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Abstract: Two transcribed retrocopies of the fibroblast growth factor 4 (FGF4) gene have previously
been described in the domestic dog. An FGF4 retrocopy on chr18 is associated with disproportionate
dwarfism, while an FGF4 retrocopy on chr12 is associated with both disproportionate dwarfism
and intervertebral disc disease (IVDD). In this study, whole-genome sequencing data were queried
to identify other FGF4 retrocopies that could be contributing to phenotypic diversity in canids.
Additionally, dogs with surgically confirmed IVDD were assayed for novel FGF4 retrocopies. Five
additional and distinct FGF4 retrocopies were identified in canids including a copy unique to red
wolves (Canis rufus). The FGF4 retrocopies identified in domestic dogs were identical to domestic
dog FGF4 haplotypes, which are distinct from modern wolf FGF4 haplotypes, indicating that these
retrotransposition events likely occurred after domestication. The identification of multiple, full
length FGF4 retrocopies with open reading frames in canids indicates that gene retrotransposition
events occur much more frequently than previously thought and provide a mechanism for continued
genetic and phenotypic diversity in canids.

Keywords: Canis lupus familiaris; FGF4; retrocopy; retrogene; pseudogene; retrotransposition;
duplication

1. Introduction

Gene retrocopies, often previously referred to as processed pseudogenes, are formed through
the mRNA-mediated gene duplication of cellular gene transcripts [1]. In mammals, this process is
mediated by long interspersed nuclear elements 1 (L1) acting in trans [2,3]. L1s are the only autonomous,
retrotransposable elements still active today in mammals, and while over 100 active, full-length L1s
have been identified in humans, dogs have more than 200 active L1s [4]. L1 insertion is accomplished
through target primed reverse transcription, a process that results in duplication of genomic DNA
at the insertion site, called a target site duplication (TSD) [5]. Because gene retrocopies are formed
from processed mRNA, they also lack introns and contain a polyA tail, features that distinguish them
from their parental gene. Although retrocopy insertions can occur anywhere in the genome, the L1
machinery shows a preference for the TTAAAA consensus sequence as an insertion site [3,6].
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Retrocopies are more likely to come from highly expressed genes [7], with some genes having
over a dozen retrocopies [8]. Most of the retrocopies present in any given reference genome arose
millions of years ago and have since acquired numerous sequence variants differentiating them from
their parent genes [8]. While many retrocopies have also lost their open reading frame (ORF), L1 is
still actively producing retrocopies with intact ORFs in mammalian genomes. Hundreds of recent,
polymorphic gene retrocopies have been reported in humans and mice [9–11]. Notably, polymorphic
retrocopies were more common in mice than in humans, consistent with mice having more active
L1s [9]. A recent survey of retrocopies in the canfam3 reference genome has identified over 3000
retrocopies, 476 of which were intact [12], and several gene retrocopies have also been identified on the
canine Y chromosome [13]. However, it is still unclear how many recent, polymorphic retrocopies are
in canids that are not present in the canfam3 reference genome.

Two expressed, polymorphic fibroblast growth factor 4 gene (FGF4) retrocopies have been
described previously in dogs on chr18 [14] and chr12 [15], referred to as FGF4L1 (CFA18) and FGF4L2
(CFA12) in this study. Both FGF4L1 and FGF4L2 are associated with forms of disproportionate dwarfism
that are common across many popular dog breeds, and there is evidence that these genes have been
under selection owing their strong phenotypic effects [16,17]. FGF4L2 has also been associated with
canine chondrodystrophy, a disorder characterized by premature degeneration of the intervertebral
discs, which predisposes affected dogs to intervertebral disc herniation [18]. However, chondroid disc
degeneration can also be seen in dogs without FGF4L2, indicating the possibility of alternative risk loci
for the disorder [19].

