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Abstract: The increasing application of next generation sequencing approaches to the analysis of
human exome and whole genome data has enabled the identification of novel variants and new
genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative
phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae
an excellent model system for investigating the role of these new variants in mitochondrial-related
conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this
review was to highlight the main advantages offered by this model for the study of mitochondrial
diseases, from the validation and characterisation of novel mutations to the dissection of the role
played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules.
The review also provides a summary of the main contributions to the understanding of mitochondrial
diseases emerged from the study of this simple eukaryotic organism.

Keywords: yeast model; mitochondria; diseases

1. Introduction

Mitochondrial diseases (MDs) are inherited disorders that, through various mecha-
nisms, lead to mitochondrial dysfunction. The genetic cause of MDs includes mutations in
either mitochondrial DNA (mtDNA) or nuclear DNA genes. Due to the dual genetic control
of mitochondrial function (nuclear and mitochondrial), MDs display different inheritance
pattern: sporadic, maternal, autosomal dominant, autosomal recessive or X-linked [1].

Mitochondria provide energy to cells by oxidative phosphorylation (OXPHOS) carried
out by a series of multi-heteromeric complexes embedded in the mitochondrial inner
membrane. These complexes constitute the mitochondrial respiratory chain (MRC) that,
through sequential reactions of reduction and oxidation, performs “cellular respiration” [2].
The OXPHOS process is responsible for the supply of energy to cells; any defect or alteration
in the process leads to pathological consequences, mainly in tissues and organs that have a
high energetic request such as the brain, skeletal muscles, and heart. The consequences of
an impairment of the OXPHOS system are a decrease in ATP production and an increase in
reactive oxygen species (ROS). Mitochondria are mainly involved with the production of
ATP by OXPHOS and play a role in other bioenergetic pathways such as the tricarboxylic
acid cycle (TCA)—[3] and fatty acids β-oxidation [4]. In addition to these primary functions,
mitochondria are also involved in biosynthetic pathways, including but not limited to
amino acids and nucleotides [5], iron sulphur cluster [6], and in cell signalling with a
determinant role in apoptosis [7], and calcium homeostasis [8].

Given the complexity of mitochondrial genetics and biochemistry, mitochondrial
inherited diseases may present extremely heterogeneous clinical manifestations, ranging
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from lesions in single tissues, such as the optic nerve in Leber’s hereditary optic neuropathy,
to more diffuse lesions including myopathies, encephalomyopathies, cardiopathies and
hepatopathies, all the way to complex multisystem syndromes characterised by a vast
range of symptoms, severity, age of onset and outcome [9–12]. Genetic defects of OXPHOS,
the group of mitochondrial disorders predominantly identified to date, have a prevalence
at approximately 1:5000 [13–15] making these the most common pathologies with a genetic
basis. However, more recently, the term “mitochondrial disease” has also been extended
to another series of pathologies, known as secondary mitochondrial dysfunction (SMD),
caused by mutations in genes that are not involved in the production or functionality
of respiratory complexes [16]. For example, defects in the mitochondrial fission/fusion
processes are implicated in the onset of age-related human disease, such as Alzheimer’s
and Parkinson [17] or cardiovascular disease [18], thus underlining the pivotal role of the
mitochondrion in many cellular functions, beyond energy production.

To date, thanks also to the increasingly widespread application of the next generation
sequencing (NGS) to whole exome sequencing (WES) and whole genome sequencing (WGS),
pathogenic variants in approximately 300 disease genes have been described [1,19] most
associated with dysfunction of mitochondrial energetics [20]. However, in a large fraction
of patients with MDs, the genetic basis is still unknown. This is not surprising since there
are approximately 1200 human genes encoding mitochondrial localised proteins [21,22].

On the other hand, the identification of numerous nuclear variants of unknown signif-
icance requires functional validation to confirm pathogenicity and an in-depth analysis to
assess the mechanisms through which they are associated with mitochondrial disease [1].

Model systems (yeast, Caenorhabditis elegans, Drosophila, zebrafish, mouse) have proved
their usefulness to validate the pathogenicity of variants, to assess the disease progression
and the mechanisms associated with mitochondrial dysfunction. They therefore represent a
powerful tool to study new disease genes, in particular when the gene function is unknown,
when there is only a single patient, patient samples cannot be obtained or when cell lines,
derived from patient fibroblasts, are aphenotypic (see for recent review [1,20,23]). The
yeast Saccharomyces cerevisiae is the organism that more than any other has contributed to
our understanding of mitochondria functionality. In fact, it was in this organism that the
cytoplasmic factor rho (ρ), later identified with the mtDNA, was initially detected, and its
role in the generation of respiratory enzymes was proven [24,25]. Saccharomyces cerevisiae is
a facultative anaerobe yeast, able to grow on fermentable and non-fermentable (i.e., oxida-
tive) carbon sources. This eukaryote has the peculiarity to survive on fermentable carbon
sources in the absence of mtDNA, which makes it a major player in our understanding
of the mitochondrial biogenesis. Mutations affecting mitochondrial functions are, in fact,
easily identifiable in media containing an oxidative carbon source such as glycerol, ethanol,
or lactate. More generally, the success of this experimental single cell organism is linked to
its efficient homologous recombination properties, which allowed the creation of genetic
knockouts collections [26], to the easiness of its manipulation [27,28] and to the high degree
of similarity in cellular activities, including those related to mitochondria, with higher, and
more complex, eukaryotes [29,30]. Remarkably, more than 50% among the 1000 protein
species estimated in yeast mitochondria [31,32] have a human homolog [21], and 70% of
the nuclear genes involved in human mitochondrial diseases are conserved in yeast [20].
Thanks to these features, S. cerevisiae has significantly contributed to the identification of
the molecular basis of numerous mitochondrial diseases, as reviewed elsewhere [20,33–36].
The aim of this review was to summarise the advantages that the yeast model offers in
the validation of mutations, in the determination of their heritability, in deepening the
role of genes and of specific mutations in mitochondrial functionality, in the discovery
of potential therapeutic molecules and to give a few examples of their application. In
particular, this review intends to highlight the main advantages offered for the diagnostics
of mitochondrial disorders caused by mutations in nuclear genes, whose list increases day
by day due to the advent and application of NGS technologies.
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2. Modelling Putative Disease Variants

Considering the huge number of novel genetic variants identified by NGS, a major
challenge is to determine if these are the cause of the pathology of interest. Bioinformatic
tools can certainly help but they are not sufficient to confirm the causality that must be
biologically proven through functional analyses. The experimental workflow changes
depending on whether the variants identified are novel and appear in a gene that has
previously been associated with disease or in a gene not previously linked to disease and
in this case, if the function of the gene is known or not. The workflow for the creation of
the yeast models of mitochondrial diseases is represented in Figure 1.

