, before tunnelling, in each plane was calculated as reflected by the following
pseudocode: X, Y or Z displacement = Random(0 to 2) − 1. If the coordinate reached via the
vector (X,Y,Z) was occupied, tunnelling would be calculated by multiplying each element
of the displacement vector by an increment with procedural checks within a while loop
until a free space was found displacements (X,Y,Z) = (X*increment, Y*increment, Z*increment),
where X, Y and Z represent displacements between −1 and 1 generated as aforementioned.
Putting constraints on axes could simulate uniform surface obstacles (Figure 4 lower left
and supplementary Video S5).

An alternative On-Lattice approach was decisively On-Lattice since it utilized a fixed
sized 3 dimensional array representation of the world space. An initial cell would be
seeded at the (0,0,0) coordinate. The matrix would then be scanned iteratively, and given
the existence of a cell there would be a probability of the initial cell seeding another. A
Monte Carlo (random update ordering) approach was eventually implemented rather than
iteratively scanning the array sequentially. This could be performed by operating on all
elements of an integer array in a given spatial dimension using the following C# code:
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Enumerable.Range(0, WorldDiameter).OrderBy(c => random.Next()).ToArray() to generate
a pseudorandom reordering to iterate through.

OBJ encoding of edges occurred between parent and daughter cells/vertices to gener-
ate the histological mesh. Since each thread was given a target population to reach, vertex
and edge OBJ encodings would be positioned at indices on a string array calculated by
(x + CellsPerThread_temp * ThreadID_temp), where x was the replicative iteration by the
thread, thereby avoiding any memory access errors. In multicellular scenarios such bonds
represented by these edges may be formed by extracellular substances, cell-matrix adhesion
and cell-cell adhesion. Such interwoven webs could be used for intercellular communica-
tion simulations. High entropy stochastic outcomes can be progressed towards low entropy
organization and behavior by increasing algorithmic control. The benchmarked colony
formations were morphologically different from those of UM3D due to the underlying
algorithmic differences.

An obstacle simulation was also performed with 600,000 cells using 10 threads and
60,000 cells per thread. Figure 5 depicts these cells swarming around a thin barrier as
visualized using Blender. The proliferating cells would interact with vertices from a
secondary mesh, thereby preventing their positioning inside the obstacle. Adhesion and
juxtacrine/mechanosensory [56] regulatory signals could be imposed on simulated cellular
behavior by collision surfaces in silico with relevance to tissue engineering scaffolds and
extracellular matrices.
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Figure 5. 600,000 “Pseudo Off-Lattice” cells clustering around an obstacle as visualized in Blender
via .OBJ files output by SynthMeshBuilder. The stochastic expansion of the colony is evident
from the morphology. Collision surfaces of such a nature could also be used to trigger contact
signaling calculations.

2.3. NGSS Use via NGSS-Invoker, UnrealMulticell3D and SynthMeshBuilder

No CRN/regulatory model feedback into the simulators was attempted or achieved
when running the external NGSS metabolic simulator in relation to the multicellular
simulation layers (SMB/UM3D) besides NGSS completion checks via CSV output file IO
between executions. To progress this in the future requires strong biological justification,
and multicellular simulation studies had only modestly experimented with this, such as
the use of Tyson’s cell cycle model [13]. A recent study utilized the iAF1260b model [57],
and came from a Whole Cell Modelling perspective, combining stochastic gene expression
and flux balance. Whether it is through stochastic simulation or another solution such
as the use of Boolean networks [29], flux balance analysis [31], deterministic or hybrid
algorithms [14] subcellular “decision making” affecting cellular phenotypes is vital in order
to elicit regulated, emergent multicellular behavior in silico. However, for prototyping and
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benchmarking purposes it was sufficient to execute the control flow without phenotypic or
genotypic changes via feedback.

The control flow for awaiting NGSS completion in SMB was similar to UnrealMulti-
cell3D in terms of awaiting output .csv confirmation. Inducing threads to sleep between
completion checks reduced the CPU demand within the thread file-checking while loops
thereupon increasing tractability. The duration of thread sleeping could undergo optimiza-
tion efforts, however undoubtedly more ideal inter-process communication can be sought,
such as via network sockets as prototyped with UM3D.

