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Abstract: We present a deep-learning package named HiCNN2 to learn the mapping between
low-resolution and high-resolution Hi-C (a technique for capturing genome-wide chromatin
interactions) data, which can enhance the resolution of Hi-C interaction matrices. The HiCNN2
package includes three methods each with a different deep learning architecture: HiCNN2-1 is based
on one single convolutional neural network (ConvNet); HiCNN2-2 consists of an ensemble of two
different ConvNets; and HiCNN2-3 is an ensemble of three different ConvNets. Our evaluation
results indicate that HiCNN2-enhanced high-resolution Hi-C data achieve smaller mean squared
error and higher Pearson’s correlation coefficients with experimental high-resolution Hi-C data
compared with existing methods HiCPlus and HiCNN. Moreover, all of the three HiCNN2 methods
can recover more significant interactions detected by Fit-Hi-C compared to HiCPlus and HiCNN.
Based on our evaluation results, we would recommend using HiCNN2-1 and HiCNN2-3 if recovering
more significant interactions from Hi-C data is of interest, and HiCNN2-2 and HiCNN if the goal is to
achieve higher reproducibility scores between the enhanced Hi-C matrix and the real high-resolution
Hi-C matrix.
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1. Introduction

The population-cell Hi-C technique [1] can capture genome-wide intra- and inter-chromosomal
contacts, which provide proximity information of the DNA and can be used to reconstruct the
three-dimensional (3D) structures of chromosomes [2–4], define topologically associated domains
(TADs) [5–7], and reveal significant genomic interactions [8,9]. In the past decade, researchers have
conducted Hi-C experiments for different species at different resolutions [1,6,9,10]. It has been
shown that high-resolution Hi-C data are essential for studies of the 3D genome [9,10]. However,
to experimentally obtain high-resolution (e.g., 5 kb) Hi-C data, researchers need to generate more than
one billion paired-end reads [9], which may incur a high sequencing cost. Moreover, the whole process
of the in situ Hi-C protocol [9] is time-consuming. Therefore, computational methods for resolution
enhancement of Hi-C data are indispensable. Recently, a single-cell Hi-C technique was developed
that can be used to reveal cell-to-cell variability [11,12]. Bioinformatics tools have been developed to
remove systematic biases existing in the single-cell Hi-C data [13] and reconstruct 3D chromosomal
structures based on single-cell Hi-C data [14]. However, in this research, we only focus on enhancing
population-cell Hi-C data.

Given a sparse n × n Hi-C contact matrix, a resolution enhancement method can increase the
intensity of the sparse (or so-called “low-resolution” in this study) matrix and output an enhanced

Genes 2019, 10, 862; doi:10.3390/genes10110862 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-0598-5588
http://www.mdpi.com/2073-4425/10/11/862?type=check_update&version=1
http://dx.doi.org/10.3390/genes10110862
http://www.mdpi.com/journal/genes


Genes 2019, 10, 862 2 of 15

n × n Hi-C contact matrix, in which the 2D contact patterns and Hi-C peaks are much more clearly
presented than in the input low-resolution matrix. Moreover, this computational tool can also be used
to increase the ideal resolution that makes the Hi-C data useful for indicating contact patterns and
significant interactions. For example, given an n× n Hi-C contact matrix, we can double its resolution
to make it a 2n × 2n matrix. However, this may make the matrix very sparse and cause the contact
patterns and significant contacts to be blurred or disappear. The resolution enhancement tool can
take a sparse 2n × 2n matrix as input and then output a matrix that is also 2n × 2n in size but with
enhanced intensity, in which the contact patterns and significant interactions (i.e., Hi-C peaks) are
clearly depicted. Although not the same, there are other bioinformatics problems facing a similar
challenge. For example, in [15] the authors used convolutional neural networks to predict DNA
sequences for the missing/uncertain parts of corrupted DNA sequences of extinct organisms.

HiCPlus [16] first used a three-layer convolutional neural network (ConvNet) to enhance the
resolution of Hi-C data from low-resolution Hi-C data. It has been shown that HiCPlus can achieve
better performance than two traditional regression methods (i.e., Gaussian smoothing and random
forest) [16]. HiCPlus-enhanced high-resolution Hi-C data are even more similar to experimental
high-resolution data than those high-resolution data gathered from replicate experiments. However,
over the past few years multiple techniques and convolutional neural networks have been developed
in the field of image super-resolution that have achieved better performance, such as local residual
learning [17], global residual learning [18], a mixture of deep networks [19], and residual dense
networks [20]. Therefore, there is room to improve the three-layer ConvNets that HiCPlus uses.