Genes 2021, 12, x FOR PEER REVIEW 3 of 28 
 

 

functionality, in the discovery of potential therapeutic molecules and to give a few exam- 99 
ples of their application. In particular, this review intends to highlight the main ad- 100 
vantages offered for the diagnostics of mitochondrial disorders caused by mutations in 101 
nuclear genes, whose list increases day by day due to the advent and application of NGS 102 
technologies.  103 

2. Modelling Putative Disease Variants  104 

Considering the huge number of novel genetic variants identified by NGS, a major 105 
challenge is to determine if these are the cause of the pathology of interest. Bioinformatic 106 
tools can certainly help but they are not sufficient to confirm the causality that must be 107 
biologically proven through functional analyses. The experimental workflow changes de- 108 
pending on whether the variants identified are novel and appear in a gene that has previ- 109 
ously been associated with disease or in a gene not previously linked to disease and in 110 
this case, if the function of the gene is known or not. The workflow for the creation of the 111 
yeast models of mitochondrial diseases is represented in Figure 1. 112 

 113 

Figure 1. Workflow for the creation of the yeast models of mitochondrial diseases. * cytoduction is 114 
a strategy only used in case the gene is essential for mitochondrial DNA (mtDNA) maintenance. 115 
cDNA, complementary DNA; ORF, open reading frame; OXPHOS, oxidative phosphorylation. 116 

For the creation of the model, the first question to ask is whether yeast has a gene 117 
orthologous to the human one. When a human disease-related gene is not present in the 118 

Figure 1. Workflow for the creation of the yeast models of mitochondrial diseases. * cytoduction
is a strategy only used in case the gene is essential for mitochondrial DNA (mtDNA) maintenance.
cDNA, complementary DNA; ORF, open reading frame; OXPHOS, oxidative phosphorylation.

For the creation of the model, the first question to ask is whether yeast has a gene
orthologous to the human one. When a human disease-related gene is not present in the
yeast genome, the human gene can be expressed in yeast under the control of a regulatable
promoter to modulate the levels of the heterologous protein. The analysis of any relevant
phenotypes associated to the expressed gene is then performed. Examples of “human-
ised” yeast models comprise neurodegenerative disorders in which the pathogenesis is
associated to protein misfolding with the consequent formation of aggregates or oligomers.
Disorders s such as Parkinson’s, Huntington’s and polyglutamine (poly(Q)) diseases have
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been modelled in yeast and have been extensively documented in the review by Khurana
and Lindquist [37].

When a homolog of the gene involved in the disease is present in the yeast genome,
heterologous, homologous or chimeric gene complementation approaches can be used
depending on the ability/inability of the human cDNA to complement the yeast null
mutant strain. As reported in Table 1, to validate the pathogenicity of novel genetic variants,
several yeast models of diseases have been constructed using the different approaches.

Table 1. List of genes linked to mitochondrial diseases categorised according to their primary
role. This table includes nuclear genes associated to mitochondrial disorders in humans with an
orthologous gene in S. cerevisiae * for whom the yeast model was reported in the literature to have
been used to validate the pathogenic role of the variants associated with disease.

Function Human/Yeast Gene References *

OXPHOS subunits

CII

SDHA/SDH1 [38]

SDHB/SDH2 [39,40]

SDHD/SDH4 [41,42]

CIV COX6B1/COX12 [43]

CV ATP5E/ATP15 [44]

OXPHOS assembly factors

CII SDHAF1/SDH6 [45]

CIII
BCS1L/BCS1 [46–50]

LYRM7/MZM1 [51,52]

CIV
COX10/COX10 [53,54]

SURF1/SHY1 [55,56]

CV ATPAF2/ATP12 [57,58]

Protein import and processing

AFG3L2/AFG3 [59–64]

GFER/ERV1 [65,66]

MIPEP/OCT1 [67]

PITRM1/CYM1 [68,69]

PMPCB/MAS1 [70]

SPG7/YTA12 [60,62,63]

TIMM50/TIM50 [71]

TIMM8A/TIM8 [72,73]

mtDNA replication, transcription and maintenance

MPV17/SYM1 [74,75]

POLG/MIP1 [76–90]

POLR2A/RPB1 [91]

RNA maturation/modification

ELAC2/TRZ1 [92]

GTPBP3/MSS1 [93]

MRM2/MRM2 [94]

MTO1/MTO1 [95,96]

TRIT1/MOD5 [97]

TRMT5/TRM5 [98]

TRMU/MTO2 [99,100]

TRNT1/CCA1 [101,102]
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Table 1. Cont.

Function Human/Yeast Gene References *

Mitochondrial aminoacyl tRNA synthetases

AARS2/ALA1 [103,104]

GARS/GRS1 [105–107]

GATB/PET112 [108]

HARS2/HTS1 [109]

KARS/MSK1 [110]

LARS2/NAM2 [111]

QRSL1/HERS2 [108]

RARS2/MSR1 [112]

TARS2/MST1-THS1 [113]

VARS2/VAS1 [114,115]

WARS2/MSW1 [116]

YARS2/MSY1 [117–119]

Translation
GFM1/MEF1 [120]

TUFM/TUF1 [120–122]

Membrane dynamics and composition

DNM1L/DNM1 [123–125]

MFN2/FZO1 [126]

OPA1/MGM1 [127,128]

TAZ/TAZ1 [129–131]

VPS13C/VPS13 [132–134]

APOO/MIC26 paralog
MIC27 [135]

GDAP1/ [136]

ACO2/ACO1 [137–140]

IDH3A/IDH2 [141]

MDH2/MDH1 [142]

MECR/ETR1 [143]

MPC1/MPC1 [144]

PDHA1/PDA1 [145]

PDHX/PDX1 [146]

PPA2/PPA2 [147]

SLC25A13/AGC1 [148]

SLC25A3/PIC2-MIR1 [149,150]

Fe–S cluster biogenesis

ABCB7/ATM1 [151–153]

FDXR/ARH1 [154]

FXN/YFH1 [155–160]

ISCU/ISU1 paralog ISU2 [161,162]

LYRM4/ISD11 [163]

NFU1/NFU1 [164]
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Table 1. Cont.

