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Abstract: Interferons (IFNs) are pleiotropic cytokines that establish a first line of defense against viral
infections in vertebrates. Several types of IFN have been identified; however, limited information
is available in poultry, especially using live animal experimental models. IFN-lambda (IFN-λ) has
recently been shown to exert a significant antiviral impact against viral pathogens in mammals.
In order to investigate the in vivo potential of chicken IFN-λ (chIFN-λ) as a regulator of innate
immunity, and potential antiviral therapeutics, we profiled the transcriptome of chIFN-λ-stimulated
chicken immune organs (in vivo) and compared it with primary chicken embryo fibroblasts (in vitro).
Employing the baculovirus expression vector system (BEVS), recombinant chIFN-λ3 (rchIFN-λ3) was
produced and its biological activities were demonstrated. The rchIFNλ3 induced a great array of
IFN-regulated genes in primary chicken fibroblast cells. The transcriptional profiling using RNA-seq
and subsequent bioinformatics analysis (gene ontology, differential expressed genes, and KEGGs
analysis) of the bursa of Fabricious and the thymus demonstrated an upregulation of crucial immune
genes (viperin, IKKB, CCL5, IL1β, and AP1) as well as the antiviral signaling pathways. Interestingly,
this experimental approach revealed contrasting evidence of the antiviral potential of chIFN-λ in both
in vivo and in vitro models. Taken together, our data signifies the potential of chIFN-λ as a potent
antiviral cytokine and highlights its future possible use as an antiviral therapeutic in poultry.
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1. Introduction

Viral pathogens pose significant threats to the poultry industry around the globe. This necessitates
the development of novel and alternative antiviral therapies to contain the impacts of pathogens. Avian
influenza viruses (AIVs) are a particular threat, which cause severe damage to the poultry industry,
especially in developing countries where huge monetary losses are incurred [1,2]. Public health is also
threatened by AIVs, owing to their zoonotic importance. Active preventive strategies would minimize
the risk of viral transmission to humans and also benefit the poultry industry.

Interferons (IFNs) are pleiotropic functional cytokines with antiviral, antitumor, and natural
immune-boosting effects. IFNs play a significant role in eliciting an antiviral state in vertebrates [3].
IFNs are broadly categorized into three distinct types based on their molecular structure, receptor
specificity, and induction pathway [4]. Type I IFNs include IFN-α, IFN-β, IFN-ε, IFN-κ, and IFNω,
and all signal via common cell surface receptors (IFNαR-1) and (IFNαR-2), which are situated on a

Genes 2019, 10, 145; doi:10.3390/genes10020145 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
http://dx.doi.org/10.3390/genes10020145
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/10/2/145?type=check_update&version=2


Genes 2019, 10, 145 2 of 14

broad range of cells [3]. Type II IFNs consist of IFN-γ, which is activated through highly specific ligand
interactions with distinct IFN-γ receptors (IFN-γR1) and (IFN-γR2). The third family of IFNs consists
of IFN lambda, which interacts with a heterodimeric receptor complex (IL-28Rα and IL-10β). IFN-λ
was first discovered in mammals and subdivided into IFN-λ1 (also known as IL-29), IFN- λ2 (IL-28A),
IFN- λ3 (IL-28B), and IFN-λ4 [5]. IFNs are crucial in an innate immune response, as their expression
and antiviral potential is dependent on their cognate receptor interaction in a particular system [6].
In chickens, type I IFNs primarily interact in fibroblasts, whereas epithelial cells (gastrointestinal
and respiratory tract) are the primary site for the actions of type III IFNs [7]. Despite morphological
diversity, IFNs share integrated, interconnected, and a precisely coordinated cascade in immunity
pathways [3].