HiCNN [21] has achieved better performance compared with HiCPlus by using a deeper
convolutional network (54 layers) which implements global and local residual learning [18,22].
In order to further improve the performance of HiCNN, we have tried to increase the number of layers
to 104 by implementing 50 local residual learning blocks. However, the performance was still similar
to that of the 54-layer HiCNN [19], which showed the limited improvement room for the learning
architecture used in HiCNN. Therefore, in this research, we designed and benchmarked different types
of deep learning architectures and different ways of combining these architectures.

Recently, generative adversarial networks (GANs) have been used for single-image
super-resolution [23], which can recover photo-realistic texture from down-sampled images. Unlike
individual convolutional networks, GANs need two independent architectures: the generator and
discriminator. The generator is responsible for generating images that can fool the discriminator,
whereas the discriminator is trained to distinguish faked images from the generator. The GAN
techniques can also be used in 3D genome analysis. For example, the bioinformatics tool hicGAN [24]
used GAN to enhance the resolution of Hi-C data.

In this study, we present HiCNN2 for improving the resolution of Hi-C data. HiCNN2 is a package
of three methods, each with a different deep learning architecture: HiCNN2-1 contains one type of
ConvNet; HiCNN2-2 consists of an ensemble of two different types of ConvNets; and HiCNN2-3 uses
an ensemble of three different types of ConvNets. In total, there are three different types of ConvNets
designed in this study: the first type of ConvNet not only implements global and local residual learning
but also concatenates hierarchical features from each of the local residual learning blocks; the second
type of ConvNet is a modified version of VDSR (a very deep convolutional network for accurate
image super-resolution) [18]; and the third type of ConvNet is the same as the three-layer network
used in HiCPlus. Our evaluation results indicate that the three methods in HiCNN2 perform better
than HiCPlus and HiCNN in terms of predicting high-resolution Hi-C contact counts and recovering
significant Hi-C interactions. HiCNN2 is freely available at http://dna.cs.miami.edu/HiCNN2/.

http://dna.cs.miami.edu/HiCNN2/
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2. Materials and Methods

2.1. Hi-C Data Acquisition and Processing

We used four Hi-C data sets in this study: the first one is from GEO GSE35156 for mouse embryonic
stem (mES) cells [5], which has been used as real/experimental low-resolution (i.e., 40 kb) Hi-C data
(build mm9); the second one is from GEO GSE63525 for human GM12878, IMR90, and K562 cells
or cell-lines [9] (build hg19), which has been used to extract training, validation, and testing data;
the third one is from GEO GSE96107 for mES cells [10], which has been used as real/experimental
high-resolution (i.e., 5 kb) Hi-C data (build mm10); and the last one is for bacterial Caulobacter crescentus,
obtained from [25]. The coordinates of Hi-C read pairs from the first Hi-C data set were converted
from build mm9 to mm10 using liftOver [26].

The Hi-C data were processed the same way as in HiCPlus [16] and HiCNN [21]. Given a
predefined resolution (e.g., 10 kb), we generated a symmetric Hi-C contact matrix for each chromosome
from low- or high-resolution paired-end Hi-C reads. The low-resolution Hi-C reads of the second Hi-C
data set were obtained by randomly sampling experimental high-resolution Hi-C read pairs with three
different down-sampling ratios (i.e., 1/8, 1/16, and 1/25). We split one Hi-C contact matrix generated
from low-resolution Hi-C read pairs into thousands of 40 × 40 submatrices with overlapping indices as
the input of HiCNN2. The 40 × 40 submatrices generated based on the high-resolution Hi-C contacts
were used as the target values.

The training data were extracted from chromosomes 1, 3, 5, 7, and 9 in human GM12878.
The validation data were extracted from chromosome 2 in human GM12878. The testing data (each
of the evaluation results was generated on a different testing data set) were extracted from different
chromosomes in different cell lines (GM12878, K562, IMR90, mES, and bacteria). Therefore, in total
we used 26% of the chromosomes in human GM12878 for the training and validation processes.
The default target resolution we used for training, validation, and testing was 10 kb, unless otherwise
specified. The best model we selected for testing was the model that achieved the minimum validation
loss value.