Function Human/Yeast Gene References *

Enzyme co-factors

COASY/CAB5 [165,166]

LIPT1/LIP3 [167]

LIPT2/LIP2 [168]

PANK2/CAB1 [169]

Metabolite transport

SLC25A1/CTP1 [170]

SLC25A4/AAC2 [171–179]

SLC25A19/TPC1 [180]

SLC25A32/FLX1 [181]

Electron carriers

CoQ

COA6/COA6 [182,183]

COQ2/COQ2 [184–187]

COQ4/COQ4 [188,189]

COQ5/COQ5 [190]

COQ6/COQ6 [191,192]

COQ8A/COQ8 [193]

COQ8B/COQ8 [194]

COQ9/COQ9 [195,196]

PDSS1/COQ1 [187]

Cytc
CYCS/CYC1 paralog

CYC7 [197,198]

HCCS/CYC3 [199–201]

In order to use the heterologous complementation approach, the human cDNA is
inserted in a specific yeast expression vector, under the control of an appropriate promoter,
and containing a yeast selectable marker.

An example of a heterologous complementation approach refers to the GRACILE
syndrome-related gene BCS1L, which encodes a mitochondrial chaperone required for
the correct assembly of complex III being necessary for the incorporation of the Rieske
FeS protein Rip1 [46–48,50,202]. Another example of validation where human cDNA was
directly used is that of COASY [165,166], a gene encoding for the mitochondrial bifunctional
enzyme, coenzyme A synthase [203], whose mutations are associated with the development
of a form of neurodegeneration with brain iron accumulation (NBIA), namely CoPAN
(COASY protein-associated neurodegeneration) characterised by iron accumulation in the
brain and the impairment of mitochondrial energy generation [165,204].

It must be underlined that using the human cDNA to evaluate the consequence of a
mutation has the advantage that a direct demonstration of the role of the amino acid substi-
tution is obtained. However, this approach could not be suitable if the complementation is
fair, preventing further phenotypic analysis, or if the expression levels are not optimised.

When human cDNA is unable or unsatisfactorily to complement the yeast null mutant,
the homologous complementation approach is performed. This approach is based on
the fact that if an amino acid is conserved or semi-conserved, it should perform the
same role in yeast and human protein, so that a detrimental effect in the yeast protein
should replicate what happens in the human protein. At first, the conservation of the
amino acid during the evolution from yeast to human is evaluated by the alignment of
proteins. If the residue is conserved, it could be directly mutagenized, thus producing
the “pathological” allele. When the mutation affects a non-conserved residue but the
surrounding stretch is conserved, a general role of this region is suggested; in this case, it is
possible to replace the yeast amino acid with the corresponding wild-type residue present



Genes 2021, 12, 300 7 of 28

in human protein to serve as the “humanised” control. The yeast mutant allele and the
humanised control are then expressed in a yeast strain deleted of the gene under analysis to
evaluate the ability to complement the mutated phenotype. In this approach, the gene copy
present in the yeast genome can be directly mutagenized, for example, through the “delitto
perfetto” technique [205]. Alternatively, the wild-type and mutant genes can be cloned in a
plasmid and inserted in the null mutant. An example of homologous complementation
approach regards the disease-related gene ISCU which encodes a scaffold protein needed
for the assembly of iron–sulfur (Fe–S) clusters and whose recessive mutations lead to
myopathy or skeletal and cardiac myopathy [206–208] in human. The modelling of a
heterozygous missense mutation in the corresponding yeast gene ISU1 allowed to confirm
both pathogenicity and dominance of the new variant [162] (see also paragraph 4). The
same approach also allowed to validate the pathogenic role of a mutation in COX6B gene,
encoding a subunit of complex IV, associated to severe infantile encephalomyopathy [43].

If the human cDNA does not complement the yeast deletion, and the amino acid under
investigation is present in a region which is not conserved, a third strategy can be attempted,
based on the construction of a chimeric gene which includes a fragment of the yeast gene
and a fragment of the human cDNA. One of the causes of the lack of complementation
of genes encoding for mitochondrial proteins is that the human mitochondrial targeting
sequence (MTS) necessary for the import into the mitochondria is not recognised by the
yeast import machinery, since the MTS sequences are partially different between mammals
and yeast [209]. In this case, the chimera can be constructed by changing the region
encoding the MTS of the human gene with its yeast counterpart, or with a generic yeast
MTS. Such an approach has been used, for example, for constructing a model for studying
mutations in POLG, encoding the mitochondrial DNA polymerase [89], or in SPG7 and
AFG3L2, which encode for two subunits of the human mitochondrial inner membrane
m-AAA protease [63]. However, in some cases, it is necessary to replace other parts of
the human protein with that of yeast to allow complementation, creating a true chimeric
polypeptide. This approach has been used for studying mutations in OPA1, which encodes
for a mitochondrial dynamin like GTPase involved in mitochondrial fusion [128,210] and
in ANT1, which encodes for a mitochondrial ADP/ATP carrier [174,211].

When the deletion of the yeast gene leads not only to an OXPHOS phenotype but also
to the lethality or to the irreversible loss of mtDNA, other strategies can be used to create a
relevant model. The most used is the plasmid shuffling strategy [212]. To this end, the gene
is disrupted in a strain containing a plasmid with the selectable marker URA3 and a wild-
type copy of the gene. This strain is then transformed with a plasmid harbouring a different
selectable marker and expressing the mutant allele. The treatment with 5-fluoroorotic acid
(5-FOA) allows the growth of only those strains expressing hypomorphic mutant alleles.
This is the case of some mutations in GFER, which encodes for a disulphide relay system
protein [65]. When the deletion is associated to defects or loss of mtDNA, the selection on
5-FOA will allow to obtain cells containing only the mutant allele and assess the pathogenic
role of the mutant variant. This approach has been used to study pathogenic mutations
in MIP1, the yeast ortholog of POLG [213]. The advantage of this technique is that it is
rapid, and the wild-type strain and the mutant ones are isogenic. A second strategy that
can be used is based on the insertion of the mutant allele in a heterozygous diploid strain
and performing tetrad analysis after sporulation. This approach has been used to study
the effects of mutations in MEF1 and TUF1, which encode for mitochondrial translation
elongation factors [120]. A third strategy that can be used when gene deletion is associated
to mtDNA loss relies on cytoduction, i.e., the fusion of the cytoplasm of the mutant strain
devoid of mtDNA with the cytoplasm of a second strain [214]. This technique has been
used for finding MIP1 mutant alleles which behave as antimutators of the mtDNA [215].
However, these two last techniques have some limitations, mainly the non-isogenicity and
the request of haploid strains with complementary auxotrophies, respectively.
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3. Validation of Mutations and Understanding of Pathogenetic Mechanisms
3.1. Analysis of OXPHOS Phenotypes

Once the model of the disease is obtained, the first, very quick way to validate (or not)
an alleged pathological mutation is to test the ability of the mutant strain to grow in the
presence of oxidative carbon sources such as glycerol, ethanol, acetate or lactate by a spot
assay analysis. The growth of the mutant strain is then evaluated by comparison with the
corresponding wild-type strain both at 28 ◦C, the optimal temperature for yeast growth,
and at 37 ◦C, a temperature at which S. cerevisiae is still able to grow but often makes more
easily evident the detrimental role of an amino acid substitution.