Ligand recognition and interaction by IFN receptors results in rapid activation of Janus
kinase/signal transducers and activators of transcription (JAK-STAT pathway). This leads to
phosphorylation of STAT1 and STAT2, activation of interferon stimulated gene factor 3 (ISGF3), binding
of IFN-stimulated response elements (ISREs), and expression of IFN stimulated genes (ISGs) [8]. Once
expressed, these ISGs demonstrate an essential role in the antiviral response. It is evident from
published data that IFNs upregulate identical sets of ISGs, which in turn express antiviral proteins.
IFN-induced transmembrane protein (IFITMs), viperin and myxovirus resistance protein (Mx) are
some of the potent antiviral proteins expressed in response to viral infections [9]. Once expressed,
these ISGs control viral replication, which provides an antiviral atmosphere to limit viral propagation
in infected cells.

Compared to the mammalian IFN-λ repertoire (IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4), chicken
IFN-λ is the sole member in birds and demonstrates structural identity with human IFN-λ3. IFN-λ
is chiefly involved in protection against viral infection of the respiratory and gastrointestinal tract
epithelia (AIV, NDV, IBV), and due to the distribution of IL-28Rα in epithelium-rich organs, IFN-λ
demonstrates significant potential to limit viral propagation [10]. While most of the current studies in
chickens are mainly focused on type I and type II IFNs, we investigated the potential of type III IFNs
in innate and adaptive immunity.

Previously, it was established that chIFN-α presented a significant delay in the propagation of
Rous sarcoma virus and confirmed in vivo [11]. It was also revealed that chIFN-α treatment ameliorates
infection progression in experimental chickens with highly pathogenic influenza A virus (HPAIV)
subtype H5N1 [12]. Compared to type I IFNs, chIFN-λ has also been shown to elicit moderate antiviral
response in both the chicken macrophage cell line HD11 and primary chicken embryo fibroblasts
(CEF) [13]. Another published study demonstrated that CEFs treated with recombinant chIFN-λ
induced ISGs in a temporal fashion [14]. However, the antiviral potential of chIFN-λ in live animals
(e.g., chickens) has not yet been investigated, which could provide evidence for the potential of chIFN-λ
in animals per se.

To investigate the impact of exogenous chIFN-λ on the innate immune system in chickens, we
first expressed chIFN-λ in a silkworm bioreactor platform utilizing a baculovirus expression vector
system (BEVS) [15]. Compared to the Autographa californica nucleopolyhedrovirus (AcMNPV)-Sf9
cell expression system, the Bombyx mori nucleopolyhedrovirus (BmNPV)-silkworm system possesses
greater post-translational modifications and enhanced expression efficiency [16,17]. Comparative
transcriptomic profiling revealed the key mechanisms, signaling pathways, and expression patterns of
genes involved in interferon-induced immunity. Our results highlight the dynamics of chIFN-λ roles
in chicken innate immunity.

2. Material and Methods

2.1. Cells

Bm5 cells (Bombyx mori-derived cell line) were cultured and maintained at 27 ◦C with 10%
fetal bovine serum (FBS, Gibco, USA) in TC100 (insect cell culture medium) (Applichem, Darmstadt,
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Germany) as per the published literature [18]. For co-transfection, Bm5 cells were cultured at a constant
density of 1 × 106 cells per well in six well plates for 12 hours with TC100 media containing FBS. TC100
media without FBS was used to wash the cells twice and a mixture of transfection and co-transfection
was introduced to cells. Between 4–6 h post-transfection, FBS was introduced to the cell culture media.
For viral amplification and expression, cells were infected with a multiplicity of infection (MOI) of 0.1
for 1–2 h.