Because two recent, functional FGF4 retrocopies had already been described in dogs, we
hypothesized that more FGF4 retrocopies could be segregated across dog breeds, which may contribute
to limb morphology and/or disc disease. Previous FGF4 retrocopies were identified following
genome-wide associations for disproportionate dwarfism. In the current study, two approaches were
utilized to identify additional FGF4 retrocopies in dogs. First, discordant read mapping of paired-end
Illumina reads from publicly available whole-genome sequence data was used to identify additional
polymorphic FGF4 retrocopies in canid genomes that would not be identified by common variant
calling techniques. The second approach was to perform exon to exon polymerase chain reaction (PCR)
to identify the presence of an intron-less retrocopy, followed by inverse PCR to identify the site of
insertion. Five additional FGF4 retrocopies were then identified, sequenced, and characterized.

2. Materials and Methods

2.1. FGF4 Retrocopy Discovery in Whole-Genome Sequence Data

Data from six BioProjects (PRJNA448733, PRJEB16012, PRJNA288568, PRJNA377155, PRJEB20635,
and PRJEB32865) were utilized for this approach [20–25]. This included 1125 individuals from 160
different breeds, as well as 101 indigenous dogs, 141 wolves, and 3 coyotes (Supplemental Table S1).
The canine reference genome, CanFam3, does not contain any full length FGF4 retrocopies, and thus
all reads coming from FGF4 retrocopies are aligned to the parental FGF4 gene locus. To identify any
such novel FGF4 retrocopies, aligned paired end Illumina sequence data in the region surrounding
the FGF4 gene (CanFam3 chr18:48,412,000–48,418,000) were downloaded from the Sequence Read
Archive and analyzed. Sequencing files were viewed in Integrative Genomics Viewer [26]. Discordant
paired end reads mapping from exon to exon (Supplemental Figure S1 shown in red) are indicative of
the presence of an FGF4 gene retrocopy somewhere in the genome as retrocopies lack introns, while
discordant paired end reads, wherein one mate maps to the FGF4 gene locus and the other mate maps
to another region of the genome, are indicative of the putative insertion site for an FGF4 retrocopy
(Supplemental Figure S1 shown in teal). The presence of both forms of discordant reads was used as
an indication of an FGF4 retrocopy insertion.
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2.2. FGF4 Retrocopy Discovery in Clinical Cases

Whole-genome sequence data were not available for any of the individuals treated by surgical
decompression for presumed IVDD. Therefore, a molecular approach was developed to test for
novel FGF4 retrocopies in DNA samples. A total of 164 surgical cases that were previously shown
to have 0 copies of FGF4L1 and FGF4L2 were used for novel FGF4 retrocopy discovery [19]. The
presence of FGF4 retrocopies was tested by amplifying the region between exon 1 and exon 3 of
FGF4 (Supplemental Table S2). The identification of a reduced size, intron-less product indicates the
presence of an FGF4 retrocopy (Supplemental Figure S2). When an individual tested positive for an
FGF4 retrocopy and negative for the two known FGF4 retrocopy insertions, inverse PCR [27] was
then performed to identify the insertion site of the FGF4 retrocopy. For inverse PCR, 1 µg of genomic
DNA was digested with the MboI restriction enzyme according to the manufacturer’s instructions
(New England Biolabs, Ipswich, MA, USA), and fragments were then circularized by ligation at final
concentrations varying between 1 and 10 ng/µL using T4 DNA ligase according to the manufacturer’s
instructions for sticky end ligation (New England Biolabs, Ipswich, MA, USA). A set of inverted
primers were designed that amplified circular DNA fragments containing the 5′ end of the FGF4
retrocopy insertion (Supplemental Table S2). PCR was then performed using LongAmp Taq DNA
polymerase according to the manufacturer’s instructions (New England Biolabs, Ipswich, MA, USA).
PCR products were visualized by gel electrophoresis and isolated for Sanger sequencing using a
QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, USA). All PCR primers were designed using
primer3 (http://bioinfo.ut.ee/primer3/) [28].