3. Results
3.1. Hardware, Software and Models Used for Benchmarking

Benchmarking was performed using a G7 7700 Dell Laptop, Intel(R) Core(TM) i7-
10750H CPU @ 2.60 GHz (6 cores, 12 logical cores) processor, 16.0 GB RAM, NVIDIA
GeForce RTX 2060 6 GB VRAM graphics card on Windows 10 64-bit.

SBML-Constructor was used to produce sets of arbitrary, benchmarkable SBML CRN
kinetic models with serial pathways up to 128 reactions in length with low enzyme and
high substrate concentrations to homogenize performance. Two sets of models were
generated, a set with separate enzymes (multi-enz) for each reaction and one with a single
enzyme (single-enz) mediating every reaction. Most SBML models from the BioModels
database [51] were reported as 50 reactions or less [5], with a few having as many as
1800 reactions. Thus, the range generated by SBML-Constructor, up to 128 reactions, could
give a reasonable sense of tractability for models from curated model archives. NGSS-
Invoker was used to benchmark NGSS without spatial simulation using the SBML models.
UM3D and SMB engines were benchmarked with and without NGSS, with spatial and
graphical consequences but without actual logical feedback from the SBML model itself.

3.2. Benchmarking without the Multicellular Layer
3.2.1. Single Cell Performance via NGSS-Invoker

Initially, three different Stochastic Simulation Algorithms (SSAs) were tested based
on qualitative experience of their temporal performances; Tau Leaping, Direct Method
and the Next Reaction Method. A fourth was tested retrospectively on recommendation
by the SSAPredict tool [5]: the Logarithmic Direct Method. With the multienzyme model,
SSAPredict concluded for the 4, 8, 32, 64 and 128 reaction models that the Logarithmic
Direct Method should be optimal. For 2 and 3 pathway reactions the Optimized Direct
Method was recommended. Nevertheless, Tau Leaping performed faster, likely because it
favors low propensity (slow, low probability) scenarios [15] matching the models generated.
For all algorithms, time to complete increased with a polynomial trend as the number of
reaction steps to complete increased. Up to 6 reactions the Tau Leaping algorithm possessed
a nuance where it followed the relatively slow Direct Method.

A comparison of the behavior of different SSA algorithms was also performed for
the Single Enzyme model set, where NGSS performed identically in every case despite
SSAPredict recommending the Logarithmic Direct Method (LDM) and the Partial Propen-
sity Direct (PPD) Method. The single-enz topology was far slower than multi-enz. Out of
the conditions tested, NGSS turnover was deemed fastest under Tau Leaping, interval 0.1,
MAX_TIME 3, with multiple enzyme models over a single run (Figure 6).
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Figure 6. For the low propensity models generated by SBML-Constructor, the Tau Leaping NGSS
algorithm performed best using the multi-enz models. Results were generated using NGSS-Invoker.
Optimized Direct Method is not shown as it was suggested retrospectively to initial benchmarking
and only recommended for pathways of 2 and 3 reactions. Likely it was immediately discarded due
to inferior performance and practical time constraints. SSAPredict was shown to be wrong with its
prediction of performance for the Logarithmic Direct Method, i.e., Tau Leaping was 2.29 times faster
than the Logarithmic Direct Method with the 48 reactions model.

3.2.2. Multicellular Performance via NGSS-Invoker

The fastest performing settings were brought forward and NGSS-Invoker was used
to saturate the CPU with multiple concurrent NGSS process activations. Because only
a single run was being made, the ‘parallel on’ NGSS setting served no purpose, but
behaved differently from the ‘parallel off’ setting. Note that the NGSS parallel thread
setting is independent from the parallelization by multiple NGSS activations and is used to
average multiple stochastic runs. As the “cell target” (NGSS completions) increased, initial
performance increase towards plateau was due to the concurrency of NGSS activations on
the processor, reducing time per cell (Figure 7). This was due to processor saturation, hence
full CPU usage across all logical cores. The conclusion that was brought forward was that
for a single run, the ‘parallel off’ NGSS setting was the less time consuming algorithm.
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Figure 7. Towards processor saturation caused by increasing “concurrent” cell target computations of
NGSS activations, time “per cell” for completion of the reaction model decreased. Beyond saturation
and towards cell completions, hence more .CSV file checking, time per cell increased gradually (note
the uneven unit distributions on the x-axis). The above data used the NGSS settings determined in
the previous section. Minimizing IO in the future would be ideal. These results were generated using
the in-house NGSS-Invoker utility coupled with NGSS executions.
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3.3. Benchmarking with the Multicellular Layer
3.3.1. Multicellular Performance via UnrealMulticell3D with NGSS