2.2. Data mining and Bioinformatic Analysis of Chicken IFN-lambda (chIFN-λ)

The Ensembl chicken genome database (ftp://ftp.ensembl.org/pub/release-93/fasta/gallus_
gallus/dna/) was extensively screened for homologues of chIFN-λ by employing the BLAST algorithm
(http://www.ncbi.nlm.nih.gov/BLAST/). A stretch of sequences demonstrating high sequence
identity was identified and characterized. All sequences (avian and mammalian IFN-λ) including
Sus scrofa (pig) [NP_001159962.1], Bos taurus (cattle) [NP_001268830.1], Homo sapiens (human)
[AAN86127.1], Mus musculus (mouse) [NP_796370.1], Gallus gallus (chicken) [XP_015144667.1], and
Xenopus tropicalis (frog) [NP_001165236.1] were acquired from the National Center for Biotechnology
Information (NCBI) and aligned using the ClustalW program, and phylogenetic analysis was
performed using the neighbor-joining method with bootstrap n = 1000 in MEGA software (version 7).
Amino acid sequences of IFN-λ from multiple species were aligned using the ClustalW algorithm. The
ESPript 3.0 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) was utilized to analyze the sequences.

2.3. Expression of Recombinant chIFN-λ3 (rchIFN-λ3)

In our previous study, we developed a novel defective-rescue recombinant Bombyx mori Bacmid
(reBmBac) expression system [15]. We used this in-house built and developed system to express
chIFN-λ. The reBmBac-silkworm expression system was employed to construct chIFN-λ (interferon
lambda-3 [Gallus gallus]; Sequence ID: XP_015144667.1; Length: 186). Briefly, in order to enhance
expression efficiency by codon optimization, chIFN-λ genes were optimized for expression in the
silkworm (Bombyx mori) and synthesized by GenScript Company (China). Plasmid-containing
ORF1629+ with gene of interest (chIFN-λ) and Pph as a promoter was co-transfected with reBmBac
in the Bm5 cell line. Recombinant virus containing the chIFN-λ gene was harvested 4–5 days post
co-transfection. Expression product was acquired after 4–5 days of silkworm/pupae infection. The
plaque assay was performed to evaluate the recombination efficiency [18]. Luciferase assay kit
(Promega, USA) was employed to analyze expression quantity of luciferase in 50 µg of protein lysate.
The Bradford method was used to measure the amount of protein [19]. Antiviral activity of chIFN-λ
was assayed in the GFP-reduction assay using recombinant vesicular stomatitis virus (VSV-GFP) [20].

2.4. Preparation of Primary Chicken Embryo Fibroblast

CEFs were prepared from 9–11 days old specific pathogen free (SPF) chicken eggs and maintained
in cell culture flasks [21]. After 24 hours, CEFs were stimulated with chIFN-λ and cells were harvested
after 12 hours post treatment, snap frozen, and stored at −80 ◦C for further processing. All experiments
were performed in triplicate.

2.5. Birds and Management

The present study was conducted in accordance with animal ethics guidelines and approval was
given by the Beijing Administration Office of Laboratory Animals, China. A total of 60 newly hatched
SPF chicks were obtained from Beijing Arbor Acre Company Ltd., P.R. China. Chicks were reared
in cages (n = 10 birds/cage) and placed in six cages in a temperature-controlled environment at the
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), P.R. China. Birds
were offered standard commercial feed obtained from CP Group Ltd., P.R. China. Unrestricted access
to water was provided via nipple drinker lines and ad libitum feed was offered. A treatment group of
14-day old chicks were injected daily with chIFN-λ (10,000 IU/kg body weight) (105 IU/mL). Phosphate
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buffer saline (PBS) was injected intramuscularly to the control group. The bursa of Fabricious and
thymus were obtained by euthanizing the chickens at five days post-treatment. Tissue samples were
rapidly collected, snap-frozen in liquid nitrogen, and stored at −80 ◦C for further processing.

2.6. RNA Extraction and Sequencing

Total RNA was extracted from virus-infected or mock-treated CEFs (in triplicates), as per
manufacturer’s guidelines [22]. Similarly, a total of five immune organs (bursa of Fabricious and
thymus) were pooled (in duplicates) from randomly selected chicken from each virus- or mock-infected
group. Total RNA extraction was performed as per manufacturer’s instructions [22]. Extracted RNA
quality was analyzed by employing 1% agarose gel and RNA integrity was assured using RNA Nano
6000 Assay Kit from Bioanalyzer 2100 System (Agilent Technologies, CA, USA). Extracted samples
were sent to Novogene Beijing for sequencing. Samples were sequenced using HiSeq X Ten (Ilumina)
and PE150 platforms.