2.3. Sequencing and Comparitive Analysis of FGF4 Retrocopies

All canine DNA samples used for retrocopy sequencing and subsequent population genotyping
of the FGF4 retrocopies came from the Bannasch Canine Repository and were obtained under UC
Davis Animal Care and Use Committee protocol 18,561 [19] (Supplemental Table S3). Red wolf tissue
samples for DNA extraction were obtained with the approval of the United States Fish and Wildlife
Services. PCR primers were designed to flank the insertion sites of FGF4 retrocopies identified via
discordant paired end reads or inverse PCR (Supplemental Table S1). Entire retrocopy insertions were
then amplified through PCR using LongAmp Taq DNA polymerase according to the manufacturer’s
instructions (New England Biolabs, Ipswich, MA, USA). The full sequence of each retrocopy was
obtained through Sanger sequencing using a series of internal primers (Supplemental Table S2).
Variants in the parental FGF4 gene were observed in a dataset of 722 canids to determine which
single-nucleotide variants (SNVs) were unique to FGF4 retrocopies [20].

2.4. Conservation at Insertion Sites

Evolutionarily conserved elements (ECR) near the FGF4 retrocopy insertion sites were defined
using the 4-Way Multiz Alignment & Conservation track for CanFam2 on the UCSC genome browser [29],
which shows a measure of evolutionary conservation between dog, human, mouse, and rat genomes
using Multiz alignment [30].

2.5. Population Genotyping

Breeds were selected for population genotyping based on the breeds in which they were identified,
excluding breeds where whole-genome sequencing data indicated they did not contain any FGF4
retrocopies. PCR assays utilizing three primers per assay were designed for each FGF4 retrocopy
for population genotyping, as previously described [15]. In each assay, a shared internal primer at
the 3′ end of the FGF4 retrocopy produces a different size amplicon when the retrocopy is present
(Supplemental Table S1).

http://bioinfo.ut.ee/primer3/


Genes 2020, 11, 839 4 of 11

2.6. Height Measurements

Height was measured in selected cases to determine if FGF4 retrocopies had any effect on height.
All height measurements were performed by the same individual using a standard wicket (height
measuring device for dogs). Multivariable linear regression was performed in R studio using the
generalized linear model function with sex and FGF4 genotype included to identify any association
with height.

3. Results

3.1. FGF4 Retrocopy Discovery from Whole-Genome Sequence Data

In addition to the two known FGF4 retrocopies, FGF4L1 and FGF4L2, evidence for four additional
FGF4 retrocopies in canids was observed in the whole-genome sequence dataset (Table 1). The
novel FGF4 retrocopies include a copy on CFA27 (FGF4L3) seen in three Nova Scotia Duck Tolling
Retrievers (NSDTR); a copy on CFA22 (FGF4L4) seen in two Norwich Terriers; a copy on CFA13
(FGF4L5) seen in a Belgian Malinois and a Dutch Shepherd; and a copy on CFA36 (FGF4L6) seen in
two red wolves. Sequence read archive (SRA) accession numbers for these individuals are available in
Supplemental Table S4.

Discordant reads were also observed at the 3′ end of the FGF4 gene locus aligning to a partial
FGF4 retrocopy insertion in the CanFam3 reference genome at chr7:68,372,263–68,373,442. To confirm
whether this was a real FGF4 retrocopy fragment or a mistake in the reference assembly, primers were
designed flanking the insertion and the region was amplified in six Boxers. Five were heterozygous for
the CFA7 partial FGF4 retrocopy insertion, and Sanger sequencing confirmed the sequence matched
the reference genome. Because this retrocopy only contains the 3′ UTR of the gene and has no ORF,
this retrocopy fragment was not considered for further analysis.