2.2. Architectures of HiCNN2 Methods

We designed three architectures (HiCNN2-1, HiCNN2-2, and HiCNN2-3), shown in Figure 1, to
learn the mapping between low- and high-resolution Hi-C data: (1) HiCNN2-1 only uses ConvNet1;
(2) HiCNN2-2 uses an ensemble of two different convolutional networks (ConvNet1 and ConvNet2);
and (3) HiCNN2-3 uses an ensemble of three distinct convolutional networks (ConvNet1, ConvNet2,
and ConvNet3).
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layer in ConvNet1 is used to concatenate all hierarchical features from each of the local residual 
learning blocks. HiCNN2-1 only uses ConvNet1; HiCNN2-2 is an ensemble of ConvNet1 and 
ConvNet2; and HiCNN2-3 is an ensemble of the three ConvNets. 
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the first two layers from 8 to 64 for “conv1” and from 1 to 64 for “conv2”. Therefore, after global 
residual learning we use one more layer (i.e., “conv7”) to decrease the final output channel to 1. 
Second, we concatenated all hierarchical features from each of the local residual learning blocks (blue 
lines in ConvNet1 in Figure 1), which are the input of “conv5” instead of the output of the last local 
residual learning block. These two changes make ConvNet1/HiCNN2-1 outperform HiCNN (data 
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features, which are from each of the 25 local residual learning blocks. Therefore, the input channel of 
“conv5” is 128 × 25 = 3200. The filter sizes for each of the seven types of layers are 13 × 13, 1 × 1, 3 × 3, 
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Figure 1. The detailed layouts of the three types of convolutional neural networks (ConvNet1,
ConvNet2, and ConvNet3). ⊕ denotes element-wise addition. The dashed box in ConvNet1 highlights
a local residual learning block. The blue lines in ConvNet1 denote hierarchical features. The “Concat”
layer in ConvNet1 is used to concatenate all hierarchical features from each of the local residual learning
blocks. HiCNN2-1 only uses ConvNet1; HiCNN2-2 is an ensemble of ConvNet1 and ConvNet2; and
HiCNN2-3 is an ensemble of the three ConvNets.

The first ConvNet (ConvNet1 in Figure 1) has 56 layers and is an improved version of the network
used in HiCNN [21], which uses both global and local learning. Compared to the network used in
HiCNN, there are two main changes in ConvNet1. First, we increased the output channels of the first
two layers from 8 to 64 for “conv1” and from 1 to 64 for “conv2”. Therefore, after global residual
learning we use one more layer (i.e., “conv7”) to decrease the final output channel to 1. Second, we
concatenated all hierarchical features from each of the local residual learning blocks (blue lines in
ConvNet1 in Figure 1), which are the input of “conv5” instead of the output of the last local residual
learning block. These two changes make ConvNet1/HiCNN2-1 outperform HiCNN (data shown in
Section 3). The input/output channels for the seven types of layers (i.e. “conv1”, “conv2”, “conv3”,
“conv4R”, “conv5”, “conv6”, and “conv7”) are 1/64, 64/64, 64/128, 128/128, 3200/1000, 1000/64, and
64/1, respectively. The input channel of “conv5” is from the concatenation of hierarchical features,
which are from each of the 25 local residual learning blocks. Therefore, the input channel of “conv5” is
128 × 25 = 3200. The filter sizes for each of the seven types of layers are 13 × 13, 1 × 1, 3 × 3, 3 × 3, 1 ×
1, 1 × 1, and 3 × 3, respectively. The four types of layers (“conv3”, “conv4R”, “conv5”, and “conv6”)
are with zero padding of size 1.

The second ConvNet (ConvNet2 in Figure 1) has 22 layers and is a modified version of VDSR [18],
which only uses global residual learning. The first two layers in ConvNet2 are the same as the first two
layers in HiCNN [21]: (1) the first one (“conv1”) contains 13 × 13 filters followed by a rectified linear
unit (ReLU) [27], and (2) the second one (“conv2”) contains 1 × 1 filters followed by a ReLU. The last
parts (1 “conv3” layer, 18 “conv4” layers, and 1 “conv5” layer) in ConvNet2 are the same as those in
VDSR [18]; all of the three types contain 3 × 3 filters with zero padding of size 1 followed by a ReLU.
The input/output channels for the five types of layers (i.e. “conv1”, “conv2”, “conv3”, “conv4”, and
“conv5”) are 1/8, 8/1, 1/64, 64/64, and 64/1, respectively.