2.7. RNA-Seq Quality

RNA-seq generated from CEF, bursa of Fabricious and thymus samples of chicken (both
chIFNλ-treated and control groups) are presented in Supplementary Table S1. Reads were mapped to
the reference genome database (ftp://ftp.ensembl.org/pub/release-89/fasta/gallus_gallus/dna/).
Individually mapped reads for each sample were assembled by StringTie (v1.3.3b) using a
reference-based approach. FeatureCountsv1.5.0-p3 was utilized to estimate read numbers mapped to
each gene. Fragments per kilo base of transcript sequence per million base pairs sequenced (FPKM) of
each gene was analyzed on the basis of length of gene and read count mapped to this gene. Differential
expression analysis was accomplished by employing DESeq2 R package (1.16.1). Using Benjamini and
Hochberg’s approach, p-values were adjusted for controlling false discovery rate (FDR). Genes with
(P < 0.05, |log2fold change|>1) observed by DESeq2 were designated as differentially expressed.

2.8. Gene Ontology (GO) and KEGG Enrichment Analysis

For differentially expressed genes, both gene ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was conducted using the
ClusterProfiler R package. GO terms with adjusted p-values < 0.05 were considered as significantly
enriched (http://www.genome.jp/kegg/).

3. Results

3.1. Bioinformatic Analysis of chIFN-λ

Using the chicken IFN gene as a query, we constructed the phylogenetic tree by employing the
neighbor joining method (bootstrap n = 1000). This demonstrates the relationship of chIFNλwith its
mammalian orthologues by illustrating that chIFN-λ is distinct in its evolution. Furthermore, this
revealed the contrasting consensus sequence from databases including Ensembl and Genbank. chIFN-λ
encodes a putative protein of 186 amino acids and further demonstrates typical characteristics of type
III IFNs. A pairwise BLAST analysis demonstrated that chIFN-λ shares 36%, 34%, 39%, 34% and 33%
sequence similarity with recently characterized pig, mouse, human, cattle, and frog IFN-λ, respectively.
Based on amino acid homology, conserved amino acids among distinct avian and mammalian IFN-λ
are identified. Taken together, this comparative characterization further shows that chIFN-λ shares
characteristic features of type III IFNs (Supplementary Figure S1A,B).

3.2. Expression of chIFN-λ in Baculovirus Expression Vector System (BEVS)

In order to construct chIFN-λ, we employed a BEVS study. In order to determine the expression
efficiency, we used a luciferase reporter gene for quality control as we described previously [15]. The
luciferase gene was acquired from pGL3-Basic vector by employing BglII/XbaI digestion and insertion

ftp://ftp.ensembl.org/pub/release-89/fasta/gallus_gallus/dna/
http://www.genome.jp/kegg/


Genes 2019, 10, 145 5 of 14

into the BamHI/XbaI-digested pVL1393 vector to construct pVL1393-luc vector. A combination of
pVL1393-luc and reBmBac DNA was co-transfected in Bm5 cells (Figure 1). A viral plaque assay was
used to determine a suitable virus strain with which to express luciferase. Supernatant from Bm5
cells containing recombinant BmNPV (reBm-luc) was harvested five days post-transfection before
inoculation into silkworms. After four to five days, protein was harvested from silkworms and 50
µg protein from lysed larval haemolymph was subjected to luciferase assays. Luminescence detected
from silkworm larval haemolymph was approximately 3.42 ± 0.52 × 108 relative light units (RLU),
compared to 150–300 RLU from luc-negative virus-infected samples. PCR amplification (qPCR) further
verified and validated the chIFN-λ gene expression in BEVS (Supplementary Figure S1C).
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Figure 1. Construction strategy of recombinant baculovirus by employing silkworm expression vector
system (BEVS).