Alternatively to the spot assay, a growth curve can be obtained to precisely and
quantitatively evaluate the mutant growth performance, allowing the identification of
minor defects not detectable with a semi-quantitative test such as a spot assay. Irrespective
of the used test, if the strain carrying the mutant allele shows a complete absence or a
reduction in oxidative growth, it is possible to conclude that the mutation is detrimental,
thus validating it as pathological. In the first case, the mutation is very severe; in the
second case, the mutation is leaky and it is possible to conclude that in this case the protein
function is partially maintained. In contrast, if the mutant strain does not show a reduction
in oxidative growth, it is not possible to exclude a causative role for the mutation tested
and a deeper analysis must be carried out. Alternatively or in addition to an oxidative
growth test, oxygen consumption rate (OCR) can be measured on whole cells grown in
non-repressing conditions in which mitochondrial respiration is active. This analysis also
allows to determine the severity of the damage, which in most cases correlates with the
phenotypic severity in humans.

Since one of the predominant roles of mitochondria is the production of energy
through oxidative phosphorylation (OXPHOS), the enzymatic activity of the respiratory
complexes and the rate of ATP synthesis could also be measured to compare mutants
with the wild-type strains [216,217]. Additionally, mitochondrial membrane potential
(∆Ψm) and the production of reactive oxygen species (ROS) could be evaluated because
they are intimately connected to OXPHOS [218,219]. Moreover, to understanding exactly
what is affected in the mutant strain, it is possible to explore a variety of phenotypic and
molecular defects. The specific analyses appropriate to perform depend on the specific
function of the protein encoded by the gene under investigation, as, for example, iron
content measurement, mitochondrial dynamics or mitophagy [162,220].

A particular case of validation refers to a mutation found in a gene of unknown func-
tion and previously not associated with mitochondrial pathologies. This is, for example, the
case of gene LOC644096, now termed SDHAF1, whose mutations lead to infantile leukoen-
cephalopathy. The biochemical analysis of mitochondrial respiratory chain complexes
performed in muscle and fibroblasts have shown a specific reduction in SDH and SCoQR.
Because the transfection of fibroblasts with the gene LOC644096 was not suitable to exam-
ine whether the disease-segregating missense mutations of SDHAF1 were indeed causing
cII deficiency, S. cerevisiae was used as a model. The putative SDHAF1 yeast ortholog,
YDR379c-a, an uncharacterised ORF of 239 bp was disrupted, and the null mutant resulted
OXPHOS incompetent because of a profound and specific reduction in SDH activity. This
suggested that YDR379c-a, named SDH6, encoded a protein which was specific for complex
II. When yeast mutant alleles carrying the equivalent human mutations were created and
introduced into the sdh6∆ mutant, the transformant strains behaved like the null mutant
indicating the pathological effect of the mutations [45].

3.2. Determination of mtDNA Stability

Like its human counterpart, yeast contains several copies of mtDNA molecules, from
10–50 to 50–200 copies per cell, depending on the carbon source, growth temperature
and haploid/diploid status [221,222]. As in human mitochondria, several copies of yeast
mtDNA are packaged into 10–40 protein–DNA complexes, called nucleoids. These are
anchored to the mitochondrial inner membrane [223–225] and contain proteins involved
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in packaging, replication, transcription, repair and recombination but also heat shock or
Krebs cycle proteins [223,225–229].

One of the most peculiar characteristics of S. cerevisiae is petite positivity, i.e., it can
survive without mtDNA. In this case, ATP is produced through alcoholic fermentation,
provided that a fermentable carbon source is added in the medium, a condition resulting
in colonies of small size called “petite”. The “petite phenotype” can be caused by mutations
in nuclear genes (pet mutants) [230], or directly by mtDNA mutations (cytoplasmic petite
mutants) [24]. Cytoplasmic petite mutants, called “petites”, arise spontaneously at high
frequency even in a nuclear wild-type background (around 1–10% depending on the
strain), and can be devoid of mtDNA (rho0 cells) or carry long deletions of mtDNA (rho−

cells); in the latter case, the mtDNA often contains several tandem repeats of the same
sequences [231]. Cells containing whole mtDNA are called rho+. Rho− mtDNA genomes
are not very stable and may result in the loss of mtDNA, making the cell rho0. Mutations
in several nuclear genes involved in the replication, recombination and repair of the
mtDNA, but also in its maintenance and integrity, can affect the rho status of the cells
(reviewed in [232]).

When a mutation in a mtDNA molecule occurs, the cell is heteroplasmic. Contrary
to what happens in mammals, heteroplasmy is just a transient condition in yeast, giving
rise, in a few generations, to two homoplasmic populations of cells, each with only a
kind of mtDNA genome [233–235]. The effects of nuclear mutation on mtDNA stability
can be measured through the determination of the petite frequency, i.e., the ratio between
the number of petites colonies and the number of total colonies. Although yeast cells
are homoplasmic, and human cells are mainly heteroplasmic, a population of yeast cells
recapitulates the heteroplasmic status of a single human cell. The higher the frequency
of petites is, the higher the detrimental effect of the mutation is on the maintenance of the
integrity and on stability of the mtDNA. It must be underlined that the petite frequency
depends on two factors: an intrinsic factor, which depends on both the strain background,
in particular the nuclear mutation under investigation, which influences the onset of petites
per generation, and on the growth rate of rho+ vs. petite cells, which is generally different
depending on the strain; an extrinsic factor which depends on the growth conditions,
such as the medium, carbon source, and temperature, which can influence both the onset
of petite cells and the growth rates [232]. Then, it is critical that the comparison between
mutant and wild type is performed in the same genetic background and in the same growth
conditions. All the methods used to measure the petite frequency, described in [212], are
based on a pre-growth in an oxidative carbon source to minimise the presence of petites.
This is followed by growth in a medium supplemented with a fermentable carbon source,
such as glucose, for several generations (at least 10–15), to allow the onset and the growth
of petite cells. This analysis can be conducted on a cell population or on cells deriving
from single colonies. The first method offers the advantage that the onset of petites occurs
independently several times in several cells, resulting in a frequency that is rather constant,
whereas in the second case, the petite frequency of each colony is highly variable since the
number of petites is strongly influenced by the time of the onset of the first petite cell and
thus the results must be analysed as in a fluctuation test based on the median.