3.2. FGF4 Retrocopy Discovery in Dogs Treated for Disc Disease

A surgically treated population of 164 individuals that had neither FGF4L1 nor FGF4L2 was then
tested for the presence of any FGF4 retrocopy using an exon–exon PCR assay. Four of these individuals
tested positive for the presence of an FGF4 retrocopy. These samples were first tested for the other
newly discovered FGF4 retrocopies. One sample, a Shetland Sheepdog, was heterozygous for FGF4L5.
The medical history of this individual indicates that it received a hemilaminectomy to treat a mass that
was not disc-related.

The three remaining dogs were all Pit Bull Terrier mixes that had received hemilaminectomies
for IVDD at relatively young ages (age at time of surgery of 3, 5, and 8 years), and none of the newly
discovered or previously defined FGF4 retrocopies were present in these individuals, indicating they
contained a novel FGF4 retrocopy. Inverse PCR was then performed to discover the insertion site
of the novel FGF4 retrocopies in these individuals, which was on CFA13 (FGF4L7) at approximately
CFA13:25,020,600. The three dogs were all heterozygous for FGF4L7, and Sanger sequencing revealed
that FGF4L7 is a full length FGF4 retrocopy.

3.3. Comparative Analysis of FGF4 Retrocopies

Novel FGF4 retrocopies were confirmed through PCR amplification and sequencing. The genomic
location for the FGF4 retrocopies, their TSD, and genomic sequence surrounding the TSD are shown in
Table 1. Exact TSD length varied from 11 to 17 bases, with a median of 15 bp. The loosely conserved L1
consensus insertion site sequence (TTAAAA) was only observed at the FGF4L5 insertion site. Insertion
sites for 6/7 of the FGF4 retrocopies had a low G/C content compared with the Canfam3 average of
41.3% (Table 1). All FGF4 retrocopies inserted into intergenic regions of the genome. Both FGF4L1
and FGF4L3 inserted into a LINE element, while FGF4L4 inserted into a long terminal repeat (LTR).
The number of evolutionarily conserved regions within 2.5 kb of the insertion sites is also reported in
Table 1.
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Table 1. Genomic sequence at fibroblast growth factor 4 gene (FGF4) retrocopy insertion sites in canids. Target site duplications (TSDs) are in bold and underlined. Ten
bases upstream and downstream from the TSD are included, as well as the strand orientation of the retrocopy, G/C content of the region, and evolutionarily conserved
elements (ECR) within 2.5 kb of the insertion site. FGF4 retrocopies were identified by GWAS, discordant read mapping (DRM), and inverse PCR.

Name Location Sequence at Insertion Site Strand G/C ECR Method

FGF4L1 Chr18:20,443,703–
20,443,735

ACCATGAAATAAGTCAGACAGAGAAAGACAAGT + 36.4 2 GWAS [14]

FGF4L2 Chr12:33,710,158–
33,710,188

ATTCCTATTCAAGTGCTTTGAACTCTTCAAA + 32.3 1 GWAS [15]