3.3. Characterization of chIFN-λ-induced Gene Expression in Chicken

In order to investigate the possible biological, cellular, and molecular mechanisms involved in the
cascade of interferon-induced immunity, we performed transcriptomic analysis on chicken embryo
fibroblasts and organs of live chickens. Transcriptomes from the bursa of Fabricious and thymus (most
important immune organs in chicken) were compared with the control group to identify differentially
expressed genes (DEGs) among all groups. Experimentation started at day 14 post-hatch as this is a
phase of rapid growth and development, and we hoped to achieve biologically active transcriptional
changes. The differences in DEGs observed in the present study control cellular architecture, immune
function, metabolic pathway, and muscular function.

It has previously been established that huIFN-λ signals via IL-10 and IL-28R exhibit typeI-like
antiviral potential [23]. Protection from simian foamy virus (SFV) and avian influenza (AI) augments
the antiviral functioning and further postulates its diverse antiviral potential against avian pathogens.
In this context, we stimulated chickens with silkworm-expressed chIFN-λ and profiled the gene
expression in immune organs (thymus and bursa) and compared it with that in primary chicken
fibroblasts using RNA-Seq. An overall low ISG expression was noticed in chIFN-λ-stimulated CEF;
out of 26,616 genes, 161 were DEGs (84 upregulated and 77 downregulated) (P < 0.05, |log2fold
change|>1) (Figure 2A). Although CEF do not possess receptors for IFN-λ, slight temporal expression
of DEGs in response to chIFN-λ treatment signifies its antiviral potential in primary cells.
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Figure 2. Gene expression representation by volcano plot diagrams and Venn diagram. A:
Differentially expressed genes (DEGs) in chIFN-λ-treated chicken embryo fibroblasts (CEF). B: DEGs in
chIFN-λ-treated bursa of Fabricius. C: DEGs in chIFN-λ-treated thymus. D: Venn diagram representing
gene sharing. Red, green, and blue dots represent upregulated, downregulated, and sum of DEGs,
respectively. Differential expression patterns demonstrate the temporal expression of genes expressed
in the three groups.

Next, we monitored the gene expression in the thymus and bursa. Between the chIFN-λ-treated
and non-treated thymus, a total of 23,801 genes were expressed. Among them, 331 genes were
DEGs, in which 177 genes were upregulated and 154 genes were downregulated (Figure 2B). In the
bursa of Fabricious, 289 out of 23,951 genes were differentially expressed (130 upregulated and 159
downregulated) (Figure 2C). Interestingly, a relatively low number of genes overlapped among these
three groups (Figure 2D). In order to confirm the expression of DEGs, we used a conventional approach
(qPCR) and show (Supplementary Figure S2A,B) a scenario corresponding to the RNA-seq data. On
the basis of abundance and fold change, DEGs were further characterized (Supplementary Table S1).

Cumulatively, a significant upregulation of crucial cytokine and chemokine genes (IL1-β, CCL4,
CCL5, and CX3CL1) was observed. These are broadly involved in antiviral response, apoptosis,
cellular proliferation and differentiation, cytokine–cytokine receptor interaction and inflammation
pathways [24] (Figure 3). Due to the induction of a distinct subset of genes, a lower level of antiviral
activity is observed as compared to type-I IFNs. It is speculated that the activation of chIFN-λ is similar
to type-I IFNs but they are diverse in functional capability. The chIFN-λ have particular significance
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in viral infections of epithelial origin, where they are optimally active by eliciting a broad antiviral
state. Using conventional approaches, we have confirmed the expression of selected genes as shown in
Supplementary Figure S2A,B.Genes 2019, 10, 145 7 of 14 
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3.4. Functional Analysis of DEGs