Moreover, to discriminate between rho− and rho0 cells, and then to distinguish if a
nuclear mutation results primarily in deletions or in depletion of mtDNA, three main
methods can be applied [212]: (i) crossing a number of petite cells with different mit−

tester strains, harbouring a single point mutation in a mitochondrial gene encoding for a
respiratory complex subunit; if at least one of the diploids obtained is respiratory proficient,
it means that the tested cell retained a mtDNA fragment encompassing the mit− mutation
and then it was rho−; (ii) analysis by the Southern Blot of the mtDNA extracted from
petite colonies using an ori fragment as a probe; (iii) staining of mtDNA with DAPI (4′,6-
Diamidine-2′-phenylindole dihydrochloride), which, in yeast, binds both the nuclear DNA
and the mtDNA. By these techniques, it was shown that some mutations in POLG/MIP1
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increase primarily the frequency of rho− colonies, whereas others mostly increase the
frequency of rho0 colonies [77,78].

Some nuclear mutations also result in a decrease in the number of intact mtDNA
molecules, i.e., the cells are respiratory proficient, but contain less mtDNA. The relative
mtDNA levels can be measured through qPCR, amplifying a region of one of the mito-
chondrial protein genes as the target and a region of the nuclear DNA, such as ACT1, as
the control [236]. By comparing the mtDNA/nuclear DNA ratio of a nuclear mutant strain
and of the corresponding wild-type strain, it is possible to evaluate whether the mutation
is associated to the depletion of mtDNA. An example of this approach is the study of the
effects of polymorphisms/mutations in POLG/MIP1 on the mtDNA [237].

Mitochondrial fusion and fission have a critical role in several aspects of the mitochon-
drial metabolism, among which are the replication and fidelity of the mtDNA [238,239].
Indeed, the absence of fusion results in the complete loss of mtDNA in yeast [240,241] and
the partial loss of mtDNA in mammalian cells [242]. Mitochondrial fission prevents the
clustering of nucleoids resulting in an unbalanced distribution of mtDNA copies within the
mitochondria. Interesting enough, concomitantly inhibiting fission and fusion can suppress
cellular dysfunction, including in yeast and in human cells [243]. Due to the evolutive
conservation of genes also associated to fission and fusion, the consequences of human
mutations have been evaluated in yeast. As an example, expression of a the MGM1-OPA1
chimeric construct was used to model both dominant and recessive human pathological
mutations in OPA1, associated to optic atrophy (DOA), to DOA+ and to pathologies associ-
ated to mtDNA depletion [127,128]. However, in mammalian cells, mitochondrial fusion,
allowing mtDNA genomes with distinct mutations to complement each other, seems to
ameliorate the detrimental effects of heteroplasmic mtDNA mutations and then the clinical
severity of inherited mtDNA encephalomyopathies [242].

3.3. Analysis of Mitochondrial Protein Synthesis (MPS)

A correct OXPHOS metabolism may also depend on the correct gene expression and
translation of the mtDNA. In particular, mutations in all the nuclear-encoded proteins
involved in mitochondrial transcription, the processing and maturation of the RNAs,
the aminoacylation of the tRNA and translation can result in defects of the MPS and,
in turn, in defects of the OXPHOS system. In addition to specific analyses linked to
specific genes under investigation, such as the determination of the maturation of the
RNA, the presence of specific modifications in the tRNAs and the levels of aminoacylated
tRNA, [100,103,244,245], the main analysis used to evaluate such defects is the measurement
of the MPS.

The two main methods for measuring the MPS are based on an SDS-PAGE gel elec-
trophoresis of proteins labelled in vivo or in organello [246]. In both cases, cells are grown
in medium supplemented with a non-fermentable carbon source, if the strain is respira-
tory proficient, or in non-repressing conditions, such as with galactose, or with glucose
at low concentrations until exhaustion. The presence/absence and the quantity of the
eight mitochondrial-encoded proteins (in order, the mitochondrial subunit Var1, and the
OXPHOS complexes subunits Cox1, Cox2, Cob, Cox3, Atp6, Atp8/Atp9) can thus be
assessed and the comparison between the mutant strain and the corresponding wild-type
allows the identification of those mutations which affect the protein synthesis. Mutations in
some genes, such as those encoding for aminoacyl-tRNA synthetase, generally reduced the
levels of all the mitochondrial proteins, since the whole protein synthesis is compromised.
Mutations in other genes, on the contrary, mostly or specifically affect the synthesis of
specific proteins. For example, mutations equivalent to the human ones in MTO1, which
encodes for a subunit of the complex which catalyses the 5-carboxymethylaminomethyl
modification of the wobble uridine base in mitochondrial tRNAs, affected specifically the
synthesis of Cox1, Cox2 and Cob; on the contrary, mutations in TRZ1, which encodes
for the tRNA 3’-end processing endonuclease tRNase Z, affected the synthesis of all the
mitochondrial proteins, though at a different extent [92,95].
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3.4. Evaluation of Protein Stability

Another aspect that can be evaluated in the yeast models of diseases is the effect of
missense mutations on the stability/quantity of the protein. A reduction in the protein
steady-state level could be the molecular cause of the disease or at least a major contributor.
Unfortunately, only a few commercial antibodies are available to date that specifically
recognise yeast mitochondrial proteins. To overcome this limitation, the addition of a
polypeptide tag enables revealing the protein under analysis with an antibody against
the tag sequence. However, it is necessary to exclude that the tag addition interferes with
protein import and protein function [70].

To assess the functionality of the fusion protein, a complementation test to evaluate
oxidative growth is performed comparing the phenotype of the strain expressing the
tagged vs. untagged wild-type protein. The steady-state level of mutated proteins is then
analysed by Western blot and immunodetection, directly on whole cell protein extract
and using cytosolic or mitochondrial markers as the loading control. Interestingly, the
overexposure of the signals could allow to evidence a degradation product pointing out
that the mutant protein is unstable. Such a situation was, for example, observed by
studying the human mutation R183Q in the pitrilysin metallopeptidase 1 encoded by
PITRM1 in yeast, taking advantage of the presence of the orthologous gene, CYM1. This
autosomal recessive missense mutation, associated with protein instability, was found in
two patients presenting a slowly progressive neurodegenerative disease characterised by
mental retardation, spinocerebellar ataxia, cognitive decline and psychosis [68].