FGF4L3 Chr27:24,834,102–
24,834,135

TGAGAATACTCAGGGACCATTTCTATTGACTTTT - 35.3 0 DRM

FGF4L4 Chr22:47,761,852–
47,761,888

TGTCTTTGTCAAGAATATTCTGGTTGTGAGTAATAGA + 32.4 2 DRM

FGF4L5 Chr13:28,020,009–
28,020,044

GCAGTTTCTTAAAACTTAGAGGAACAAAGTAGCTTG + 36.1 6 DRM

FGF4L6 Chr36:11,456,175–
11,456,208

AAAGCATTAATTACCAAAGTACTATTTCATAACT + 23.5 1 DRM

FGF4L7 Chr13:25,020,597–
25,020,632

GAATCGTGTTTAAGAAGGGGTGGTATGACTTGCCCT - 47.2 3 Inverse PCR
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Comparison of each FGF4 retrocopy to the parental FGF4 sequence showed that each novel copy
has a fully conserved ORF (Figure 1). The 5′ UTR of FGF4L3 is truncated by 112 bp compared with
the other retrocopies, and the 3′ UTR in both FGF4L1 and FGF4L4 is truncated by 530 bp and 83
bp. No single-nucleotide variants (SNVs) were identified in either the ORF or the 5′ UTR of any of
the retrocopies. However, six SNVs were identified in the 3′ UTR that differed from the reference
genome FGF4 gene sequence. Analysis of a whole-genome sequencing variant calling dataset from 722
canids indicated that these SNVs are also present at the parental FGF4 gene (Supplemental Table S5).
Therefore, no SNV specific to any of the dog FGF4 retrocopies was identified. Rather, the differences
between FGF4 retrocopies are owing to different haplotypes of the parental FGF4 gene from which the
retrocopies formed. Notably, the 3′ end of the parental FGF4 gene in wolves contains several SNV not
identified in any domestic dogs (Supplemental Table S5).
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Figure 1. Comparison of the six full length FGF4 retrocopies identified in domestic dogs. From left
to right, the letters with colored arrowheads represent variants within the 3′ UTR of the FGF4
gene at genomic locations CFA18:48,415,400A>C; CFA18:48,415,405C>A; CFA18:48,415,585A>G;
CFA18:48,415,608T>C; CFA18:48,415,661G>A; and CFA18:48,416,537G>A. SNV colored in blue
represent non-reference alleles. ORF, open reading frame.

The red wolf FGF4L6 3′ UTR sequence contained two single nucleotide indels not observed
in any domestic dog FGF4 sequences: a deletion (CFA18:48,415,685delA) and an insertion
(CFA18:48,416,575_48,416,576insA). These indels were not identified in any canids other than the two
red wolves in a whole-genome sequencing variant calling dataset, which included 46 gray wolves. The
parental FGF4 locus was sequenced in seven red wolves to determine whether these variants also exist
in the parental gene in red wolves or if they are unique to the retrocopy. While three individuals were
heterozygous for the CFA18:48,416,575T>TA insertion at the parental FGF4 gene, CFA18:48,415,685CA
C was not identified in any of the parental FGF4 sequences, indicating this variant may have occurred
after retrotransposition and may be unique to FGF4L6.

3.4. Population Genotyping of Novel FGF4 Retrocopies

A targeted population genotyping approach based on the breeds in which FGF4 retrocopies were
identified was utilized to determine allele frequencies of the FGF4 retrocopies. A complete list of FGF4



Genes 2020, 11, 839 7 of 11

retrocopy genotyping results is available in Supplemental Table S3. FGF4L3 was only observed in the
NSDTR breed in the whole-genome sequencing dataset, and was thus tested in 100 randomly selected
NSDTR. The allele frequency of FGF4L3 was 8.5% in the NSDTR.

FGF4L4 had an allele frequency of 16.7% in Norwich Terriers (n = 30). Further testing for FGF4L4 in
related terrier breeds identified this retrocopy in Norfolk Terriers (n = 10, allele frequency 30%), Border
Terriers (n = 32, allele frequency 71.9%), and Skye Terriers (n = 10, allele frequency 5%). Given the
previous association of FGF4 retrogenes with skeletal dysplasia, FGF4L4 genotype was also compared
to height at the withers in 24 Border Terriers using multiple linear regression. The regression analysis
identified no significant association between FGF4L4 and height in Border Terriers (p = 0.877, n = 24),
although only one homozygous wild type individual was included (Supplemental Figure S3).

FGF4L5 was not identified in any other Shetland Sheepdogs (n = 58) or Belgian Malinois (n = 14).
Australian Shepherds (n = 19) and Anatolian Shepherd dogs (n = 5) also tested negative for FGF4L5. No
additional Dutch Shepherd samples were available for population genotyping of FGF4L5 in the breed.
FGF4L6 was tested in 14 red wolf samples, 5 of which were heterozygous (allele frequency 15.6%).