DEGs were further analyzed for GO terms and the KEGG pathway by utilizing DESeq2 [25]. Of
956 GO terms associated with chIFN-λ-treated CEF, 112 GO terms were significant (P < 0.05) (Figure 4A).
In the bursa, among biological processes, we observed the Wnt signaling pathway (WIF1/CAMK2A),
cytokine–cytokine receptor interactions (TNFSF11), the apelin signaling pathway (RYR2/MYL4), and
the significant antiviral pathway (novel gene) in cellular components (Figure 4B). In the thymus, out
of 1712 GO terms, we observed 309 significant, and in the bursa, out of 2298 GO terms, 637 were
significant (P < 0.05). In order to understand the biological functions associated with DEGs, we further
analyzed the data in three distinct categories, including biological processes (BP), cellular components
(CC), and molecular functions (MF) (Figure 4C).
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Figure 4. Gene Ontology (GO) analysis associated with chIFN-λ-treated organs. A: chIFN-λ-treated
CEF. B: chIFN-λ-treated bursa of Fabricius. C: chIFN-λ-treated thymus.

3.5. KEGG Pathway Enrichment

Further to gene ontology and differential expression, we investigated KEGG pathway enrichment.
In CEFs, significant enrichment was seen in pathways including the MAPK signaling pathway
(FOS/IL1B/FOSB), the toll-like receptor signaling pathway (FOSB, IL8L1, IL1B, FOS, CCL5), influenza
A (IL8L1/IL1B/CCL5), cytokine–cytokine receptor interactions (CCL20/IL8L1/IL1B/CX3CR1/CCL5),
salmonella infection (FOSB/IL8L1/IL1B/FOS), the NOD-like receptor signaling pathway
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(IL8L1/IL1B/CCL5), and herpes simplex infection (FOSB/IL1B/FOS/CCL5) (Figure 5A). In bursa,
Wnt signaling (WIF1), the apelin signaling pathway (RYR2), and the calcium signaling pathway (RYR2)
were significantly observed (Figure 5B). For the thymus, the NOD-like receptor signaling pathway
(PLCB1/MAPK11), the MAPK signaling pathway (SRF/MAPK11), influenza A (RSAD2/MAPK11),
and MAPK11 (salmonella, toll-like, herpes simplex infection) were observed (Figure 5C). Collectively,
apoptosis (JUN/BIRC5/CTSC/ACTG1), RNA degradation (ENO1/BTG2/C1D), the TCA cycle
(MDH1/IDH3A), the p53 signaling pathway (PERP1/CCNB2), biosynthesis of amino acid
(ENO1/IDH3A), influenza A (RSAD2/JUN/ACTG1), and the toll-like receptor signaling pathway
(JUN) were among the most significant.
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4. Discussion

Here, we present the first comprehensive report on cloning and expression of chIFN-λ by
employing BEVS and demonstrate that it is biologically active in both CEF (in vitro) and live chickens
(in vivo). The identification of this potentially significant IFN among the IFN family advances
fundamental aspects and functionality of chIFN-λ in avian type-III IFNs. It is evident from the
data that this IFN, like human interferon lambda (HuIFN-λ), demonstrates similar type-I IFN-like
properties. However, a distinct pattern of expression of ISGs in chIFN-λ contrasts it from other type-I
IFNs. Knowledge regarding IFNs is fundamental as rapid outbreaks of viral pathogens cause huge
economic losses to the poultry industry every year. The present study investigates the ISGs and
signaling pathways associated with avian immunity and will bring new horizons to target problematic
viral pathogens, e.g., AIVs, circulating within the poultry industry.

Interferon lambda is a biologically active type-III interferon which primarily acts on epithelial
tissues [3]. Studies have demonstrated the antiviral potential of IFN-λ against highly pathogenic avian
influenza by eliciting a broad antiviral state [10]. IFN-λ is structurally peculiar as it possesses five
exonic regions located on chromosome 7, contrary to type-I IFNs, which are intronless and situated on
the Z sex chromosome in chicken [5,26]. This is in agreement with human IFN-λ subfamily which are
anatomically identical by possessing five exonic regions on chromosome 1 of the human genome [5].
Furthermore, 36% of amino acids are identical between HuIFN-λII and chIFN-λ, which signifies the
similarity of these two IFNs. However, unlike mammals, only one member exists in chicken (chIFN-λ).
This is in agreement with the other types of chicken IFNs, which have fewer members compared to
mammalian IFNs [27].