3.5. Analysis of Mutant Proteins Localisation

The pathogenic variant can also interfere with the correct protein localisation into
mitochondria. To assess this possibility and take advantage of the available antibody or
a tag antibody, Western blot analysis could be performed. This approach was used to
analyse mutations in MPV17, associated to the hepatocerebral form of mitochondrial DNA
depletion syndromes (MDDS) and Navajo neuro-hepatopathy, using the yeast orthologous
gene SYM1. Both genes encode for a small protein localised to the inner mitochondrial
membrane, whose function is not yet fully understood. The impact of seven pathological
missense mutations, localised in different protein domains, on correct mitochondrial
localisation was assessed demonstrating that the mutated residues do not compromise
protein import [75].

By exploiting yeast strains expressing pathogenic variants, it is also possible to eval-
uate if they interfere with the ability of the mutated protein to be part of a complex. A
relevant fraction of mitochondrial proteins is in fact localised in the inner mitochondrial
membrane [70] and some of these are organised into complexes. This is, for example, the
case for the proteins of the electron transport chain complexes, except for complex I that
is not present in S. cerevisiae, where it is replaced by a non-proton-translocating NADH
dehydrogenase activity performed by a single protein: Ndi1p [247]. Blue native poly-
acrylamide gel electrophoresis (BN-PAGE) technique, initially set up to study principally
mitochondrial respiratory chain enzymes [248], can be used to analyse any protein com-
plex [249] as respirasomes (supercomplexes derived by different stoichiometric aggregates
of the respiratory complexes) [250]. For example, this technique was used to assess the
effects of pathogenic mutations in the cIV assembly factor SURF1, Shy1 in yeast, demon-
strating that pathological variants compromise the cIV assembly and the formation of the
supercomplexes with the cytochrome bc1 complex [55,56]. With the same technique, it was
demonstrated that Sym1, the equivalent of MPV17, takes part in a high molecular–weight
complex of which the composition is still unknown [251]. Furthermore, the impact of seven
MPV17/SYM1 missense mutations was assessed showing that six of them compromised
the formation of the fully assembled complex [75].
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4. Inheritance Pattern Analysis: Dominance/Recessivity and Gene Interactions Analysis

A great advantage offered by yeast is the possibility to have information on the domi-
nance/recessivity of mutations, which is not always easy to collect in patients, especially
in sporadic cases with no familial history. The dominance/recessivity of a mutation can be
established by comparing the phenotype of a diploid heterozygous strain harbouring the
mutation under analysis with an isogenic diploid homozygous strain. If the phenotype
of the heterozygous strain is similar to that of the homozygous strain, this means that the
mutation is recessive, although it is not possible to discriminate whether the allele is null
or hypomorphic and, in the latter case, the degree of hypomorphism. On the contrary, if
the heterozygous strain shows a detrimental phenotype compared with the homozygous
strain, it means that the human mutation is dominant, resulting in an antimorphic allele or
in a neomorphic allele and causing a negative dominance or a gain-of-function dominance,
respectively. However, the dominance can also be due to haploinsufficiency.

Several yeast genes, when disrupted in a single copy in a diploid strain, cause haploin-
sufficiency (www.yeastgenome.org, [252,253]). For genes encoding mitochondrial proteins,
haploinsufficiency, if present, generally results in a decrease in respiratory growth, of
respiratory activity and/or of mtDNA stability, i.e., the hemizygous shows a detrimental
phenotype compared to the wild-type homozygous strain.

If haploinsufficiency occurs for the gene under investigation, more detailed informa-
tion can be inferred by comparing the diploid heterozygous with both a wild-type diploid
homozygous and the hemizygous strain. Depending on the heterozygous strain genetic
background, the hemizygous can be a diploid deleted in one gene copy or a null strain
transformed with two plasmids, one empty and the other harbouring the wild-type allele.

When the heterozygous strain shows a phenotype similar to that of the hemizygous
one or intermediate between the homozygous strain and hemizygous one, it means that the
allele is null or hypomorphic, respectively, and the mutation causes a dominant pathology
due to haploinsufficiency. However, if in humans no haploinsufficiency is associated to the
gene under analysis, the mutation will likely behave as recessive and the pathology occurs
only when in homozygosis or in compound heterozygosis with a second mutation. When
the phenotype of the heterozygous strain is more detrimental than that of the hemizygous
strain, it suggests that the human mutation alone can be the cause of the pathology due to
a negative dominance or to a gain-of-function dominance.

On the assumption that the hemizygous strain shows haploinsufficiency, when het-
erozygous and homozygous strains show similar phenotypes, the mutation is recessive;
this means that the allele is hypomorphic and the human mutation is pathological in
compound with a second mutation or is a phenotypic modifier.

An example of this genetic analysis is the study on mutations in MIP1, the ortholog
of the human POLG (reviewed in [213]). Some mutations in the polymerase domain
abolish the maintenance of the mtDNA in the haploid strain, whereas the heterozygous
strain shows an increase in the petite frequency compared to the hemizygous strain: these
mutations cause dominant pathologies in patients. Instead, other mutations strongly
increase the petite frequency or make the haploid strain rho0, whereas the behaviour of the
heterozygous is intermediate or similar to that of the hemizygous strain. Considering that
POLG does not show haploinsufficiency in humans, these mutations are typically recessive
and are found in homozygosis or in compound heterozygosis in patients. Regarding MIP1,
it should also be noted that some mutations have a slight effect in the haploid background
and any effect when compared with heterozygous and wild-type homozygous strains.
These mutations are typically polymorphisms which behave as phenotypic modifiers
worsening the effects of the pathological mutations in compounds. Another example of
dominance/recessive analysis concerns the gene ISCU, whose model has been shown in
paragraph 2, and whose recessive mutations have been associated to diseases in humans.
The analysis performed in yeast allowed the identification of the first dominant mutation,
as highlighted by the fact that the heterozygous strain was associated with a respiratory
deficient phenotype [162].