Pit Bull Terriers and Pit Terrier Mixes were then tested for FGF4L7 (n = 201), and all tested negative
for the retrocopy. Because FGF4L7 was identified in dogs treated for IVDD and could be contributing
to the disorder, all mixed breed dogs from the Bannasch Canine Repository that had been treated
surgically for IVDD were also tested for FGF4L7 (n = 55), all of which tested negative. However, two
discordant reads mapping to the FGF4L7 were subsequently identified in the whole-genome sequence
data of a single Chinese village dog (SRR7107669). Several breeds developed in Asia were then tested
for FGF4L7, including Chow Chow (n = 22), Pugs (n = 9), Pekingese (n = 8), and Tibetan terriers (n = 6),
none of which tested positive. However, FGF4L7 was identified in Chinese Shar-Pei (n = 22, allele
frequency 34.1%).

4. Discussion

Multiple recently transposed FGF4 retrocopies exist in canids in addition to the previously
identified FGF4L1 and FGF4L2. Novel retrocopies appear to be breed or breed group specific,
contain intact ORFs, and have not accrued mutations that differentiate them from parental FGF4 gene
haplotypes. The FGF4 retrocopies were retrotransposed from FGF4 genes with distinct haplotypes,
indicating that the same copy has not been retrotransposed multiple times. It is unclear whether any of
these novel copies are expressed retrogenes, or in what tissue types they could be expressed. FGF4L7
was identified in three dogs treated surgically for IVDD, however, the significance relative to IVDD is
unknown. The majority of IVDD surgical cases examined in this study that were not explained by
FGF4L2 were found to have no FGF4 retrocopies, indicating that there are risk factors other than FGF4
retrocopies that predispose dogs to IVDD.

Evidence for the expression of both FGF4L1 and FGF4L2 has indicated that the FGF4 retrocopies are
capable of expression [14,15]. The 5′ end of the FGF4 gene is GC-rich and contains many evolutionarily
conserved transcription factor binding sites that were previously hypothesized to be conducive towards
expression of the retrocopies [15]. Thus, the 5′ end truncation of the FGF4L3 retrocopy likely affects
expression. It has also been reported that the expression of retrocopies is highly dependent on the
genomic environment of the insertion sites [31]. Both FGF4L1 and FGF4L2 have inserted into regions
containing nearby evolutionarily conserved elements (ECRs). Similarly, ECRs at all but one of the FGF4
retrocopy insertion sites may be conducive towards expression. The different genomic context at the
insertion sites for FGF4L1 and FGF4L2 could also explain the different phenotypes between the copies.
If expressed, the novel FGF4 retrocopies may show unique expression profiles, resulting in phenotypic
associations other than height and IVDD. FGF4 is involved in several cellular processes including cell
growth, tissue repair, tumor growth and invasion, and is also a well-known proto-oncogene [32,33].

Although FGF4L2 has been shown to have a major association with IVDD [15,19,34], clinically
significant IVDD has been reported in dogs lacking the FGF4L2 retrogene, implicating alternate
causative factors [19]. Additional FGF4 retrogenes are logical candidates for these FGF4L2 negative
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IVDD cases, however the additional FGF4 retrocopies identified in this study do not appear to provide
a compelling explanation for this group of dogs owing to the limited frequency of the retrogenes
in affected animals. Although FGF4L7 was identified in three dogs treated surgically for IVDD, it
was not seen in any other breeds in the surgically treated data set, and the breed with the highest
identified allele frequency (Shar-Pei; 0.341) is not known to be among the breeds highly predisposed to
IVDD [35]. Similarly, clinical IVDD is uncommon in Border Terriers and Norfolk Terriers, which had
the highest allele frequency of the FGF4L4 retrogene. Interestingly, FGF4L7 inserted 5 Mb downstream
from the HAS2 gene, a gene that has been implicated in the Shar-Pei wrinkled skin phenotype as well
as Familial Shar-Pei Fever [36]. Strong selection in this region of the genome in Shar Peis could explain
the high allele frequency of FGF4L7 in the breed.