Using the conditions established from the previous experiments, NGSS could be run in
the spatial multicellular simulators once per mitotic cell cycle and the reaction count could
be varied by changing the multi-enz SBML model. Here we discuss this implementation
into UM3D. The three variables (time, population, reactions) resulted in 3D statistical data
(Figure 8). Starting from a single cell, the duration to reach a given population size was
longer for larger cell target populations and as the number of reactions per cell cycle was
increased. Polynomial time scaling with reactions per cycle induced by the NGSS algorithm
was likely because the reactions in the model were not mutually exclusive and, hence, had
computational interference, matching NGSS behavior. The optimum number of reactions
in the model was 8 due to the nuances of the Tau Leaping algorithm and the range of
models tested (note that 7 reactions was not tested). On the other hand, scaling towards a
target population was essentially linear given constant reactions per cycle. A linear scaling
was unsurprising as increasing the cell population target simply increased the number of
repetitions of the same action, especially once processor saturation was reached.
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Figure 8. Benchmarked time performance data subset of UnrealMulticell3D on a time per reaction
step basis. Note that greater cell target populations ensured processor saturation, explaining the
peaks, with performance consistency upon saturation given unchanging reactions per cell cycle (RPC).
There was polynomial scaling with RPC beyond the NGSS nuance up to ~7 RPC.

3.3.2. Multicellular Performance via UnrealMulticell3D without NGSS

Starting from a single cell, target populations were reached over a measured time
without NGSS processing to evaluate the behavior of the multicellular simulation layer
alone. Physics was compared in the on and off states with increasing model sizes. Both cases
performed undiscernibly, implying that physics computations played little part in overall
performance. This led to the hypothesis that Unreal Engine 4 was using PhysX to calculate
physics on the GPU. Thus, toggling physics was assumed to have no statistical impact
because the CPU was equally saturated whilst the GPU apparently remained unsaturated.
On further investigation it appears that this assumption was false. Profiling GPU and CPU
behavior with the Unreal Insights tool (with the ‘in game’ command Trace.Start default,
gpu) revealed that there was minimal activity by the GPU when the renderer was off during
simulations, apparently only performing basic user interface processing via SlateUI. The
Slate UI Framework is Unreal Engine’s cross-platform user interface framework [58,59].
In fact, the only evidence of physics processing was on the CPU (Figures 9 and 10) via
FPhysScene_ProcessPhysScene, with FPhysScene documented as involved with PhysX
processing [60].
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Figure 9. A performance profile was run for UM3D using the Unreal Insights utility with the camera
turned off. FPhysScene_ProcessPhysScene (blue), processed on the CPU, required greater processing
as the cell population expanded. The plots behind the blue plot can be ignored for this discussion.
The lower track illustrated limited GPU activity involving intermittent SlateUI updates. PhysX
calculations appear to be restricted to the CPU by UE4. The impact of physics processing on the CPU
might have been missed at the relatively low cell populations tested (up to 4096 over a span of ~20 s)
because of its fairly modest initial CPU usage.

The GPU operated on a much greater range of functions with the camera on (Figure 10),
however the CPU GameThread demonstrated the only evidence of physics operations.
In combination these are strong indicators that physics was not performed on the GPU
and that this version (at least) of Unreal Engine 4 reserves the GPU primarily for graphics
rendering rather than GPGPU (general-purpose computing on graphics processing units)
implementations, an apparent limitation of standard hardware architectures and UE4.
Nevertheless, the prospect offered by physics libraries still stands, with Classical Mechanics
resolvable through GPGPU implementations for multicellular simulations of the future.
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Figure 10. Unlike when the camera was off (see Figure 9), the GPU had a vast assortment of functions
to fulfill when the camera was turned on (GPU track, top). However, none of the functions appeared to
perform physics calculations; whereas on the CPU GameThread track, FPhysScene_ProcessPhysScene
continued to be processed.