www.yeastgenome.org
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Yeast can also be useful when more mutations are present in the patients, in order to un-
derstand which mutations are responsible for the pathology and if an additive/synergistic
effect occurs, suggesting a functional interaction of the mutated amino acids. Indeed,
some patients show two mutations in cis and/or in trans. This is rather common for
genes in which several SNPs/mutations are present in the population, especially those
which encodes for long mRNA such as OPA1 (https://databases.lovd.nl/shared/genes/
OPA1 (accessed on 18 February 2021)) [254] or POLG (https://tools.niehs.nih.gov/polg/
(accessed on 18 February 2021)) [255], in which more than 250 pathological variants have
been identified. If two mutations are present in cis, the role of each mutation can be dis-
sected in yeast by introducing the single mutation in the gene under analysis. In this case,
three mutant alleles are constructed: an allele containing one of the two mutations, an allele
with the other mutation and the double mutant allele. By comparing the phenotype of each
haploid strain harbouring these mutant alleles with the wild-type haploid strain, four main
cases are possible. First, both single mutant alleles are neutral, but the double mutant allele
is associated to a detrimental phenotype: in this case the mutations are not pathological
alone, but just in compound, suggesting a functional interaction. Second, a single mutant
allele is associated to a detrimental phenotype and the double mutant allele has the same
behaviour: one mutation is pathological whereas the other is a neutral SNP. Third, a single
mutant allele is associated to a detrimental phenotype, and the double mutant allele leads
to a worse phenotype: one mutation is pathological whereas the other is a phenotypic mod-
ifier which can influence the phenotype of the pathological mutation. Fourth, both single
mutant alleles are associated to a detrimental phenotype, and in the double mutant, the
phenotypic effects are additive or synergistic: both mutations are pathological alone, and
when in compound, negatively affect the effect of the other one. Examples of such analyses,
with different outcomes, have been performed for MIP1 and DNM1, which encodes for a
dynamin-related GTPase involved in mitochondrial organisation [78,124].

If two mutations are present in trans, suggestive of a recessive pathology, the analysis
to distinguish the role of each mutation can be performed by comparing the heterozygous
diploid strain harbouring both mutant alleles with the wild-type homozygous strain, and
with two heterozygous strains each harbouring a single mutant allele and a wild-type
allele, and with two homozygous mutants each harbouring one of the two mutations
in both alleles. If the mutations were both recessive, it is expected that the compound
heterozygous strain has a detrimental phenotype compared to the homozygous wild type
as well as to the single heterozygous ones. However, other information can be inferred by
the comparison with both the single heterozygous and the homozygous mutant strains.
For example, thank to this comparison, we demonstrated that a mutation in MIP1 found in
compound heterozygosis with a second mutation was dominant, and acted synergistically
with a second, recessive mutation in trans [78].

5. Yeast as A Model for Mitochondrial Diseases Drug Discovery

To date, no effective treatments exist for mitochondrial diseases [256]. In recent years,
phenotype-based screenings have been proposed in yeast models to find drugs able to
suppress OXPHOS phenotypes associated with mitochondrial diseases mutations.

High throughput drug-screening (HTS) was performed in the case of Friedreich’s
ataxia (FRDA), caused by mutations in the nuclear gene FXN that encodes the highly con-
served frataxin, a chaperone for iron-sulphur cluster (ISC) assembly in the mitochondrial
matrix [257]. More than 100,000 compounds were screened for their ability to improve
mitochondrial functions in yeast lacking the expression of YFH1 gene, the functional orthol-
ogous of FXN. The rescue was recorded by a colorimetric assay, quantitatively monitoring
cell metabolic activity on respiratory substrates [258].

Alternatively, a phenotype-based screening, named “drug drop test” [20,259] has been
developed, in which yeast mutants, defective in oxidative growth due to the alteration of
mitochondrial functionality, are initially spread on a solid medium. The mutants are then
exposed to compounds from chemical libraries, spotted on small sterile filters placed on

https://databases.lovd.nl/shared/genes/OPA1
https://databases.lovd.nl/shared/genes/OPA1
https://tools.niehs.nih.gov/polg/
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the agar surface. The appearance of a halo of enhanced growth around a filter indicates the
effect of the corresponding drug. The strength of this method is that the diffusion of the
molecule around the filter in the agar medium creates a concentration gradient, making
it unnecessary to find the optimal drug concentration by testing different dilution of the
compound. The screen allows to rapidly analyse chemical libraries, like those containing
FDA-approved drugs (i.e., Prestwick or Selleck), in a repurposing approach. The drug drop
test was used for the first time to identify drugs active in the yeast model for ATP synthase
disorders, associated with neurodegenerative syndromes including neuropathy, ataxia and
retinitis pigmentosa (NARP) [259]. Active compounds were then confirmed as effective in
cybrid-based model of NARP.

Phenotype-based screenings enable the identification of potential therapeutic com-
pounds in the absence of validated drug targets and independently on the knowledge of
their mechanism of action. Yeast offers additional experimental tools, like the collection of
homozygous and heterozygous deletant mutants, by which chemical–genomic experiments
can be performed obtain an indication on the molecular mechanism of active drugs. In the
haploinsufficiency profile (HIP) approach, the reduced fitness of a heterozygous deletion
mutant to the inhibitory concentration of a drug indicates that the deleted gene is the
molecular target of the drug [260]. By a chemical genomic analysis of haploinsufficiency,
heterozygous Tim17 or Tim23, the components of the translocase inner mitochondrial
membrane involved in mitochondrial protein import, displayed sensitivity to sodium
pyrithione (NaPT) [261]. In vitro experiments indicated that NaPT specifically influences
the import of pre-sequence proteins via Tim23 complex and indicates the machinery of the
mitochondrial import as a potential target for a therapeutic approach.

By the drug drop test, two molecules, the antibiotic pentamidine and clarithromycin,
have been found to actively restore oxidative growth and OXPHOS phenotypes due to
mutations in the yeast BCS1 gene, the orthologue of the human BCS1L [262]. It has
been demonstrated that pentamidine and clarithromycin target mitochondrial rRNA, thus
altering the synthesis of mitochondrial encoded OXPHOS subunits, with the consequent
alteration of the OXPHOS complex assembly. However, the two antibiotics were able to
rescue the respiratory phenotypes of bcs1 mutants carrying missense mutations, that not
completely compromise the Bcs1 activity, but did not restore phenotypes due to point
mutations or deletion that fully abolish Bcs1 function. In vivo experiments performed in
yeast also allowed to propose a model of action of the two drugs.

Very recently, taking advantage of the impaired oxidative growth of a strain carrying a
mutation in the CAB1 gene, the ortholog of the human PANK2 that encodes the panthotenate
kinase (PANK), a screening of the Selleck chemical library has been performed. Two
molecules in particular, nalidixic acid and 5,7 dichloro-8-hydroxyquinoline, were found to
be able to restore the multiple defects associated with PANK deficiency, with the rescue not
being allele-specific [169].