The third ConvNet (ConvNet3 in Figure 1) has three layers and is the same as the network used in
HiCPlus [16]. There are three layers in ConvNet3: (1) the first layer (“conv1”) contains 9 × 9 filters
followed by a ReLU; (2) the second layer (“conv2”) contains 1 × 1 filters followed by a ReLU; and (3)
the last layer (“conv3”) contains 5 × 5 filters followed by a ReLU. The input/output channels for the
three layers (i.e. “conv1”, “conv2”, and “conv3”) are 1/8, 8/8, and 8/1, respectively.
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Each of the three ConvNets takes a 40 × 40 submatrix as input and outputs a corresponding 28 ×
28 submatrix, which is also the predicted high-resolution Hi-C submatrix. The final predicted outputs
of the two ensembles (HiCNN2-2 and HiCNN2-3) are the weighted averaging of each ConvNet’s
output: Output = w1 ×Output1 + w2 ×Output2 and Output = w1 ×Output1 + w2 ×Output2 + w3 ×

Output3, respectively, where the three weights (i.e., w1, w2, and w3) are tuned/updated by the PyTorch
learning algorithms as the other parameters in the networks. We wrote another script to concatenate
the output submatrices to obtain the predicted high-resolution contact matrix for a chromosome.
The loss function is the mean squared error between the output and corresponding experimental
high-resolution submatrices.

2.3. Evaluation Metrics

We used four different metrics to evaluate HiCNN2 along with HiCPlus and HiCNN: (1) the mean
squared error (MSE) between predicted and real high-resolution Hi-C data in terms of genomic distances;
(2) Pearson’s or Spearman correlation coefficients between predicted and real high-resolution Hi-C
data in terms of genomic distances; (3) the effectiveness of recovering significant interactions, which
were detected by Fit-Hi-C [8]; and (4) HiC-spector [28], a metric for quantifying the reproducibility
between the predicted and real high-resolution Hi-C contact matrices.

2.4. Implementations of the Convolutional Neural Networks

HiCNN2 was implemented in the same way as HiCNN [21] using Pytorch [29]. We used stochastic
gradient descent (SGD) with a batch size of 256, a momentum of 0.9, and a weight decay of 0.0001.
The learning rate was initially set to 0.1 and reduced by a factor of 0.1 when the mean squared error
from the validation process stopped improving with 10-epoch tolerance. We used the adjustable
gradient clipping technique with θ equal to 0.01 to increase the convergence speed. Compared with
12 h for training HiCNN and 28 h for training HiCPlus [21], training HiCNN2-3 took about 19 h (about
200 epochs for convergence) on a Nvidia V100 GPU with 16 GB memory; training HiCNN2-1 and
HiCNN2-2 took 12 to 19 h. Even though training HiCNN2 is relatively slower than training HiCNN,
HiCNN2 almost consistently outperforms HiCNN based on our evaluation shown in Section 3. Making
predictions for one input matrix takes about several seconds on the same GPU.

3. Results

3.1. Enhancing Down-Sampled Low-Resolution Hi-C Data in Human GM12878 and K562 Cells

We first evaluated the performance of HiCNN2 in comparison with HiCNN and HiCPlus in
enhancing the down-sampled low-resolution Hi-C data from human cells or cell-lines. The MSE and
Pearson’s correlation results on chromosome 17 in human GM12878 for HiCPlus, HiCNN, HiCNN2-1,
HiCNN2-2, and HiCNN2-3 are shown in Figure 2a with three different down-sampling ratios 1/8,
1/16, and 1/25. These results indicate that (1) HiCNN2 consistently performs better than HiCNN and
HiCPlus; (2) HiCNN2-1, an improved version of HiCNN, apparently achieves smaller mean squared
errors and higher Pearson’s correlations than HiCNN; and (3) it is difficult to distinguish which method
is better among the three HiCNN2 architectures as their performances are similar in terms of the MSE
and Pearson’s correlation.
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the Hi-C peaks detected by HiCCUPS (a computational tool that searches for peaks from Hi-C data) 
[9]. Results with three different predefined q-values are shown in Table 1, indicating that compared 
to HiCPlus and HiCNN, the three HiCNN2 methods can recover more significant interactions that 
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Figure 2. The evaluation results on chromosome 17 in human GM12878 cells between
experimental high-resolution Hi-C (10 kb resolution) and each of the five predicted Hi-C data
sets, namely, HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced,
and HiCNN2-3-enhanced: (a) mean squared error and Pearson’s correlations with three different
down-sampling ratios (1/8, 1/16, and 1/25); (b) the effectiveness of recovering significant interactions
(detected by Fit-Hi-C with q-value < 0.05) with the down-sampling ratio equal to 1/25; and (c) the
reproducibility scores with the three down-sampling ratios.