A benchmarking effort was also made to assess other factors such as the impact of cell
textures, with no discernible computational costs. That said, the performance enhancement
from turning the camera away from the cells was dramatic, demonstrating a significant
slowdown associated with rendering costs, not only on the GPU but potentially including
activity on the CPU “Rendering Thread”. This was apparently not due to graphical and
GPGPU physics operations competing for resources on the GPU (Figures 9 and 10). A batch
processing mode accompanied by the export of simulation states could be conceived of.
In fact, this information led to the development of a camera on/off toggle on keypress
in subsequent developments that was retrospectively used to achieve the benchmarks
in Figures 9 and 10. The removal of an aesthetic animation shape key for the bacterial
cleavage site had no impact on the simulation time, but simplifying the bacterial mesh from
3551 vertices down to eight vertices significantly sped up the simulation, particularly at
higher cell populations. The physical mechanics were mediated by an unchanged collision
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capsule. Hence the change in mesh vertex-count would have no impact on the accuracy of
the simulation, although it would result in mild visualization artifacts.

The impact of the collective performance enhancements was compared to the condi-
tions prior to benchmarking (Figure 11). Regardless of these significant baseline engine
enhancements, use with NGSS had very limited to no benefit since NGSS was the limiting
factor in the total simulation time (Figure 12), justifying the future pursuit of HPC and/or
client–server architecture.
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3.3.3. Multicellular Performance via SynthMeshBuilder without NGSS 
The first benchmarking experiment with SMB targeted 252,000 cells. The number of 

threads ranged from 1 to 50, with cells per thread ranging from 252,000 to 5040 respec-
tively. Performance plateaued as threads reached the number of logical cores (12) be-
yond which there was a very slight decrease in performance (Figure 13). 10 threads were 
brought forward for benchmarking to maintain a responsive UI and operating system. 
Linear scaling was not achieved as the number of cells increased, rather there was a pol-
ynomial increase in simulation time. This is almost certainly because as the cell popula-

Figure 11. Performance enhancement of UnrealMulticell3D without NGSS, due primarily to a move
towards batch-processing and reduced rendering costs. Mesh simplification enhanced performance
to generate 4096 cells by 1.33 times. Combined mesh simplification and camera redirection enhanced
generation of 4096 cells by 2.63 times.
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Figure 12. Despite enhancements to the UnrealMulticell3D base engine depicted in Figure 10,
performance with NGSS was identical, demonstrating that NGSS was the limiting factor with respect
to performance. The above depicts an average time across all benchmarked cell target populations
for each reaction per cycle pathway model, used here as an indicator of the average performance.

3.3.3. Multicellular Performance via SynthMeshBuilder without NGSS

The first benchmarking experiment with SMB targeted 252,000 cells. The number of
threads ranged from 1 to 50, with cells per thread ranging from 252,000 to 5040 respectively.
Performance plateaued as threads reached the number of logical cores (12) beyond which
there was a very slight decrease in performance (Figure 13). 10 threads were brought
forward for benchmarking to maintain a responsive UI and operating system. Linear
scaling was not achieved as the number of cells increased, rather there was a polynomial
increase in simulation time. This is almost certainly because as the cell population grew, the
overlap checks on proliferation also grew in number since all cell coordinates were iterated
over. Thus, many unnecessary points were scanned as the point-cloud developed. This is
where domain-based parallelization or nearest neighbor lists [10,19] could be considered,
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with a reduction of cell by cell processing and thereby the linearization of the trend. An
On-Lattice approach with local scanning across the restricted lattice geometry is one option,
but Off-Lattice provides for more diverse spatial potential going forward. Alternatively,
distinct cell populations could be computed on separate processors within a heterogenous
pool of cells. The probabilistic “bridge” concept between physically isolated populations
might also be considered [22].
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Figure 13. Mesh generation by SynthMeshBuilder to a 252,000 vertex population was temporally
enhanced up to CPU logical core saturation (12 threads) when parallelized with various numbers of
launched threads demonstrating successful multithreading on the CPU architecture.