Reduced expression of ISGs in response to chIFN-λ in our experiment demonstrates the fact
that CEFs are optimally less receptive to IFN-λ, which is in agreement with published reports [10].
One study revealed that chIFN-λ can actively inhibit the viral replication of AI in primary embryonic
tracheal organ cultures and CLEC-213 (chicken lung cell line). It is further postulated that with
treatment of chIFN-λ, ISGs are expressed significantly, especially Mx gene, which is primarily expressed
in epithelial rich organs (i.e., trachea, lungs, and intestine) was also observed in the present study [10].
Furthermore, studies have also revealed that a high degree of cell type specificity in receptor–ligand
interactions make avian IFNs distinct from mammalian IFNs. Recently, it has been established that
chicken IFN-λ inhibits low pathogenic influenza virus replication in CEFs; however, as compared to
chIFN-γ and chIFN-β, higher doses are required to induce ISGs and maintain the strong antiviral
state in the cells [14]. GO and KEGG analysis of each experimental group demonstrated overlapping
biological functions. An important gene involved in the host response of infected samples is RSAD2,
also termed viperin, which is one of the potent interferon stimulated genes (ISGs) responsible for
eliciting a broad antiviral state against a variety of viral and bacterial pathogens [28]. In mammals, it
is highly expressed in response to invading viral infections [29]. Elevated expression of viperin
in chIFN-λ-treated organs further augments the expression of ISGs in response to injected IFN
in vivo. Viperin was upregulated in response to chIFN-λ treatment, which is symbolic for all ISGs.
IFN-inducible transmembrane protein-1 (IFITM-1) is one of the potent ISGs expressed in response
to either type of IFN and plays an antiviral role by blocking cytoplasmic entry [30]. It is further
demonstrated that IFITM alters membrane fluidity, hence producing curvature in the outer leaflets
of the membrane or by interfering with intracellular cholesterol homeostasis [31,32]. Significant
upregulation of IFITM3 in the chIFN-λ-treated thymus augments the temporal expression of ISGs
in response to IFN treatment. Further studies are needed to investigate the possible future role of
chIFN-λ as a potent and novel therapeutic in the poultry industry.

Although the immune response elicited by type III IFNs is still not very clear, in the present study
we also found some novel genes involved in the cascade of the avian immune response. Furthermore,
in vitro exposure of CEF to chIFN-λ demonstrated a rapid surge of pro inflammatory cytokines.
Considering their vital role in immune pathways, cytokine gene expression is widely employed as an
indicator for the immune response. We did observe some genes that were previously illustrated in
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publications; one such example is chemokine (C-C motif) ligand 1 (CCL1, ENSGALT00000003670) [33].
Chemokines are secreted chemotactic cytokines that play a fundamental role in the recruitment and
migration of lymphoid and myeloid cells in target tissues, and hence govern the avian immune
response [34]. CCL1 is a chemokine secreted by monocytes that is capable of activating macrophages
and T lymphocytes [35]. CCL20, like its mammalian orthologue, is responsible for recruiting lymphoid
cells and is involved in the early immune response in chickens [36]. Likewise, CCL1, CCL4, and CCL5
were also upregulated in CEF and are chiefly involved in the innate avian immune response.