The performances in terms of recovering significant interactions detected by Fit-Hi-C
(q-value < 0.05, genomic distances from 50 kb to 2 Mb) are shown in Supplementary Figure S1a,b,
and Figure 2b for down-sampling ratios 1/8, 1/16, and 1/25, respectively. The best two methods were
HiCNN2-3 and HiCNN2-2 for ratio 1/8, HiCNN2-1 and HiCPlus for ratio 1/16, and HiCNN2-3 and
HiCNN2-2 for ratio 1/25. In general, all HiCNN2 methods recovered more significant interactions than
did HiCPlus and HiCNN. Moreover, we compared the significant interactions detected by Fit-Hi-C with
the Hi-C peaks detected by HiCCUPS (a computational tool that searches for peaks from Hi-C data) [9].
Results with three different predefined q-values are shown in Table 1, indicating that compared to
HiCPlus and HiCNN, the three HiCNN2 methods can recover more significant interactions that are in
common with Hi-C peaks. Finally, we compared the significant interactions with the CTCF-mediated
(CTCF: CCCTC-binding factor) interactions ensured by ChIA-PET [30]. There were 41, 41, 44, 39,
and 44 common interactions between 4900 CTCF-mediated interacting pairs and the interactions
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detected from HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, and
HiCNN2-3-enhanced matrices (down sampling ratio 1/25), respectively. It was found that HiCNN2-1
and HiCNN2-3 obtained more common interactions than did the other methods.

Table 1. The performances of HiCNN2-1, HiCNN2-2, HiCNN2-3, HiCNN, and HiCPlus for recovering
significant interactions detected by Fit-Hi-C (with three different q-values) that are in common with
306 Hi-C peaks detected by HiCCUPS on chromosome 17 in human GM12878. The best overlapping
numbers are highlighted (bold numbers).

HiCCUPS q-Value High Resolution HiCNN2-3 HICNN2-2 HICNN2-1 HiCNN HiCPlus

306
<1 × 10−6 134 122 114 121 104 112

<1 × 10−3 177 164 158 165 156 160

<0.05 203 198 193 199 200 198

The reproducibility scores were calculated between the experimental high-resolution Hi-C
contact matrix and each of the five predicted high-resolution Hi-C matrices enhanced by HiCPlus,
HiCNN, HiCNN2-1, HiCNN2-2, and HiCNN2-3. The reproducibility scores for the three different
down-sampling ratios (1/8, 1/16, and 1/25) are shown in Figure 2c. Almost all of the five methods
achieved high scores (>0.9). When the down-sampling ratios equaled 1/8 and 1/16, HiCNN
outperformed the others and was followed by HiCNN2-3, HiCNN2-1, and HiCPlus. However,
when the down-sampling ratio equaled 1/25, HiCNN2-2 achieved the highest score, followed by
HiCNN2-3 and HiCPlus. In general, all of the five methods can achieve high reproducibility scores,
and the improved high-resolution Hi-C data by computational methods are reliable enough to be used
in practice.

We next evaluated our methods on human K562 chromosome 10. The MSE and Pearson’s
correlation results are shown in Figure 3a with three different down-sampling ratios, indicating that
the three HiCNN2 methods consistently outperformed HiCPlus and HiCNN. The three HiCNN2
methods achieved the best effectiveness at recovering significant interactions as shown in Figure 3b
and Supplementary Figure S2a,b for ratios 1/8, 1/16, and 1/25, respectively. The methods that achieved
the best reproducibility scores (Figure 3c) were HiCPlus for ratio 1/8, HiCNN2-2 for ratio 1/16, and
HiCNN for ratio 1/25.