3.3.4. SynthMeshBuilder vs. UnrealMulticell3D Performances with NGSS

SMB scaled in a similarly polynomial fashion but performed faster than UM3D when
NGSS was processing models (Figure 14). This should be attributable to the fact that SMB is
algorithmically far less complex than UM3D and was able to leave the majority of the CPU
for NGSS to utilize and was entirely batch-processed, thereby circumventing live rendering
costs. The scaling followed NGSS behavior for the network sizes. With NGSS, SMB was
able to perform almost twice as quickly as UM3D (evidenced in both Figures 14 and 15)
due to its simpler ground-up algorithmics, specifically streamlined for NGSS performance.
The performances of the multicellular engines with and without NGSS were very different
with even modest SBML model conditions imposed, with NGSS lengthening the simulation
time dramatically (Figure 15).
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Figure 15. The base multicellular simulation layers could generate 1000-cell populations within
seconds (UM3D) or fractions of a second (SMB). However, adding a moderately sized reaction
network (32 reaction steps) with parallel NGSS processes (one for each cell cycle) resulted in a
drastically more time consuming performance profile operating on the order of several minutes to
complete. Because NGSS could use as much as a single core (two threads) of processing power for
each activation, by the time only 6 cells that reached the processor could be saturated, giving an
overall linear scaling as NGSS processes were queued for completion on the rapidly saturated single
processor. The same linear scaling would be expected with HPC but with a shallower gradient, at
least once the HPC cores were fully saturated. For example, with the 32 reaction network UM3D
proliferated 299 times slower to 1024 cells than without it (1598.20 s vs. 5.34 s).

3.3.5. SynthMeshBuilder vs. UnrealMulticell3D Scalabilities without NGSS

The scalabilities of SMB to UM3D without NGSS were compared (Figure 16). SMB
demonstrated far greater scalability (with only 10 of 12 threads) compared to UM3D
(with no imposed resource restrictions). UM3D was slower and more unstable, eventually
reaching a respectable 131,072 cells. SMB was stopped at 500,000 cells, although it can scale
much further. That said, a high cell count is not required for multicellular life. The adult
nematode worm Caenorhabditis Elegans, an oft used model organism, has been reported to
have as few as 959 cells [61]. However, should regulatory computations (subcellular models)
and more multicellular simulation phenomena be added (e.g., diffusion, extracellular
agents), scalabilities would become much lower. On the other side of the spectrum, the
human retina photoreceptor topography has been reported as being composed of as many
as 5.29 million cone and 107.3 million rod cells [62]. Far beyond tractability on conventional
hardware without simplification.
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Figure 16. SynthMeshBuilder proved much more scalable without NGSS than UnrealMulticell3D
on the personal computing system. By contrast, HPC solutions from the literature could process
millions [11] or even tens of millions [10,36] of cells, with thousands [23] or hundreds of thousands [11]
reported on modest hardware.

4. Discussion

Multiple, biologically informed, ground-up approaches to agent-based multicellu-
lar simulation were demonstrated; a scalable, prototype, mesh-based, batch processed
approach (SMB) and a state-of-the-art 3D engine approach (UM3D). SMB demonstrated
that low level abstractions can have scalable yet compelling outcomes reminiscent of clas-
sical Cellular Automata, with a reduction of entropic behavior achieved by increasing
algorithmic regulatory control. Both SMB and UM3D can benefit from many additional
multicellular features (see Section 1.3) that are described in the literature, with some obtain-
able through open-source code. A critical progression for SMB and UM3D is subcellular
model feedback with phenotypic effects, with the choice of subcellular models also of criti-
cal importance. Subcellular regulatory models would either be designed or downloaded
from a repository. The use of ergonomic graphical user interfaces with powerful features
continues to be desirable [9].