The present study describes the transcriptomic analysis of differential gene expression following
exposure to chIFN-λ and the resultant pro-inflammatory response in both CEF and chicken tissues.
This response ostensibly is due to rapid and sustained signaling via cell surface receptors and a
surge of chemokines and cytokines, which in turn create an antiviral environment. A contrasting
feature of the present study is the upregulation of the toll-like receptor (TLR) signaling pathway in all
three treatment groups, where it is evident that numerous genes are upregulated in TLR mediated
cytotoxicity. TLR15, a unique chicken receptor expressed on the surface of fibroblasts, heterophils,
and macrophages, shares 30% sequence identity with TLR2 [37]. It is evident from experimentation
that TLR15 is a broad spectrum TLR that has the capability to recognize heat stable components
of both gram-positive and gram-negative bacteria, CpG oligonucleotides, lipopolysaccharide (LPS),
and tripalmitoylated lipopeptide [38]. TLR15, an avian-specific TLR, plays a significant role in avian
immune responses against bacterial and viral pathogens. Recently, it has been demonstrated that
diacylated lipopeptide from Mycoplasma synoviae activated TLR15 and regulated innate immune
responses [39]. Similarly, significant upregulation of TLR15, observed in the present study, highlights a
possible role of chIFN-λ against Mycoplasma infections in chicken. However, it warrants future studies
to delineate the molecular processes.

It has also been established by repeated experimentation that chIFN-λ has been seen to cause
delay in viral excretion and the spread of highly pathogenic avian influenza (HPAI) H5N1 [10]. It
is evident that in mammals, IFN-λ elicits a protective antiviral response toward AI, whereas IFN-λ
plays a minor role in lung epithelia [40]. Similarly, in the respiratory tract of chickens, not all mucosal
cells are responsive to chIFN-λ. Therefore, treatments can only delay, but do not significantly support
the complete removal of viral loads of H5N1 or halt the virus crossing the epithelial barrier [41].
However, for low-pathogenic avian influenza (LPAI), it is evident that chIFN-λ has demonstrated
significant antiviral activities [42]. Recent reports revealed another contrasting feature of IFN-λ,
where it significantly elicited strong antiviral potential on intestinal epithelial cells to control murine
rotaviruses [43,44]. It will be fascinating to investigate in the future whether the same antiviral
phenomena occurs, and chIFN-λmight also demonstrate epitheliotropism like rotaviruses and halt
viral pathogens of the gastrointestinal tract in chickens.

Nuclear factor kappa-B (NF-KB) is the most significant, evolutionarily conserved, pleiotropic,
inducible transcription factor responsible for regulating genetic expression in a variety of fundamental
processes, including apoptosis, growth, immune response, inflammation, stress response, etc. [45].
Notably, the upregulation of NF-KB in response to chIFN-λ treatment on CEF signifies their potent role
in the immune response. Activator protein 1 (AP-1) is a transcription factor complex highly responsive
for cytokine signaling and growth promotion [46]. Formed through noncovalent dimerization between
the FOS and JUN family of nuclear oncogenes, this complex activates AP-1-dependent genes, hence
controlling cell proliferation, differentiation, and apoptosis [47]. Consistent with these observations,
our study demonstrated that many genes associated with this pathway were upregulated. This finding
suggests a link between AP1 and the transcriptional cascade associated with recombinant interferon
treatment. Overall, transcriptomic analysis revealed significant upregulation of FOS and JUN in CEF
and bursa, and thymus of chicken.

The innate immune response is a highly complex, precise, interconnected, and integrated response
that relies on many factors. The genes investigated in our study control direct protein interactions and
are significantly involved in the avian innate immunity cascade. However, further validation of a broad
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set of immunity-related genes will also be required to elucidate the mechanism of interferon-induced
immunity. A more comprehensive study including a larger set of immune genes and multiple
recombinant IFNs, which will correlate their integrated role, will enable researchers to provide
comprehensive insight into the avian innate response. Other future studies involving backyard
poultry to assess whether similar patterns of innate immunity prevail in indigenous breeds in response
to chIFNλ are also important and will further develop our understanding of avian immunity.

5. Conclusions

In the current study, we employed RNA-Seq to illustrate vital transcriptomes involved in the
cascade of avian biology and observed divergent results in recombinant interferon-treated chickens
compared to a control group chickens. Our data suggest that significant antiviral, cell cycle regulators,
and biologically active genes are expressed in response to administered chicken IFN. Functional
characterization of these vital genes warrants further investigation to determine the future possible
role for recombinant chicken IFN in the poultry industry.
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