3.2. Enhancing Down-Sampled Low-Resolution Hi-C Data in Mouse and Bacterium Cells

We next explored whether our models, trained with Hi-C data in human GM12878, could be
directly used in other species (e.g., mouse and bacteria). First, we generated three low-resolution
Hi-C matrices on chromosome 18 of mouse embryonic stem cells (mES) by down-sampling the
high-resolution (5 kb) Hi-C reads from Bonev lab with the three different down-sampling ratios.
We then executed the five tools (HiCPlus, HiCNN, HiCNN2-1, HiCNN2-2, and HiCNN2-3) to improve
the low-resolution matrices, with the evaluation results shown in Figure 4. The three HiCNN2 methods
outperformed HiCNN and HiCPlus by achieving higher Pearson’s correlations and a smaller MSE.
Fit-Hi-C was used to detect significant interactions (q-value < 0.05, genomic distances from 50 kb to
4 Mb). The three HiCNN2 methods (HiCNN2-2 for ratio 1/8, see Figure 4b; HiCNN2-1 for ratio 1/16,
see Supplementary Figure S3a; and HiCNN2-3 for ratio 1/25, see Supplementary Figure S3b) achieved
the maximum number of overlapping significant interactions with the real high-resolution Hi-C data.
Furthermore, the three HiCNN2 methods achieved the highest reproducibility scores, as shown in
Figure 4c, with the three different down-sampling ratios.
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high-resolution Hi-C (10 kb resolution) and each of the five predicted Hi-C data sets,
namely, HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, and
HiCNN2-3-enhanced: (a) mean squared error and Pearson’s correlations with three different
down-sampling ratios (1/8, 1/16, and 1/25); (b) the effectiveness of recovering significant interactions
(detected by Fit-Hi-C with q-value < 0.05 within the genomic distances from 50 kb to 2 Mb) with a
down-sampling ratio of 1/8; and (c) the reproducibility scores with the three down-sampling ratios.
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Figure 4. The evaluation results on chromosome 18 in mES cells between experimental
high-resolution Hi-C (5 kb resolution) from Bonev lab and each of the five predicted Hi-C data
sets, namely, HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced,
and HiCNN2-3-enhanced: (a) mean squared error and Pearson’s correlations with three different
down-sampling ratios (1/8, 1/16, and 1/25); (b) the effectiveness of recovering significant interactions
(detected by Fit-Hi-C with q-value < 0.05 within the genomic distances from 50 kb to 4 Mb) with a
down-sampling ratio of 1/8; and (c) the reproducibility scores with the three down-sampling ratios.

Furthermore, we generated three low-resolution Hi-C matrices of the bacterial C. crescentus
chromosome by down-sampling its high-resolution (10 kb) matrix obtained from [25]. The MSE and
Pearson’s correlation evaluation results are shown in Figure 5a, indicating that the three HiCNN2
methods outperformed HiCPlus and HiCNN. We can observe more obvious advantages of the three
HiCNN2 methods with higher down-sampling ratios. In terms of recovering significant interactions
detected by Fit-Hi-C (q-value < 0.05, genomic distances from 50 kb to 2 Mb), HiCNN2-2 for ratio 1/8
(Supplementary Figure S4a), HiCNN2-1 for ratio 1/16 (Supplementary Figure S4b), and HiCNN2-3
for ratio 1/25 (Figure 5b) performed the best among the five methods. The methods that obtained the
highest reproducibility scores for the three different down-sampling ratios were HiCNN2-3, HiCNN2-2,
and HiCNN, respectively, see Figure 5c.
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Figure 5. The evaluation results on the bacterial C. crescentus chromosome between experimental
high-resolution Hi-C (10 kb resolution) and each of the five predicted Hi-C data sets,
namely, HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, and
HiCNN2-3-enhanced: (a) mean squared error and Pearson’s correlations with three different
down-sampling ratios (1/8, 1/16, and 1/25); (b) the effectiveness of recovering significant interactions
(detected by Fit-Hi-C with q-value < 0.05) with a down-sampling ratio of 1/25; and (c) the reproducibility
scores with the three down-sampling ratios.