The temporal use of physics would need to be carefully considered in order to make
multiscale performance accurate, along with the overall careful orchestration of temporality
and parameterization in general. The evidence suggests that Unreal Engine 4 performs
physics on the CPU with PhysX, despite PhysX being GPU capable, which may reflect a
limitation and computational overhead of this live rendered, real-time approach. Also, the
results (Figure 11) demonstrated that live rendering had a dramatically negative impact
on performance at large scale. Thus, the results alluded strongly towards batch processing
methodologies with rendering minimized if rapid performance is desired, such as provided
by SMB that harbors similarity to various extant tools [10,11,26,27]. UM3D could be adapted
towards batch processing away from real time rendering but while retaining the visualization
options. This idea was explored through camera redirection and eventually the addition of
a camera ON/OFF toggle. It remains to be seen how the innate limitations of UE4 could
be rectified and an exploration of UE5, released 2022, might be worthwhile. Client–server
architecture [22] is another possibility that was prototyped in UM3D to overcome some of the
performance limitations of local computations and inter-process communication.

NGSS saturation of the processor via process executions demonstrated the limits of a
high end desktop computer. Temporal multiscale implications were observed as NGSS’s
significant temporal usage contrasted with cell growth, physics and population growth
dynamics in the multicellular layer, particularly as seen in UM3D. NGSS has a peculiar per-
formance nuance at fewer than 7 reaction models with the Tau Leaping algorithm, however
many reaction networks will likely be larger than 6 reactions. For NGSS, metabolic network
topology has a significant impact on performance, as demonstrated by the Single Enzyme
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models versus the Multienzyme models. It should be noted that stochastic simulator
performance might be considerably lower with high propensity reaction models.

Subsequent work should challenge the limits of multiscale, multicellular simulations
including the implementation of novel case studies of morphogenetic and functional multi-
cellularity/histology, including subcellular model feedback, better defined heterogenous
populations and the continued hybridization of both agent-based and lattice-based (domain-
based) modelling. The importance of having identified the key features of multicellular
simulation should not be underestimated for subsequent work (Section 1.3), specifically
when considering the integration of what has been described as “sub-models” [11]. The
connection with this work to the IBW platform for Synthetic Biology in silico prototyping
was primarily through the mutual NGSS simulator [6]. Future work could explore the po-
tential of automating the IBL syntax IBW possesses for kinetics models and its hierarchical
biological descriptions, which is presently a manual process, similar to the way in which
SBML-Constructor exploited the SBML standard format [45].

The current work highlighted just how intensive cell by cell computations are, espe-
cially with the use of subcellular biochemical stochastic simulations, and implicated the
future use of HPC that might be applied on a cell by cell basis with the splitting of NGSS
activations between processors [36] (see Figure 15), or more likely via GPGPU implemen-
tations. The ‘first-come-first-serve’ consequences of NGSS activation across processors
potentially skews realism, rectifiable primarily by HPC applications of Stochastic Simula-
tion Algorithms (SSAs) and/or a possible Monte Carlo approach. The use of clustering into
“super-individuals” [10] can be considered, along with the possibility of population-based
or hybrid individual/population approaches. The use of GPGPU algorithms, such as
PhysX, is strongly under investigation for subsequent work.

Model verification for multicellularity in the histological sense would need to be
considered perhaps through mechanisms such as micrographic analysis [13], machine
learning [3] and/or with further insights garnered from extant projects [36], where cellular
type distributions were meticulously considered. Gene expression profiles might also
be explored for phenotypic characterization. Model checking has also previously been
performed, primarily for molecular species concentrations, but also with respect to their
distributions over space and time [63–65]. Once convincing simulations are operational at
a small scale with verification protocols, the simulations can then be scaled up using HPC.
The use of HPC, especially in the domain of GPGPU, is planned for upcoming work.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14010154/s1: Video S1: S1 UM3D demo.mp4. Video S2: S2
Tickgate Slow Motion.mp4. Video S3: S3 Server Control Over Phenotype.mp4. Video S4: S4 SMB
demo.mp4. Video S5: S5 High-Resolution Constrained Stochastic Chain Extension—Pseudo Off
Lattice.avi.
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