While FGF4L4 was not found to be associated with height in Border Terriers, the majority of
Border Terriers tested had either one or two copies of FGF4L4, and only one individual with 0 copies
was identified. If the retrocopy has a dominant effect on height in the breed, more homozygous wild
type individuals will need to be measured to determine any effect. FGF4L4 was also found at low allele
frequencies in other related terrier breeds, including the Skye, Norwich, and Norfolk Terriers, and
may have originated in a common progenitor to the terrier breed group. As dog breeds are known to
be highly inbred [37,38], a high allele frequency alone does not indicate selection, as it could be the
result of random genetic drift followed by decreasing genetic diversity, as characterizes purebred dogs.
Interestingly, FGF4L1 is also very common in Norwich and Norfolk Terriers [14], and the Skye Terriers
used in this study were homozygous for both FGF4L1 and FGF4L2, making them the first breed to be
identified with three FGF4 retrocopies.

All the FGF4 retrocopies in canids appear to have been very recently retrotransposed with no
new mutations differentiating them from the parental FGF4 gene. Even the red wolf FGF4 retrocopy,
FGF4L6, is nearly identical to the red wolf specific FGF4 haplotype. Dating the FGF4 retrocopy
insertions is difficult owing to their short length (3.2 kbp) and sequence identity to the parental gene
sequence; however, the FGF4 retrocopies are identical to canine-specific FGF4 gene haplotypes, which
are distinct from modern wolf FGF4 haplotypes (Supplemental Table S5). This could indicate that the
dog retrocopies occurred after domestication. Recently inserted, fully intact retrocopies such as the
FGF4 retrocopies are very uncommon in reference genomes. Studies have found that less than 18%
of the retrocopies in the human reference have a fully intact ORF, while only 1% of retrocopies share
greater than 99% of their DNA sequence with their parental gene [31,39]. However, these studies have
focused on analyzing reference genomes, which miss polymorphic retrocopies that are more likely to
be recent, such as the FGF4 retrocopies in canids, which are not found in CanFam3. It is possible that
some unique aspects of the FGF4 gene increase its rate of L1 mediated retrotransposition. A search
for FGF4 through a database of all retrocopies identified in over 40 mammalian reference genomes
reveals that a squirrel (Ictidomys tridecemlineatus) and a hedgehog (Echinops telfairi) also have FGF4
retrocopies, although they are only 61.2% and 90.6% identical to the parental genes, indicating they are
not recent [8], but it is unknown whether other species have polymorphic FGF4 retrocopies not found
in their reference genomes. Another possibility is that L1 mediated gene retrotransposition in general
is occurring more frequently in canids. If this was the case, recent, polymorphic retrocopies may be
more common in canids in a greater number of genes than just FGF4.

While next generation sequencing allows for the detection of polymorphic gene retrocopies,
they often go unidentified or misidentified by common variant calling methods [40]. However,
more careful analysis of discordant Illumina paired-end reads has shown they are more common
than previously thought [41,42]. As with FGF4L1 and FGF4L2, retrocopies of other genes may have
phenotypic consequences. As such, the possibility of retrocopy insertions should be considered
when scanning critical intervals for disease trait associations. Recently inserted gene retrocopies
can result in overexpression of the parental gene product, resulting in gain of function, which could
be deleterious [43]. In this study, whole-genome sequence data were successfully used to identify
novel, polymorphic retrocopies of the FGF4 gene; a similar approach could be generalized to all
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genes to identify other polymorphic gene retrocopies in canids. Similar to the FGF4 retrocopies, other
polymorphic retrocopies may play an important role in both breed health and phenotypic variation
across dogs.
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