3.3. Enhancing Experimental Low-Resolution Hi-C Data on Human K562 and mES Cells

To test the effectiveness of enhancing real/experimental low-resolution Hi-C data, we used two
experimental low-resolution Hi-C data sets to benchmark the methods. The first one was from Aiden
lab [9] and was an independent Hi-C experiment (HIC071 from GEO GSM1551620) based on human
K562 cells. The second one was from Ren lab [5] and based on mES cells.

We enhanced the first low-resolution Hi-C data (HIC071) using the five methods on chromosome
18 with the down-sampling ratio equal to 1/16 and then compared the enhanced high-resolution
matrices with the real high-resolution matrix. The MSE and Pearson’s correlation results shown in
Figure 6a indicate that (1) the enhancement processes significantly improved the quality of HIC071 at
10 kb resolution and (2) the three HiCNN2 methods outperformed HiCPlus and HiCNN. The results
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in terms of the effectiveness of recovering significant interactions shown in Figure 6b indicate that
(1) the enhancement processes successfully recovered more than 800 interactions compared with 3 in
the original HIC071 Hi-C data set and (2) HiCNN2-1 performed the best, followed by HiCNN2-2 and
HiCNN2-3. Notice that HiCNN achieved the highest reproducibility score, see Figure 6c.
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Figure 6. The evaluation results on chromosome 18 of human K562 cells between experimental
high-resolution Hi-C (10 kb resolution) and each of the six Hi-C data sets, namely, real
low-resolution (HIC071) from Aiden lab, HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced,
HiCNN2-2-enhanced, and HiCNN2-3-enhanced Hi-C data, with a down-sampling ratio of 1/16: (a)
mean squared error and Pearson’s correlations; (b) the effectiveness of recovering significant interactions
(detected by Fit-Hi-C with q-value < 0.05 within the genomic distances from 50 kb to 2 Mb); and (c) the
reproducibility scores.

In order to evaluate the methods on the second Hi-C data set, we considered the Hi-C data
from Bonev lab [10] as real/experimental high-resolution (5 kb) Hi-C data in mES cells. The tests
were conducted on chromosome 18 in mES cells with the down-sampling ratio equal to 1/8 with
results shown in Supplementary Figure S5. Even though the two Hi-C data sets from Ren lab and
Bonev lab were generated using different restriction enzymes, the five tools apparently improved the
quality of the low-resolution data in terms of Pearson’s and Spearman correlations (Supplementary
Figure S5a). The results in terms of significant interactions (q-value < 0.05, genomic distances from
50 kb to 4 Mb) are shown in Supplementary Figure S5b, indicating that HiCNN2-3 performed the
best, followed by HiCNN2-2 and HiCNN2-1. The reproducibility scores shown in Supplementary
Figure S5c indicate that the four methods (HiCNN, HiCNN2-1, HiCNN2-3, and HiCPlus) slightly
improved the reproducibility by increasing the score from 0.32 to 0.36.
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3.4. Recovering Topologically Associating Domains in Human IMR90 Cells

Topologically associating domains (TADs) defined in Hi-C contact matrices are important structural
patterns of chromatins [5]. We explored whether computationally enhanced high-resolution data still
preserve the boundaries of TADs. We plotted the heat maps of Hi-C contact matrices on chromosome
21 (28–30.3 Mb) of human IMR90 cells, see Figure 7. The following Hi-C contact matrices are
presented in Figure 7: low resolution with a down-sampling ratio equal to 1/25, HiCPlus-enhanced,
HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, HiCNN2-3-enhanced, and real
high-resolution Hi-C data. We also highlighted the locations of six TADs detected by Arrowhead [9]
on all of the predicted and real high-resolution heat maps (blue squares in Figure 7). It can be seen that
the low-resolution Hi-C matrix was too sparse to be used to identify TAD locations. Compared to the
low-resolution Hi-C matrix, the Hi-C matrices enhanced by the five computational tools (i.e., HiCPlus,
HiCNN, HiCNN2-1, HiCNN2-2, and HiCNN2-3) are more similar to the real high-resolution Hi-C
matrix, indicating that computational methods can help recover TAD patterns. Moreover, we can
observe in Figure 7 that the tools can not only recover TAD boundaries but also reinforce Hi-C peaks
(green circle) that are anchored at the promoter of the active ADAMTS1 gene [9].
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Figure 7. The heat maps of Hi-C contact matrices from low resolution (down sampling ratio
1/25), HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, and
HiCNN2-3-enhanced, and real high-resolution Hi-C data on chromosome 21 (28–30.3 Mb) of human
IMR90 cells. Six topologically associating domains (blue squares) and three Hi-C peaks (green circles)
are highlighted in each of the predicted and real high-resolution heat maps (blue color). The models of
the five methods were trained with input from GM12878 and with a down-sampling ratio equal to 1/25.