Yeast-based screenings have also been used to determine therapeutic strategies against
mitochondrial diseases affecting mtDNA stability. This is the case of DOA, and of the
more severe form named DOA-plus, the most common mitochondrial optic neuropathies,
characterised by the gradual loss of vision as a result of the degeneration of the optic nerve
cells. These pathologies are mainly caused by mutations in the nuclear gene OPA1, encoding
a mitochondrial GTPase implicated in mtDNA maintenance, [263–265] whose functional
orthologue in yeast is MGM1 gene [266]. Drugs were first selected as able to restore
the thermal sensitive (ts) growth on respiratory substrates of a yeast mutant harboring
mgm1I322M mutation. This mutation is equivalent to I382M mutation in OPA1 [127], one
of the few pathological mutations that can be modelled in yeast, due to the low similarity
between MGM1 and OPA1 sequences. Positive hits were then subject to a subsequent
screening, using a strain harbouring the ts chim3S646L mutation in the MGM1/OPA1 chimeric
allele, encoding the N-terminal region of Mgm1 and the whole GTPase, middle and GED
domains of OPA1 [128] (see paragraph 2) identifying six effective drugs. Five of them
also ameliorated, to a different extent, the pathological OXPHOS phenotypes of Opa1 null
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mouse embryo fibroblasts (MEFs), that express the human OPA1 isoform 1, bearing R445H
and D603H mutations, associated with DOA-plus and DOA, respectively. The analysis in
patient’s fibroblasts bearing the same mutations allowed to identify the tolfenamic acid, a
non-steroidal anti-inflammatory drug, as the most promising therapeutic compound and
to propose the repurposing of this drug in a clinical trial for neurodegenerative diseases
associated with OPA1 mutations [267].

Therapeutic molecules were also found via yeast-based screening for a broad spectrum
of mitochondrial pathologies, including Alper syndrome, ataxia neuropathy, dominant
and recessive progressive external opthalmoplegia (arPEO and adPEO), characterised by
mtDNA deletions or depletion consequent to the mutation in the mtDNA polymerase
POLG [255].

Two chemical libraries of FDA-approved molecules were screened, taking advantage
of one of these mip1 mutant (G651S equivalent to POLG G848S) whose ts mutation conferred
an evident but not irreversible phenotype. The clofilim tosylate (CLO), belonging to
a class of anti-arrhythmic agents, displayed the best rescuing activity, suppressing the
respiratory growth defect and preventing mtDNA loss in all mip1 mutants tested [268]. The
rescuing effect of CLO was later validated in two animal disease models, C. elegans and
zebrafish [269], as well as in the fibroblasts of a patient carrying compound heterozygous
POLG mutations. The molecular mechanism by which CLO exerts the rescuing activity is
not yet known, however, the successful application in this four-model approach indicates
that CLO is acting by a rescuing mechanism conserved through the evolution.

6. Conclusions

Early studies and more recently, NGS techniques, have made possible the identifi-
cation of a huge number of novel human genetic variants whose causality in determin-
ing mitochondrial syndromes was demonstrated through functional analyses, often in
model systems. Because of the evolutionary conservation of genes and systems, the study
of human genetic defects associated with mitochondrial dysfunction has often been di-
rectly addressed in the model organism Saccharomyces cerevisiae, the molecular and genetic
workhorse for much of our understanding of mitochondrial biogenesis in eukaryotes. As
shown in Table 1, S. cerevisiae helped to resolve the cause of OXPHOS diseases for about a
third of the disease genes known today. It can also be noted that the contribution to the
identification of causative genes-concerned variants associated to genes with a wide range
of mitochondrial functions, from those that have a specific role in OXPHOS biogenesis, as
defects in respiratory complexes or in DNA maintenance and expression, to those that have
a secondary impact on OXPHOS caused by deficiency in protein import and processing,
metabolite and electron transport, membrane dynamics and composition, TCA cycle and
metabolism, Fe–S cluster biogenesis and protein quality control.

Today, one of the major challenges in the field of mitochondrial diseases is the iden-
tification of the genetic basis of the conditions of patients lacking a diagnosis, generally
because of the clinical and genetic heterogeneity of these pathologies. Certainly, inter-
national collaboration within the mitochondrial disease field will improve the identifica-
tion of additional cases with similar clinical phenotypes and above all, of new disease
genes. Model systems will therefore continue to prove being fundamental in proving
the pathogenicity of the variants and in improving our understanding of the role played
by different genes. In this context, yeast remains a powerful model for discovering the
function of mitochondrial proteins, especially for those yet to be characterised. In fact, it
should be remembered that many proteins present in the mitochondrial proteome still lack
any detailed characterisation. Furthermore, another aspect still minimally considered is the
indirect effect of cytoplasmic proteins on mitochondrial biogenesis. A screening recently
done in yeast, on the negative effect of heat stress on respiratory capacity, allowed to
expand the repertoire of genes affecting mitochondrial function, allowing the identification
of 105 new genes and novel pathways, whose corresponding proteins are predominantly
present in the cytoplasmic proteome [270].
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Another major challenge relative to the mitochondrial disease is their treatment. Their
heterogeneity, the intrinsic variability of mitochondrial genetics, the fact that they directly
or indirectly affect several organs via ATP production, and the impossibility for many drugs
to reach the brain, which is often affected in mitochondrial disorders, represent the main
problems in the development of effective therapies [256]. A radical cure for these diseases
will probably only come from gene therapy. However while “tailored”, personalised
therapeutic approaches, such as gene therapy, cell therapy and organ replacement can be
useful for individual conditions [256], their costs cannot be easily supported by health
authorities, given the large number of patients affected by mitochondrial diseases. For
this reason, the identification of therapeutic molecules effective on a broader spectrum
of mitochondrial pathologies remains an important objective to alleviate, if not eliminate,
the defects responsible for the diseases. In this context, given the long times required
for drug development and the numerous and different targets of drugs, repurposing
available therapeutic molecules remains an interesting way forward. Even from this point
of view, yeast disease models have demonstrated to be useful, thanks to the techniques
here reported, allowing to quickly analyse a large number of molecules. Some of these
compounds were found to be effective also in the corresponding animal models and in
patients fibroblasts, despite the more complex genetic interactions present in animals,
including humans, than in yeast. The numerous disease models available in yeast can also
be explored to identify beneficial broad-spectrum molecules.

In addition to the great advantages of the yeast model, it should be noted that some
limitations exist: (i) yeast cannot be used to model a disease at the scale of an organ or an
intact complex multicellular organism; (ii) yeast does not allow to assess tissue specificity
and disease progression; (iii) some functions fulfilled by human mitochondria do not
exist in S. cerevisiae such as the respiratory complex I which, however, is present in the
yeast Yarrowia lipolytica, used to model mutations related to this complex [271]. Moreover,
cell division and mitochondrial replication in human development could lead to much
greater variation in the relative levels of the mtDNA mutation in a largely stochastic
system [23]. This could induce compensatory biogenesis mechanisms to maintain the cell’s
mitochondrial function, an effect not observable in yeast where the heteroplasmic condition
is rapidly lost. Despite these limitations, mitochondrial function conservation between
yeast and humans renders yeast a key model for mitochondrial medicine.
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