4. Conclusions

We developed HiCNN2, a computational package for improving the resolution of Hi-C data.
HiCNN2 consists of three different architectures (i.e., HiCNN2-1, HiCNN2-2, and HiCNN2-3) using
three different types of ConvNets. The first 56-layer ConvNet implements global and local residual
learning and concatenates features from all local residual learning blocks. The second 22-layer
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ConvNet implements global residual learning. The last 3-layer ConvNet implements three traditional
convolutional layers. Our evaluation results indicate that HiCNN2 consistently outperforms HiCNN
and HiCPlus in terms of both predicting high-resolution Hi-C contacts and recovering significant
genomic interactions. HiCNN2-1 is an updated version of our previously developed tool HiCNN;
and our evaluations indicate that HiCNN2-1 significantly improves upon HiCNN. In general, the
three architectures have their own advantages: HiCNN2-1 and HiCNN2-3 are recommended to be
used when recovering more significant interactions is of interest, and HiCNN2-2 and HiCNN are the
best choices if the goal is to achieve the highest reproducibility scores between the predicted and real
high-resolution Hi-C matrices. HiCNN2 is freely available at http://dna.cs.miami.edu/HiCNN2/.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/11/862/s1,
Figure S1: The effectiveness of recovering significant interactions (called by Fit-Hi-C with q-value < 0.05) on
chromosome 17 in human GM12878 between experimental high-resolution Hi-C (10 kb) and each of the five
predicted high-resolution Hi-C data sets, including HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced,
HiCNN2-2-enhanced, and HiCNN2-3-enhanced, with the down sampling ratios equal to 1/8 shown in
(a) and 1/16 shown in (b), Figure S2: The effectiveness of recovering significant interactions (called by
Fit-Hi-C with q-value < 0.05) on chromosome 10 in human K562 between experimental high-resolution
Hi-C (10 kb) and each of the five predicted high-resolution Hi-C data sets, including HiCPlus-enhanced,
HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, and HiCNN2-3-enhanced, with the down
sampling ratios equal to 1/16 shown in (a) and 1/25 shown in (b), Figure S3: The effectiveness of recovering
significant interactions (called by Fit-Hi-C with q-value < 0.05) on chromosome 18 in mES between experimental
high-resolution Hi-C (5 kb) from Bonev lab and each of the five predicted high-resolution Hi-C data
sets, including HiCPlus-enhanced, HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, and
HiCNN2-3-enhanced, with the down sampling ratios equal to 1/16 shown in (a) and 1/25 shown in (b), Figure
S4: The effectiveness of recovering significant interactions (called by Fit-Hi-C with q-value < 0.05) on a
bacterial (C. crescentus) chromosome between experimental high-resolution Hi-C (10 kb) from Bonev lab and
each of the five predicted high-resolution Hi-C data sets, including HiCPlus-enhanced, HiCNN-enhanced,
HiCNN2-1-enhanced, HiCNN2-2-enhanced, and HiCNN2-3-enhanced, with the down sampling ratios
equal to 1/8 shown in (a) and 1/16 shown in (b). The file name of the original high-resolution Hi-C matrix is
“GSM1120445_Laublab_BglII_HiC_NA1000_swarmer_cell_untreated_replicate1_overlap_before_normalization.txt”,
Figure S5: The evaluation results on chromosome 18 in mES between experimental high-resolution Hi-C (5 kb)
from Bonev lab and each of the six Hi-C data sets, including real low-resolution from Ren lab, HiCPlus-enhanced,
HiCNN-enhanced, HiCNN2-1-enhanced, HiCNN2-2-enhanced, and HiCNN2-3-enhanced Hi-C data with the
down sampling ratio equal to 1/8: (a) the Pearson’s and Spearman correlations; (b) the effectiveness of recovering
significant interactions (called by Fit-Hi-C with q-value < 0.05); and (c) the reproducibility scores.
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